首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
目的了解云南省艾滋病合并结核病患者中结核分枝杆菌(MTB)耐利福平RNA聚合酶β亚单位编码基因(rpoB)和耐异烟肼过氧化氢酶-过氧化物酶编码基因(katG)、烯酰基还原酶编码基因(inhA)突变特点。方法采用基因芯片技术,对该省208例艾滋病合并结核病患者标本进行MTB利福平耐药相关基因rpoB和异烟肼耐药相关基因katG、inhA分析。结果 208例标本中共34例(16.3%)耐药,其中单耐利福平6例(2.9%),单耐异烟肼10例(4.8%),二者同时耐药18例(8.7%)。24例利福平耐药MTB的rpoB基因突变位点主要为531(TCG→TTG),占66.7%(16/24);28例异烟肼耐药MTB的基因突变位点主要为katG基因315(AGC→ACC),占78.6%(22/28)。结论云南省艾滋病合并结核病患者中MTB利福平和异烟肼耐药基因突变具有多态性,其中耐利福平rpoB基因的主要突变位点为531(TCG→TTG),耐异烟肼katG、inhA基因的主要突变位点为katG基因315(AGC→ACC)。  相似文献   

2.
耐药结核分枝杆菌基因突变分析   总被引:2,自引:0,他引:2  
目的 探讨结核分枝杆菌耐药表型与基因突变位点之间的相互关系.方法 采用序列特异性引物分别扩增92株结核分枝杆菌利福平耐药基因rpoB,异烟肼耐药基因katG、inhA、ahpC,链霉素耐药基因rrs、rpsL,乙胺丁醇耐药基因embB及喹诺酮耐药基因gyrA,SSCP筛选出突变序列,DNA测序分析突变性质.结果 59株利福平耐药株rpoB基因突变检出率94.9%(56/59),以Ser450Trp突变最多;90株异烟肼耐药株中,katG基因突变检出率38.9%(35/90),以Ser315Thr最多,3株检出inhA基因突变,ahpC基因无突变检出;34株喹诺酮耐药株中gyrA基因突变检出率82.4%(28/34),主要为Asp94Gly,其次为Ala90Val;31株链霉素耐药株中,15株检出rrs突变,最常见为A514C和A1041G,10株发生rpsL Lys88Arg突变,总的链霉素基因突变检出率为77.4%(24/31);31株乙胺丁醇耐药株中embB 基因突变检出率19.4%(6/31),主要为Met306Val.结论 耐药结核分枝杆菌耐药情况较为严重,以DNA测序为基础的基因突变分析能快速有效地检测结核分枝杆菌的rpoB、katG、gyrA、rrs、rpsL、embB 等耐药分子标识,显示了西安地区耐药性结核分枝杆菌的突变特点,为结核病的临床诊断和合理用药提供了实验依据.  相似文献   

3.
目的建立结核分枝杆菌对利福平和异烟肼耐药基因突变的快速检测方法。方法根据结核分枝杆菌标准株H37Rv序列,自行设计覆盖rpoB、katG、inhA基因突变区的系列寡核苷酸探针,并检测临床样品中结核分枝杆菌的基因突变情况,以此来判断耐药结果。结果在56个利福平耐药菌株中,有50个菌株都在rpoB基因上榆出有突变,利福平耐药突变检出率为89.3%(50/56);有30个利福平敏感菌株rpoB基因上都未检出突变。有58个异烟肼培养的耐药菌株中有47个在katG或inhA基因上检出有突变,异烟肼耐药突变检出率为81.0%(47/58);有30个异烟肼敏感菌株katG或inhA基因上未检出突变。结论用膜芯片检测结核分枝杆菌对利福平和异烟肼的耐药性,具有较高的特异性和敏感性,可用于临床结核分枝杆菌耐药性的检测。  相似文献   

