首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Although the hyperglycemic effect of morphine has been previously described, it is not clear whether this is the result of increased glucose production and/or decreased glucose utilization and if this metabolic effect is lost with glucuronidation. This study assessed the hemodynamic (heart rate; HR and mean arterial blood pressure; MABP), hormonal and whole body glucose metabolic effects of morphine (MOR) and its metabolite morphine 6-glucuronide (MOR-6G) in conscious unrestrained chronically catheterized rats. Whole body glucose kinetics were assessed with a primed constant intravenous infusion of [3-3H]gluccose in rats infused i.c.v. with H2O (Con; 5 μl/h), MOR (80 μg/h) or MOR-6G (1 μg/h) for a total of 4 h. MOR administration resulted in a significant 20% elevation in HR and no change in MABP. MOR-6G produced a 14% increase in HR and no change in MABP. A significant rise in plasma glucose (+23%), hepatic glucose production (Ra; +27–61%) and whole body glucose utilization (Rd; +31–61%) was also observed within 60 min of MOR administration. I.c.v. MOR-6G resulted in hemodynamic, metabolic and hormonal parameters of H2O infused rats. I.c.v. MOR resulted in a significant increases in epinephrine (2-fold), norepinephrine (50%), corticosterone (97%) with no alterations in plasma insulin and glucagon. I.c.v. MOR-6G resulted in more marked elevations in norepinephrine (5-fold), epinephrine (7-fold) and similar elevation in corticosterone (99%) and modest elevation of glucagon (40%). These results indicate that (i) MOR-induced hyperglycemia is the result of direct central (CNS) mechanisms that result in increased hepatic glucose production, (ii) MOR-induced stress response is enhanced at least 80-fold with glucuronidation, and (iii) MOR inhibits the pancreatic glucose-stimulated insulin release.  相似文献   

2.
To assess the contribution of the active metabolite of morphine, morphine-6-glucuronide (M6G), to the analgesic effect of systemically administered morphine, experiments were carried out on rats under urethane anesthesia in which nociceptive activity was evoked by electrical stimulation of afferent C fibers in the sural nerve and recorded from single neurons in the ventrobasal complex of the thalamus. Intravenous (i.v.) injections of morphine completely blocked the activity at doses of 500 and 1000 μg/kg, the ED,, being 44 μg/kg. M6G administered by i.v. injection reduced the evoked nociceptive activity only by about 40% at 80 and 160 μg/kg, the ED50 being 6 μg/kg. After intrathecal (i.t.) injection, morphine produced maximum depression of 55% of the control activity at 20 μg the ED50 is 18 μg. M6G injected i.t. produced maximum depression of 40% at doses ranging from 0.2 to 10 μg. The ED50 of M6G i.t. is below 0.2 μg. The effects of morphine and M6G were reversed by naloxone (200 μg/kg i.v.). The results show that M6G is more potent than morphine, regardless of the route of administration, while morphine is more effective when injected i.v. Due to the low efficacy of M6G, it seems unlikely that this glucuronide contributes substantially to the analgesic effect of morphine when renal function is normal. The results also make evident that the maximum effect of morphine results from an action at spinal and supraspinal sites.  相似文献   

3.
Morphine-6-sulfate (M6S) and codeine-6-sulfate (C6S) are mu-selective opiates which have been isolated from brain. M6S is an effective analgesic, with a 30-fold greater potency than morphine in the mouse radiant heat tailflick assay and similar to the active morphine metabolite morphine-6beta-glucuronide (M6G). M6S analgesia is reversed by 3-methoxynaltrexone at low antagonist doses which are inactive against morphine, suggesting that M6S may be acting through the same mechanisms as M6G. Consistent with this possibility, antisense mapping of the MOR-1 clone revealed that M6S analgesia was lowered by probes targeting exon 2 and not by targeting exon 1, a sensitivity profile similar to that of M6G and not morphine. C6S also has analgesic activity at doses approximately 10-fold greater than M6S. However, its characterization was impeded by the appearance of seizures at doses below full analgesic activity. Thus, M6S is a potent analgesic with pharmacological properties similar to M6G. C6S has limited utility due to its high level of toxicity.  相似文献   

