首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombin, a serine protease essential for blood coagulation, also plays an important role in cellular injury associated with intracerebral hemorrhage. Here, we show that, in organotypic cortico-striatal slice cultures, thrombin evoked delayed neuronal injury in the cerebral cortex and shrinkage of the striatum. These effects were prevented by cycloheximide and actinomycin D but not by a caspase-3 inhibitor. Thrombin-induced shrinkage of the striatum was abolished by a thrombin inhibitor argatroban or prior heat inactivation of thrombin, and significantly attenuated by a protease-activated receptor-1 antagonist FR171113. However, thrombin-induced cortical injury was not prevented either by heat inactivation or by FR171113, and was only partially inhibited by argatroban. In addition, inhibition of extracelluar signal-regulated kinase (ERK), Src tyrosine kinase and protein kinase C prevented both neuronal injury in the cortex and shrinkage of the striatum, whereas inhibition of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase prevented shrinkage of the striatum only. Thrombin treatment promptly induced phosphorylation of ERK, which was not prevented by inhibition of Src and protein kinase C. Thus, thrombin induces cellular injury in the cerebral cortex and the striatum, by recruiting multiple and distinct signaling pathways in protease activity-independent as well as dependent manner.  相似文献   

2.
Inflammatory mechanisms mediated by prostaglandins may contribute to the progression of intracerebral hemorrhage (ICH)-induced brain injury, but they are not fully understood. In this study, we examined the effect of prostaglandin E2 receptor EP1 (EP1R) activation and inhibition on brain injury in mouse models of ICH and investigated the underlying mechanism of action. ICH was induced by injecting collagenase, autologous blood, or thrombin into the striatum of middle-aged male and female mice and aged male mice. Effects of selective EP1R agonist ONO-DI-004, antagonist SC51089, and nonspecific Src family kinase inhibitor PP2 were evaluated by a combination of histologic, magnetic resonance imaging (MRI), immunofluorescence, molecular, cellular, and behavioral assessments. EP1R was expressed primarily in neurons and axons but not in astrocytes or microglia after ICH induced by collagenase. In middle-aged male mice subjected to collagenase-induced ICH, EP1R inhibition mitigated brain injury, brain edema, cell death, neuronal degeneration, neuroinflammation, and neurobehavioral deficits, whereas its activation exacerbated these outcomes. EP1R inhibition also was protective in middle-aged female mice and aged male mice after collagenase-induced ICH and in middle-aged male mice after blood- or thrombin-induced ICH. EP1R inhibition also reduced oxidative stress, white matter injury, and brain atrophy and improved functional outcomes. Histologic results were confirmed by MRI. Src kinase phosphorylation and matrix metalloproteinase-9 activity were increased by EP1R activation and decreased by EP1R inhibition. EP1R regulated matrix metalloproteinase-9 activity through Src kinase signaling, which mediated EP1R toxicity after collagenase-induced ICH. We conclude that prostaglandin E2 EP1R activation plays a toxic role after ICH through mechanisms that involve the Src kinases and the matrix metalloproteinase-9 signaling pathway. EP1R inhibition could be a novel therapeutic strategy to improve outcomes after ICH.  相似文献   

3.
Thrombin is thought to play an important role in brain damage associated with intracerebral hemorrhage (ICH). We previously showed that activation of mitogen-activated protein (MAP) kinases and recruitment of microglia are crucial for thrombin-induced shrinkage of the striatal tissue in vitro and thrombin-induced striatal damage in vivo. Here we investigated whether the same mechanisms are involved in ICH-induced brain injury. A substantial loss of neurons was observed in the center and the peripheral region of hematoma at 3 days after ICH induced by intrastriatal injection of collagenase in adult rats. Intracerebroventricular injection of argatroban or cycloheximide, both of which prevent thrombin cytotoxicity in vitro, exhibited a significant neuroprotective effect against ICH-induced injury. ICH-induced neuron loss was also prevented by a MAP kinase kinase inhibitor (PD98059) and a c-Jun N-terminal kinase inhibitor (SP600125). These drugs had no effect on hematoma size or ICH-induced brain edema. Activation of extracellular signal-regulated kinase in response to ICH was observed in both neurons and microglia. Despite their neuroprotective effects, MAP kinase inhibitors did not decrease the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells appearing after ICH. Identification of cell types revealed that TUNEL staining occurred prominently in neurons but not in microglia, whereas inhibition of MAP kinases resulted in appearance of TUNEL staining in microglia. These results suggest that thrombin and the activation of MAP kinases are involved in ICH-induced neuronal injury, and that neuroprotective effects of MAP kinases are in part mediated by arrestment of microglial activities.  相似文献   

4.
We have investigated the intracellular mechanisms involved in microtubular remodelling by thrombin and its possible involvement in platelet aggregation and secretion. Platelet stimulation with thrombin induces a time- and concentration-dependent regulation of the microtubular content, which was found to be maximally effective at the concentration 0.1 U/ml. Thrombin (0.1 U/ml) evoked an initial decrease in the microtubule content detectable at 5 seconds (sec) and reached a minimum 10 sec after stimulation. The microtubular content then increased, exceeding basal levels again approximately 30 sec after stimulation. Inhibition of tyrosine phosphatases using vanadate abolished thrombin-induced microtubular depolymerisation while inhibition of tyrosine kinases by methyl-2,5-dihydroxycinnamate prevented microtubule polymerisation. Thrombin activates the cytosolic Bruton's tyrosine kinase (Btk) and Src proteins. Inhibition of Btk or Src by LFM-A13 or PP1, respectively, abolished thrombin-induced microtubular polymerisation, while maintaining intact its ability to induce initial depolymerisation. Microtubular disruption by colchicine significantly reduced thrombin-induced platelet aggregation and ATP secretion. Similar results were observed after inhibition of microtubular disassembly by paclitaxel. These findings indicate that thrombin induces microtubular remodelling by modifying the balance between protein tyrosine phosphorylation and dephosphorylation. The former seems to be required for microtubular polymerisation, while tyrosine dephosphorylation is required for microtubular depolymerisation. Both, initial microtubular disassembly and subsequent polymerisation are required for thrombin-induced platelet aggregation and secretion in human platelets.  相似文献   