4.
目的 探讨应用多重PCR-单链构象多态性分析(multiplexpulymerase chain reaction-single strand conformation polymorphism,multi-PCR-SSCP)方法快速、特异地同时快速检测结核分枝杆菌对异烟肼和利福平耐药性的效能.方法 根据结核分枝杆菌的inhA序列、katG序列、rpoB序列,分别设计出3对特异性寡聚核苷酸引物.采用multi-PCR-SSCP技术,一次性检出耐异烟肼和利福平的结核分枝杆菌.新方法的有效性通过116株临床分离株(70株耐异烟肼,66株耐利福平)的验证.结果 名 Multi-PCR-SSCP方法检测临床分离株基因突变的有效性,以细菌培养和药敏试验结果为金标准.116株临床分离株和H37Rv标准株中除了4株katG缺失突变,其余菌株3个基因katG、inhA和rpoB在单基因PCR中都扩增成功.与H37Rv标准株相比,46株katG基因突变,14株inhA基因突变,58株rpoB基因突变.38株katG和rpoB,4株inhA和rpoB,4株inhA和katG同时突变,还有2株3个基因都有突变.multi-PCR-SSCP对于耐异烟肼和利福平的结核分枝杆菌检出的敏感度分别为80%、82%,特异度分别为100%和92%.结论 multi-PCR-SSCP方法敏感、特异,能同时快速有效地检测耐多药结核分枝杆菌,有望成为临床指导用药的好方法,为深入研究耐药基凶检测奠定了良好的基础.  相似文献   

5.
目的了解中国耐多药结核分枝杆菌耐药相关基因的分子特征。方法对138株耐多药结核分枝杆菌和45株敏感菌的耐药相关基因inhA、katG和oxyR-ahpC间隔区(异烟肼)、rpob(利福平)、gyrA(氧氟沙星)和rrs(卡那霉素)进行序列测定,分析其基因突变特点。结果 138株耐多药结核分枝杆菌中,14.4%的菌株inhA基因发生突变,72.5%菌株的katG基因发生突变,15.9%菌株的oxyR-ahpC基因发生突变,同时考虑这3种基因,异烟肼耐药相关基因突变检出率可达90.6%;94.2%菌株的rpoB基因发生突变,74.5%菌株的gyrA基因发生突变,61.1%菌株的rrs基因发生突变,主要的突变位点为katG315(66.7%),inhA-15(9.4%),oxyR-ahpC-10(5.1%),rpoB516(13.8%),526(26.1%)和531(49.3%),gyrA90(21.6%)和94(51%),rrs1401(61.1%)。结论我国耐多药结核菌异烟肼、利福平、氧氟沙星和卡那霉素耐药相关基因最常见突变为katG315、inhA-15,rpoB531、526和516,gyrA94和90,rrs1401。  相似文献   

6.
目的研究耐多药结核分枝杆菌异烟肼(INH)、链霉素(SM)及乙胺丁醇(EMB)耐药相关基因位点的表达情况。方法选取该院2013年1月至2017年12月临床分离的101株耐多药结核分枝杆菌,利用测序法和基因芯片法分别检测INH、SM和EMB耐药相关基因及突变位点。结果 101株耐多药结核分枝杆菌中对SM耐药率69.3%;对EMB耐药率51.4%;对SM和EMB二者均耐药的耐药率44.5%。基因芯片法检出95例INH耐药相关基因突变,其中katG基因315M位点突变率为77.8%;inhA基因-15M位点突变率为89.4%。检出64例rpsL SM耐药相关基因,其中43M位点突变率为89.0%;88M位点突变率为11.0%。检出47例embB EMB耐药相关基因,以306M2位点突变为主,突变率为68.0%。测序法检出98例INH耐药相关基因突变,katG基因突变以315位点为主突变率为73.4%;inhA基因突变以-15位点为主突变率为87.7%;oxyR-ahpC基因-12和-10位点突变率分别为10.2%和8.2%。检出68例SM耐药相关基因突变,rpsL基因以43位点为主突变率为86.8%;rrs基因512、513、516位点突变率分别为5.9%、8.8%、8.8%。检出50例EMB耐药相关基因embB以306位点为主突变率为88.0%。结论耐多药结核分枝杆菌INH、SM及EMB耐药基因位点表达可作为结核分枝杆菌临床检测耐药性的有效依据,为提高耐多药结核分枝杆菌耐药性检测的敏感度,应将INH耐药相关oxyR-ahpC基因和SM耐药相关rrs基因纳入我国快速分子诊断产品中。  相似文献   

7.
目的探讨淮南矿区尘肺并发结核患者感染耐多药结核分枝杆菌(multiple drugs resistant Mycobacterium tuberculosis,MDR-MTB)L型异烟肼耐药基因katG突变特点。方法收集114株MTB菌L型临床分离株,用药敏试验鉴定MDR-MTB菌L型;抽提MDR-MTB L型和H37Rv标准菌株DNA,PCR法扩增katG基因,并对katG基因的突变集中区域进行测序分析。结果从114株临床分离株中检出MDR-MTB菌L型31株(27.2%),其katG基因突变率为61.3%(19/31);主要集中在315位点碱基置换突变,以Ser315Thr为主(AGC→ACC)(48.4%,15/31),其次是315位点Ser315Asn(AGC→AAC)突变(9.7%,3/31)以及431位点Ala431Val(GCG→GTG)突变(3.2%,1/31),未发现多位点联合突变,12株(38.7%,12/31)未发现katG基因突变;随机检测的10株异烟肼敏感株未见katG基因单链构象异常。结论淮南矿区尘肺并发结核患者感染的MDR-MTB菌L型异烟肼耐药情况较为严重,高度保守的katG基因突变是导致异烟肼耐药的分子基础,其突变位点呈多样性。  相似文献   