4.
The profound and prolonged effects of morphine in patients with renal dysfunction have been associated with high plasma levels of the opiate metabolites morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G) rather than an increased concentration of morphine. We present here electrophysiological evidence to suggest that potent spinal antinociception can be produced by both M6G and normorphine, another metabolite of morphine. Extracellular recordings of Aβ- and C-fibre-evoked responses of convergent dorsal horn neuroneswere made in the halothane anaesthetised rat. M6G elicited dose-dependent, naloxone-reversible inhibitions of C-fibre-evoked responses which were completely suppressed (8% of control) by 2 μg M6G whereas Aβ-fibre-evoked responses were only reduced to 57% of controls. The ED50 for the effects of M6G on C-fibre-evoked activity was calculated to be 0.53 μg. Systematic administration of M6G (2 mg/kg) also profoundly reduced noxious evoked neuronal activity. intrathecal normorphine was less potent than M6G but complete selective inhibitions of C-fibre-evoked responses could be elicited by 25 μg and the ED50 was calculated to be 2.68 μg. No such inhibitions were observed following administration of M3G. A comparison with intrathecal morphine in the same preparation reveals that normorphine is equipotent with morphine whereas M6G is 13-fold more potent. These results therefore confirm that M6g and normorphine might be significant contributers to opiate analgesia after administration of morphine.  相似文献   

5.
The effects of central administration of morphine-sulfate (MOR:80 μg) and morphine-6-glucuronide (M6G:1 μg) on the growth hormone (GH)/insulin-like growth factor (IGF) system were assessed. MOR and M6G were injected intracerebroventricularly (ICV) in chronically catheterized 24 h fasted rats; time-matched control animals received H2O (5 μl). MOR increased plasma GH concentrations 3-fold 2 h after ICV injection, and transiently increased the plasma concentration and liver content of IGF-I (60% and 90%, respectively) 30 min after ICV injection. M6G did not produce any significant alterations in plasma GH and IGF-I levels at the time-points measured. Both MOR and M6G increased the concentration of IGF binding protein-1 (IGFBP-1) in plasma and liver 2 h after injection. However, MOR showed 2- to 2.5-fold greater effect than M6G in stimulating plasma and liver IGFBP-1. MOR and M6G produced similar increases in plasma epinephrine (5-fold), norepinephrine (3-fold) and corticosterone (1.5-fold). Neither opiate significantly altered circulating insulin levels. These findings suggest that opiate modulation of GH and IGF may be hormone-independent and centrally modulated. We speculate that differential affinities of MOR and M6G to the different opiate receptor subtypes might be responsible for their distinct effects on GH/IGF-I system.  相似文献   

6.
The present study examined whether morphine and morphine-6β-glucuronide (M6G) analgesia on the tail-flick and jump tests differed in potency in the periaqueductal gray, the locus coeruleus or the rostral ventromedial medulla. Morphine and M6G significantly and dose-dependently elicited analgesia on both nociceptive tests from each site. Site-specific differences were observed in the potency of M6G, but not morphine analgesia on both tests. Periaqueductal gray placements displayed analgesic ED50s on the tail-flick (morphine: 2.1 μg, M6G: 0.2 μg) and jump (morphine: 2.2 μg, M6G: 0.4 μg) tests with respective potency ratios of 12.9 and 6.5. Locus coeruleus placements displayed analgesic ED50s on the tail-flick (morphine: 1.7 μg, M6G: 0.1 μg) and jump (morphine: 3.4 μg, M6G: 0.2 μg) tests with respective potency ratios of 15.9 and 15.1. Rostral ventromedial placements displayed analgesic ED50s on the tail-flick (morphine: 1.4 μg, M6G: 0.06 μg) and jump (morphine: 1.9 μg, M6G: 0.08 μg) tests with potency ratios of 21.9 on both tests. The greater analgesic sensitivity of the rostral ventromedial medulla to M6G may be due to either pharmacodynamic (splice variants of the MOR-1 gene) and/or pharmacokinetic (lipid solubility) factors.  相似文献   

7.
Lewis rats are more likely to self-administer various drugs of abuse than Fischer rats. Here these two strains of rats were compared with regard to basal brain opioid peptide levels and the response to chronic morphine treatment and to naloxone-precipitated withdrawal. Lewis rats had lower basal dynorphin peptides in the substantia nogra, striatum (not Leu-enkephalinArg6) and VTA (not dynorphin B) and the pituitary gland. Leu-enkephalinArg6 levels were also lower in these structures (with the exception of striatum which had higher levels) and in the nucleus accumbens. There were also strain differences in the response to chronic morphine treatment; in the nucleus accumbens, morphine treatment increased dynorphin A levels in Fischer rats only, in the ventral tegmental area effects were opposite with increased dynorphin levels in Fischer and decreased levels in Lewis rats, in the hippocampus dynorphin levels were markedly reduced in Lewis rats only. In Fischer rats, chronic morphine strongly affected peptide levels in the substantia nigra and striatum, whereas Lewis rats responded less in these areas. Leu-enkephalin, which derives from both prodynorphin and proenkephalin, and Met-enkephalin, which derives from proenkephalin, were effected by chronic morphine mainly in Fischer rats, increasing levels in most of the brain areas examined. The results in this study show (1) strain differences in basal levels of prodynorphin-derived opioid peptides, (2) the prodynorphin system to be differently influenced by morphine in Lewis rats than in Fischer rats and 3) the proenkephalin system to be influenced by chronic morphine in brain areas related to reward processes only in Fischer rats.  相似文献   

8.
Effects of thrombin on brain cells, including change of neurite outgrowth and astrocyte shape, are described, but the molecular mechanisms are unclear. We investigated the effects of human α-thrombin and a six amino acid thrombin receptor activating peptide (TRAP-6, SFLLRN) on [Ca2+]1, phosphoinositide hydrolysis, and protein kinase C in rat glioma C6 cells. Stimulation of C6 cells with both α-thrombin and TRAP-6 resulted in [Ca2+]1 mobilization, [3H]Inositol phosphate response, and enhanced immunoreactivity of the protein kinase C (PKC) isoenzymes α, β, γ, δ, and ϵ. Results suggest that α-thrombin and TRAP-6 activate at least partially the same intracellular signaling pathways in rat glioma C6 cells, which is evidence for involvement of “tethered ligand” receptor in thrombin induced signaling in glioma C6 cells. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Direct biochemical determinations of α1 adrenoceptor sites were performed in the neocortex of rats subjected to a selective unilateral noradrenergic deafferentation, obtained by microinjecting 6-OHDA in the right dorsal noradrenergic bundle (DNB). After 3 months survival the α1 sites were assayed using 3H-Prazosin (3H-PRZ), in both the denervated and the contralateral (control) cortex. The catecholamines dopamine (DA), epinephrine (EPI), norepinephrine (NE), as well as the indoleamine serotonin (5-HT) were measured using radioenzymatic assays in samples of the frontal cortex of these same animals, as well as in the septum and hippocampus in order to assess the extent and specificity of the deafferentation. The results document that unilateral NE-deafferentations of the cerebral cortex are feasable, the reduction in NE persists for at least three months, and there is an increased endogenous DA content. In the denervated cerebral cortex specific binding of 3H-PRZ showed an increase (+ 45%) in the density of receptor sites (BBAX) without any changes in the dissociation constant (KD 25°C). The results have to be considered in relation both to plasticity changes in monoamine fibers and to denervation-induced alterations of the postysynaptic α-adrenoceptors.  相似文献   

10.
The opioid peptides are derived from three prohormone precursors referred to as proopiomelanocortin (POMC), proenkephalin (ProEnk) and prodynorphin (ProDyn). Following specific cleavage, several biologically active peptides are generated that can bind the μ, δ and κ receptors. The present study examines the receptor binding affinities of the POMC, ProEnk and ProDyn peptides to the cloned μ, δ and κ receptors expressed transiently in transfected COS-1 cells. Consistent with previous findings using brain homogenates, competition studies demonstrate that no opioid peptide family can be exclusively associated with a specific opioid receptor type. Short ProEnk peptides, such as Leu- and Met-enkephalin are selective for δ, but C-terminally extended peptides such as Met-Enk-Arg-Gly-Leu and Met-Enk-Arg-Phe have a high affinity to μ, δ and κ. Similarly, Peptide E, the BAM peptides, and metorphamide have a high affinity for all three opioid receptors types. While dynorphin A peptides and - and β-neoendorphin have a preference for κ, they also bind the cloned δ and μ receptors. Our findings do not easily fit a simple ‘message-address’ model where the Try-Gly-Gly-Phe core is extended and this gradually alters selectivity. Rather, the pattern appears more discontinuous, and would fit better with the idea of two similar but distinct cores; a Tyr-Gly-Gly-Phe Met- or Leu core that is necessary and sufficient for μ and δ but not κ and a Tyr-Gly-Gly-Phe-Met or Leu core with an Arg-X extension that is equally necessary and sufficient for κ.  相似文献   