8.
  目的   了解广西壮族自治区(广西)结核分枝杆菌异烟肼与利福平耐药基因联合突变特征,为耐多药结核病的分子诊断和治疗提供依据。  方法   2017—2018年从广西30个结核病防治定点机构收集的结核分枝杆菌中选取49株耐多药菌株和459株全敏感菌株进行全基因组测序。  结果   耐多药表型与基因联合突变的符合率为71.43%。 单基因突变率和基因联合突变率在耐多药菌株中均高于全敏感菌株(χ2=5.753,P=0.016; χ2=284.034,P<0.001)。 katG和rpoB的单基因突变率在耐多药菌株中高于全敏感菌株(χ2=7.524,P=0.006; χ2=4.353,P=0.037)。 katG+rpoB基因联合突变在耐多药菌株中高于全敏感菌株(χ2=279.956,P<0.001)。 在基因联合突变的位点分布中,以katG315+rpoB450和katG315+rpoB445位点突变为主,占40.82%(20/49),2种形式的基因位点联合突变率在耐多药菌株中均高于全敏感菌株(χ2=144.232,P<0.001; χ2=19.014,P<0.001)。  结论   对异烟肼和利福平耐药基因联合突变的检测可作为广西耐多药筛查的重要指标。 广西结核分枝杆菌异烟肼和利福平耐药基因突变以katG315、rpoB450和rpoB445位点突变为主,基因联合突变以katG+rpoB形式为主。 katG315+rpoB450和katG315+rpoB445位点突变是广西地区耐多药产生的主要分子机制。  相似文献   

9.
目的应用PCR-DNA测序技术快速检测耐异烟肼结核分枝杆菌分离株KatG基因突变,评价其在检测结核分枝杆菌异烟肼耐药性方面的应用价值。方法47株耐异烟肼结核分枝杆菌临床分离株及30株结核分枝杆菌敏感分离株用PCR-DNA测序技术检测KatG基因突变。结果47株耐异烟肼结核分枝杆菌分离株中,有31株KatG基因检出有突变,突变检出率为66.0%(31/47);30株结核分枝杆菌敏感株检出1株KatG基因突变。结论PCR-DNA测序技术方法敏感、准确、特异,可快速检测结核分枝杆菌KatG耐药基因突变,有利于耐异烟肼结核分枝杆菌耐药性的快速检测。  相似文献   

10.
目的 应用PCR-DNA测序技术快速检测耐异烟肼结核分枝杆菌分离株KatG基因突变,评价其在检测结核分枝杆菌异烟肼耐药性方面的应用价值.方法 47株耐异烟肼结核分枝杆菌临床分离株及30株结核分枝杆菌敏感分离株用PCR-DNA测序技术检测KatG基因突变.结果 47株耐异烟肼结核分枝杆菌分离株中,有31株KatG基因检出有突变,突变检出率为66.0%(31/47);30株结核分枝杆菌敏感株检出1株KatG基因突变.结论 PCR-DNA测序技术方法敏感、准确、特异,可快速检测结核分枝杆菌KatG耐药基因突变,有利于耐异烟肼结核分枝杆菌耐药性的快速检测.  相似文献   

11.
The katG, inhA and ahpC genes, in 71 isoniazid (INH)-resistant and 26 INH-susceptible Mycobacterium tuberculosis isolates, from South Korea were examined by sequencing and MspI restriction enzyme analysis. Mutations in the katG 315 alone, katG 315 plus inhA, katG 315 plus ahpC, katG 309 alone, katG 309 plus inhA, inhA alone, and ahpC alone, were detected in 54.9, 2.8, 1.4, 1.4, 1.4, 19.7, and 5.6% of the 71 INH-resistant isolates, respectively. There was no statistically significant difference (p > 0.05) in the frequencies of these mutations for the INH-monoresistant compared with the multidrug-resistant isolates. Mutations in the katG codon 315 were associated with the high-level of INH resistance (MIC, >1 microg/ml), whereas the mutation in the inhA promoter region was associated with the low-level of INH resistance (MIC, >0.2 to 1 microg/ml). The previously undescribed GGT-->GAT (Gly-->Asp) mutation in the katG codon 309 was found in two rifampin, including-multidrug-resistant isolates, but we cannot assess if this is predictive of INH resistance. The sensitivity and specificity of molecular analysis of the katG codon 315 and/or the inhA promoter region were 80.3 and 100%, respectively. Therefore, mutations in these regions are highly predictive of INH resistance in South Korea.  相似文献   