11.
Biochemical, hormonal, and behavioural aspects of the effects of prenatal treatment (foetal days 18 and 19) with 6-hydroxydopa (2 × 40 mg/kg) and DSP 4 (2 × 20 mg/kg) have been studied in the rat. The results of the catecholamine assays suggest that the 6-hydroxydopa treatment produced a transient decrease of noradrenaline concentration in the cerebral cortex, and a long-lasting decrease in the cerebellum, whereas DSP 4 produced a long-lasting decrease in the cerebral cortex and a tendency towards increase in the cerebellum. Assays of adrenocorticotropic hormone and corticosterone indicated a general tendency towards increase in base line as well as in moderate stress situations. The results of behavioural tests indicated hyperactivity and/or hyperreactivity, but not restlessness, and partly supranormal sensorimotor performances.  相似文献   

12.
Our previous studies showed that D(1) and D(2) dopamine receptors are indispensable for the cognitive effects of angiotensin IV (Ang IV) and its des-Phe(6) derivative des-Phe(6)-Ang IV to occur. As most neuroleptics currently used in the treatment of schizophrenia have variable D(2)/D(3) dopaminolytic selectivity, in this study we searched for the role of the D(3) dopamine receptors in facilitating learning and improving memory actions of Ang IV and des-Phe(6)-Ang IV in rats. For this purpose, we evaluated the recall of the passive avoidance (PA) behaviour, object recognition (OR) memory, and the spatial working memory (WM) in rats treated with the intraperitoneal (i.p.) nafadotride (N[(n-butyl-2-pyrrolidinyl)methyl]-1-methoxy-4-cyanonaphtalene-2-carboxamide), a highly selective D(3) receptor blocker and then by an intracerebroventricular (i.c.v.) Ang IV or des-Phe(6)-Ang IV. Separate groups of rats receiving the same treatments were run to check for the possible participation of unspecific motor (open field) or emotioned (elevated "plus" maze) effects of our treatments in the results of the cognitive tests. The results revealed Ang IV to express its improving recall of PA, OR memory and WM action roughly similarly in all groups showing only minor or null significance of the D(3) receptors blockade. Interestingly, in the nafadotride pretreated rats, des-Phe(6)-Ang IV beneficial effect on the recall of the PA was weaker than that of Ang IV. Improvement of the spatial WM in an eight-arm radial maze, similar after Ang IV and des-Phe(6)-Ang IV, was not significantly affected by nafadotride. There were no motor and only minor anxiogenic effects of Ang IV and des-Phe(6)-Ang IV abolished by nafadotride in the former case. In conclusion, this study points to the minor significance of the D(3) dopamine receptors in the cognitive effects of Ang IV and to the interesting, though unexplained, inhibition by nafadotride of the des-Phe(6)-Ang IV effects.  相似文献   

13.
Our previous work has demonstrated that 100-Hz electroacupuncture (EA) or 100-Hz transcutaneous electrical nerve stimulation (TENS) was very effective in ameliorating the morphine withdrawal syndrome in rats and humans. The mechanism was obscure. (1) Rats were made dependent on morphine by repeated morphine injections (5–140 mg/kg, s.c., twice a day) for eight days. They were then given 100-Hz EA for 30 min 24 h after the last injection of morphine. A marked increase in tail flick latency (TFL) was observed. This effect of 100-Hz EA could be blocked by naloxone (NX) at 20 mg/kg, but not at 1 mg/kg, suggesting that 100-Hz EA-induced analgesia observed in morphine-dependent rats is mediated by κ-opioid receptors. (2) A significant decrease of the concentration of dynorphin A (1–17) immunoreactivity (-ir) was observed in the spinal perfusate in morphine-dependent rats, that could be brought back to normal level by 100-Hz EA. (3) 100-Hz EA was very effective in suppressing NX-precipitated morphine withdrawal syndrome. This effect of EA could be prevented by intrathecal administration of nor-BNI (2.5 μg/20 μl), a κ-opioid receptor antagonist, or dynorphin A (1–13) antibodies (25 μg/20 μl) administered 10 min prior to EA. In conclusion, while the steady-state spinal dynorphin release is low in morphine-dependent rats, it can be activated by 100-Hz EA stimulation, which may be responsible for eliciting an analgesic effect and ameliorating morphine withdrawal syndrome, most probably via interacting with κ-opioid receptor at spinal level.  相似文献   