12.
Elucidation of the molecular basis of isoniazid (INH) resistance in Mycobacterium tuberculosis has led to the development of different genotypic approaches for the rapid detection of INH resistance in clinical isolates. Mutations in katG, in particular the S315T substitution, are responsible for INH resistance in a large proportion of tuberculosis cases. However, the frequency of the katG S315T substitution varies with population samples. In this study, 52 epidemiologically unrelated clinical INH-resistant M. tuberculosis isolates collected in Australia were screened for mutations at katG codon 315 and the fabG1-inhA regulatory region. Importantly, 52 INH-sensitive isolates, selected to reflect the geographic and genotypic diversity of the isolates, were also included for comparison. The katG S315T substitution and fabG1-inhA -15 C-to-T mutation were identified in 34 and 13 of the 52 INH-resistant isolates, respectively, and none of the INH-sensitive isolates. Three novel katG mutations, D117A, M257I, and G491C, were identified in three INH-resistant strains with a wild-type katG codon 315, fabG1-inhA regulatory region, and inhA structural gene. When analyzed for possible associations between resistance mechanisms, resistance phenotype, and genotypic groups, it was found that neither the katG S315T nor fabG1-inhA -15 C-to-T mutation clustered with any one genotypic group, but that the -15 C-to-T substitution was associated with isolates with intermediate INH resistance and isolates coresistant to ethionamide. In total, 90.4% of unrelated INH-resistant isolates could be identified by analysis of just two loci: katG315 and the fabG1-inhA regulatory region.  相似文献   

13.
The molecular basis for isoniazid resistance in Mycobacterium tuberculosis is complex. Putative isoniazid resistance mutations have been identified in katG, ahpC, inhA, kasA, and ndh. However, small sample sizes and related potential biases in sample selection have precluded the development of statistically valid and significant population genetic analyses of clinical isoniazid resistance. We present the first large-scale analysis of 240 alleles previously associated with isoniazid resistance in a diverse set of 608 isoniazid-susceptible and 403 isoniazid-resistant clinical M. tuberculosis isolates. We detected 12 mutant alleles in isoniazid-susceptible isolates, suggesting that these alleles are not involved in isoniazid resistance. However, mutations in katG, ahpC, and inhA were strongly associated with isoniazid resistance, while kasA mutations were associated with isoniazid susceptibility. Remarkably, the distribution of isoniazid resistance-associated mutations was different in isoniazid-monoresistant isolates from that in multidrug-resistant isolates, with significantly fewer isoniazid resistance mutations in the isoniazid-monoresistant group. Mutations in katG315 were significantly more common in the multidrug-resistant isolates. Conversely, mutations in the inhA promoter were significantly more common in isoniazid-monoresistant isolates. We tested for interactions among mutations and resistance to different drugs. Mutations in katG, ahpC, and inhA were associated with rifampin resistance, but only katG315 mutations were associated with ethambutol resistance. There was also a significant inverse association between katG315 mutations and mutations in ahpC or inhA and between mutations in kasA and mutations in ahpC. Our results suggest that isoniazid resistance and the evolution of multidrug-resistant strains are complex dynamic processes that may be influenced by interactions between genes and drug-resistant phenotypes.  相似文献   