14.
Nutrient selection emerges as a result of both genetic and environmental factors and may be further modified by stressors. The impact of this complex interrelationship on pathological outcomes is poorly understood. In the present investigation the stressor-reactive BALB/cByJ and the relatively stressor resilient C57BL/6ByJ mice were maintained on a macronutrient selection protocol or given free access to chow for 20 months. The C57BL/6ByJ mice exhibited a marked preference for fat over carbohydrates, whereas BALB/cByJ mice preferred carbohydrates over fat. Cognitive testing in a Morris water maze indicated that while BALB/cByJ mice were clearly more impaired in this task relative to their C57BL/6ByJ counterparts, there was no substantial effect of the diet at either 13 or 19 months of age. Furthermore, despite their stressor resiliency, at 19 months of age, C57BL/6ByJ mice who invariably consumed fat, exhibited greater plasma corticosterone responses to a 20-min period of restraint than chow fed animals. Indeed, the corticosterone rise was as pronounced as in the more reactive BALB/cByJ strain. Furthermore, the C57BL/6ByJ diet-fed mice showed features of insulin insensitivity and increased adiposity. These data suggest that the adverse effects of fat consumption need to be considered in the context of genetically determined vulnerability/resilience factors.  相似文献   

15.
The effects of two intensities of formalin on behaviour and β-Endorphin (β-EP) concentration in the brain and pituitary were studied in male and female rats. The animals were familiarized with the Hole-Board apparatus for 3 days, and then, after a subcutaneous injection of formalin (50 μl, 0.1 or 10%) or Sham-injection (Control) in the hindpaw, they were tested in the Hole-Board for 60 min. Licking, Flexing and Paw-Jerk of the injected limb were recorded. β-EP concentration was determined in the hypothalamus (HYP), the periaqueductal gray matter (PAG), the anterior pituitary (AP) and the neurointermediate lobe (NIL). Licking and Flexing durations were greater in females than males only with formalin 10%. Sex differences in β-EP concentration between the Control groups were found in all tissues except the HYP; β-EP levels were higher in females in the PAG and NIL, but greater in the AP in males. β-EP concentration increased in males in the HYP and NIL with formalin 10%; in females, a decrease was found in the HYP with formalin 0.1%. The present results suggest that: (a) there are differences between males and females in the responses to formalin pain, and the nature (pattern and duration) of the sex differences varies according to the pain intensity; (b) there are differences in β-EP concentration between the two sexes in control animals, and male and female rats also exhibit differences in the modifications of β-EP in response to formalin-induced pain.  相似文献   

16.
Antiamnesic effects of a newly synthesized azaindolizinone derivative ZSET845 were assessed in rats made learning ability deficient by amyloid-beta (Abeta)25-35 treatment. Intracerebroventricular injection of Abeta25-35 induced a marked decrease in step-through latency in passive avoidance task and reduction in choline acetyltransferase (ChAT) activity in the medial septum and hippocampus, but not in the basal forebrain and cortex. The number of ChAT-immunoreactive cells was decreased in the medial septum. Oral administration of ZSET845 at a dose of 1 or 10 mg/kg ameliorated learning impairment in passive avoidance task and enhanced ChAT activity in the basal forebrain, medial septum and hippocampus, and increased in the number of ChAT-immunoreactive cells in the medial septum in Abeta-treated rats to the levels of vehicle-injected control rats. These results suggest that ZSET845 is worth testing for further preclinical study aimed for the treatment of senile dementia such as Alzheimer's disease.  相似文献   

17.
Our previous study demonstrated that the citrus bioflavonoid naringenin ameliorated behavioral alterations via the central serotonergic and noradrenergic systems in the tail suspension test (TST) induced mice. To better understand its pharmacological activity, mice were submitted to three 6min-TSTs one week apart (Day 1: test, Day 7: retest 1, Day 14: retest 2) followed by hippocampal glucocorticoid receptor (GR), monoamine neurotransmitters and serum corticosterone measurement. The results suggested that repeated TST detected the gradual increase in the efficacy of naringenin over time, additionally 1-day (20mg/kg), 7-day (10, 20mg/kg) and 14-day (5, 10, 20mg/kg) naringenin treatment markedly decreased the immobility time. Moreover, administration of naringenin for 14days (20mg/kg) increased hippocampal serotonin (5-HT), norepinephrine (NE) and GR levels, and reduced serum corticosterone levels in mice exposed to the repeated TST. Overall, the present study indicated that the re-exposure would facilitate the detection of the anti-immobility effects of antidepressant drugs in the mouse TST, and clearly demonstrated that the antidepressant-like effect of naringenin may be mediated by an interaction with neuroendocrine and neurochemical systems.  相似文献   