14.
Ethionamide (ETH) is a structural analog of the antituberculosis drug isoniazid (INH). Both of these drugs target InhA, an enzyme involved in mycolic acid biosynthesis. INH requires catalase-peroxidase (KatG) activation, and mutations in katG are a major INH resistance mechanism. Recently an enzyme (EthA) capable of activating ETH has been identified. We sequenced the entire ethA structural gene of 41 ETH-resistant Mycobacterium tuberculosis isolates. We also sequenced two regions of inhA and all or part of katG. The MICs of ETH and INH were determined in order to associate the mutations identified with a resistance phenotype. Fifteen isolates were found to possess ethA mutations, for all of which the ETH MICs were > or =50 microg/ml. The ethA mutations were all different, previously unreported, and distributed throughout the gene. In eight of the isolates, a missense mutation in the inhA structural gene occurred. The ETH MICs for seven of the InhA mutants were > or =100 microg/ml, and these isolates were also resistant to > or =8 microg of INH per ml. Only a single point mutation in the inhA promoter was identified in 14 isolates. A katG mutation occurred in 15 isolates, for which the INH MICs for all but 1 were > or =32 microg/ml. As expected, we found no association between katG mutation and the level of ETH resistance. Mutations within the ethA and inhA structural genes were associated with relatively high levels of ETH resistance. Approximately 76% of isolates resistant to > or =50 microg of ETH per ml had such mutations.  相似文献   

15.
The present study investigated the prevalence and diagnostic potential of the most commonly reported mutations associated with isoniazid resistance, katG 315Thr, katG 315Asn, inhA -15T, inhA -8A, and the oxyR-ahpC intergenic region, in a population sample of 202 isoniazid-resistant Mycobacterium tuberculosis isolates and 176 randomly selected fully sensitive isolates from England and Wales identified by using a directed oligonucleotide array and limited DNA sequencing. The strains were recovered from patients originating from 29 countries; 41 isolates were multidrug resistant. Mutations affecting katG 315, the inhA promoter, and the oxyR-ahpC intergenic region were found in 62.7, 21.9, and 30% of 169 genotypically distinct isoniazid-resistant isolates, respectively, whereas they were found in 0, 0, and 8% of susceptible strains, respectively. The frequency of mutation at each locus was unrelated to the resistance profile or previous antituberculous drug therapy. The commonest mutation in the oxyR-ahpC intergenic region, ahpC -46A, was present in 23.7% of isoniazid-resistant isolates and 7.5% of susceptible isolates. This proved to be a phylogenetic marker for a subgroup of M. tuberculosis strains originating on the Indian subcontinent, which shared IS6110-based restriction fragment length polymorphism and spoligotype features with the Delhi strain and Central Asian strain CAS1; and this marker is strongly associated with isoniazid resistance and the katG 315Thr mutation. In total, 82.8% of unrelated isoniazid-resistant isolates could be identified by analysis of just two loci: katG 315 and the inhA promoter. Analysis of the oxyR-ahpC intergenic region, although phylogenetically interesting, does not contribute significantly to further identification of isoniazid-resistant isolates.  相似文献   

16.
Automated DNA sequencing was used to analyze the oxyR-ahpC region in 229 Mycobacterium tuberculosis complex isolates recently recovered from diseased humans and animals. The entire 1,221-bp region was studied in 118 isolates, and 111 other isolates were sequenced for oxyR, ahpC, or the 105-bp oxyR-ahpC intergenic region. The sample included isoniazid (INH)-susceptible and -resistant organisms in which the katG gene and inhA locus had previously been sequenced in their entirety to identify polymorphisms. A total of 16 polymorphic sites was identified, including 5 located in oxyR, 2 in ahpC, and 9 in the 105-bp intergenic region. All polymorphic sites located in the intergenic region, and the two missense substitutions identified in ahpC, occurred in INH-resistant organisms. In contrast, there was no preferential association of polymorphisms in oxyR, a pseudogene, with INH-resistant organisms. Surprisingly, most INH-resistant strains with KatG codon 315 substitutions that substantially reduce catalase-peroxidase activity and confer high MICs of INH lacked alterations in the ahpC gene or oxyR-ahpC intervening region. Taken together, the data are consistent with the hypothesis that some polymorphisms located in the ahpC-oxyR intergenic region are selected for after reduction in catalase or peroxidase activity attributable to katG alterations arising with INH therapy. These mutations are uncommon in recently recovered clinically significant organisms, and hence, there is no strict association with INH-resistant patient isolates. The ahpC compensatory mutations are apparently uncommon because strains with a KatG null phenotype are relatively rare among epidemiologically independent INH-resistant organisms.  相似文献   

17.
Novel mutations in NADH dehydrogenase (ndh) were detected in 8 of 84 (9.5%) isoniazid (INH)-resistant isolates (T110A [n = 1], R268H [n = 7]), but not in 22 INH-susceptible isolates of Mycobacterium tuberculosis. Significantly, all eight isolates with mutations at ndh did not have mutations at katG, kasA, or the promoter regions of inhA or ahpC, except for one isolate. Mutations in ndh appear to be an additional molecular mechanism for isoniazid resistance in M. tuberculosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号