18.
In the present study we have investigated the distribution of Rab3a in rat peripheral nervous system and compared it with the distribution of other synaptic vesicle proteins (synaptophysin, synapsin I), neuropeptides (CGRP, SP, NPY) and tyrosine hydroxylase (TH). Rab3a immunoreactivity (-IR) was always colocalized with synaptophysin-IR and synapsin I-IR in nerve terminals of the spinal cord and peripheral nerve endings. In many cases, Rab3a-IR was also present in the same axons and terminals as peptides. In crushed sciatic nerve axons, Rab3a was colocalized, proximal to the crush, with synaptophysin-IR, synapsin MR, CGRP-IR, and TH-IR, but only partially co-localized with NPY-IR and SP-IR. In the area distal to the crush, Rab3a-IR was very weakly positive in a few thin axons, while larger amount of synaptophysin, CGRP, NPY and SP immunoreactivities were detected. The subcellular distribution of peptides and Rab3a differed in that peptides were observed mainly in large granular structures, while Rab3a-IR was observed mainly as diffuse, finely granular immunoreactivity, in addition to a few exceptional large granules present in some axons. The results demonstrate that Rab3a is widely distributed in different types of neurons, i.e. motor, sensory, autonomic adrenergic and cholinergic neurons, and colocalized with other synaptic vesicle proteins, suggesting that Rab3a may play an essential role in neuronal function. Furthermore, Rab3a is present in many peptide containing axons and terminals, but with an apparently different subcellular distribution, being affiliated mostly with small synaptic vesicles and only occasionally with large vesicles, that may represent peptide contained vesicles.  相似文献   

19.
In opiate-naive rats, the endogenous opioid peptides, β-endorphin, dynorphin(1–13) and Met---Enk---Arg---Phe (MEAP) and the synthetic enkephalin analogue -Ala2- -Leu5-Enk (DADLE) potently stimulated plasma corticosterone in a dose-dependent, naloxone-reversible manner. To characterize their in vivo affinities, the effects of these peptides on plasma corticosterone release were tested in rats made tolerant to morphine, U50488H, DADLE/morphine or β-endorphin. These cross-tolerance studies showed that dynorphin and MEAP exerted their action on plasma corticosterone release at κ-opioid receptors. The action of DADLE occurred at δ-opioid receptors, while the action of β-endorphin occurred principally at another receptor site. These results indicate that there is independent modulation of the hypothalamic-pituitary-adrenal axis by endogenous opioid peptides at μ-, δ- and κ-opioid receptors. In addition, there may be modulation by β-endorphin at a separate site that we suggest could be a central ε-receptor site. This cross-tolerance paradigm, using a neuroendocrine model, provides in vivo evidence for the action of centrally active endogenous opioid peptides at multiple and independent opioid receptors.  相似文献   

20.
Observational studies have linked lower omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and higher omega-6 (n-6) PUFAs with inflammation and depression, but randomized controlled trial (RCT) data have been mixed. To determine whether n-3 decreases proinflammatory cytokine production and depressive and anxiety symptoms in healthy young adults, this parallel group, placebo-controlled, double-blind 12-week RCT compared n-3 supplementation with placebo. The participants, 68 medical students, provided serial blood samples during lower-stress periods as well as on days before an exam. The students received either n-3 (2.5 g/d, 2085 mg eicosapentaenoic acid and 348 mg docosahexanoic acid) or placebo capsules that mirrored the proportions of fatty acids in the typical American diet. Compared to controls, those students who received n-3 showed a 14% decrease in lipopolysaccharide (LPS) stimulated interleukin 6 (IL-6) production and a 20% reduction in anxiety symptoms, without significant change in depressive symptoms. Individuals differ in absorption and metabolism of n-3 PUFA supplements, as well as in adherence; accordingly, planned secondary analyses that used the plasma n-6:n-3 ratio in place of treatment group showed that decreasing n-6:n-3 ratios led to lower anxiety and reductions in stimulated IL-6 and tumor necrosis factor alpha (TNF-α) production, as well as marginal differences in serum TNF-α. These data suggest that n-3 supplementation can reduce inflammation and anxiety even among healthy young adults.The reduction in anxiety symptoms associated with n-3 supplementation provides the first evidence that n-3 may have potential anxiolytic benefits for individuals without an anxiety disorder diagnosis. ClinicalTrials.gov identifier: NCT00519779.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号