5.
Activation of vascular smooth muscle cells (VMSC) by thrombin induces the expression of the chemokine, monocyte chemoattractant protein-1 (MCP-1). We investigated in cultured human and rat VSMC whether reactive oxygen species (ROS) derived from the vascular NADPH oxidase contribute to this effect. Exposure of cultured VSMC to thrombin rapidly increased ROS formation, phosphorylation of p38 MAP kinase as well as the expression of MCP-1. Specific inhibition of the p22phox subunit of the vascular NADPH oxidase using either p22phox neutralizing antibody or p22phox antisense oligonucleotides attenuated thrombin-induced ROS generation. Furthermore, thrombin-induced p38 MAP kinase activation as well as MCP-1 expression were impaired by antioxidants as well as by p22phox antisense oligonucleotides. Inhibition of p38 MAP kinase diminished the thrombin-induced expression of MCP-1. CONCLUSION: Thrombin, by activating a p22phox-containing NADPH oxidase, elicits ROS generation and activation of p38 MAP kinase in VSMC. The subsequent induction of MCP-1 expression highligts the crucial role of the p22phox-containing NADPH oxidase in thrombin-induced signal transduction in VSMC.  相似文献   

6.
Thrombin, a serine protease generated by the activation of the blood coagulation cascade following vessel injury, converts fibrinogen to fibrin, activates platelets and several coagulation factors, and plays a pivotal role in thrombosis and haemostasis. Thrombin acts as a mitogen and apoptosis inducer in a dose-dependent fashion. We have previously shown that thrombin caused proliferation of vascular smooth muscle cells (VSMCs). Here, we show that a low concentration of thrombin caused proliferation of mouse neuroblastoma (Neuro-2a) and human neuroblastoma (NB-1) cells, while higher concentrations affected cell viability in a time-dependent manner. Similar effects were observed when thrombin receptor agonist peptide (SFLLRNPNDKYEPF, TRAP) was applied. The dying cells showed nuclear condensation and fragmentation, suggesting that cell death occurred by apoptosis. The extent to which thrombin induced cell death was significantly attenuated by recombinant thrombomodulin (rTM), or by a minimum functional domain of TM, termed E456. Furthermore, a synthetic compound that inhibits signaling from the thrombin receptor, 4-cyano-5,5-bis (4-methoxyphenyl)-4-pentanoic acid (E5510), and the antioxidant N-acetyl L-cysteine (NAC), efficiently prevented thrombin-induced Neuro-2a cell death. Thus, thrombin inhibitors and antioxidant appear to neutralize thrombin toxicity.  相似文献   

7.
Receptor-interacting protein kinase-1 (RIPK1) is a master regulator of cell death and inflammation, and mediates programmed necrosis (necroptosis) via mixed-lineage kinase like (MLKL) protein. Prior studies in experimental intracerebral hemorrhage (ICH) implicated RIPK1 in the pathogenesis of neuronal death and cognitive outcome, but the relevant cell types involved and potential role of necroptosis remain unexplored. In mice subjected to autologous blood ICH, early RIPK1 activation was observed in neurons, endothelium and pericytes, but not in astrocytes. MLKL activation was detected in astrocytes and neurons but not endothelium or pericytes. Compared with WT controls, RIPK1 kinase-dead (RIPK1D138N/D138N) mice had reduced brain edema (24 h) and blood-brain barrier (BBB) permeability (24 h, 30 d), and improved postinjury rotarod performance. Mice deficient in MLKL (Mlkl-/-) had reduced neuronal death (24 h) and BBB permeability at 24 h but not 30d, and improved post-injury rotarod performance vs. WT. The data support a central role for RIPK1 in the pathogenesis of ICH, including cell death, edema, BBB permeability, and motor deficits. These effects may be mediated in part through the activation of MLKL-dependent necroptosis in neurons. The data support development of RIPK1 kinase inhibitors as therapeutic agents for human ICH.  相似文献   

8.
Spinal cord injury (SCI) causes not only sensorimotor and cognitive deficits, but frequently also severe chronic pain that is difficult to treat (SCI pain). We previously showed that hyperesthesia, as well as spontaneous pain induced by electrolytic lesions in the rat spinothalamic tract, is associated with increased spontaneous and sensory-evoked activity in the posterior thalamic nucleus (PO). We have also demonstrated that rodent impact SCI increases cell cycle activation (CCA) in the injury region and that post-traumatic treatment with cyclin dependent kinase inhibitors reduces lesion volume and motor dysfunction. Here we examined whether CCA contributes to neuronal hyperexcitability of PO and hyperpathia after rat contusion SCI, as well as to microglial and astroglial activation (gliopathy) that has been implicated in delayed SCI pain. Trauma caused enhanced pain sensitivity, which developed weeks after injury and was correlated with increased PO neuronal activity. Increased CCA was found at the thoracic spinal lesion site, the lumbar dorsal horn, and the PO. Increased microglial activation and cysteine–cysteine chemokine ligand 21 expression was also observed in the PO after SCI. In vitro, neurons co-cultured with activated microglia showed up-regulation of cyclin D1 and cysteine–cysteine chemokine ligand 21 expression. In vivo, post-injury treatment with a selective cyclin dependent kinase inhibitor (CR8) significantly reduced cell cycle protein induction, microglial activation, and neuronal activity in the PO nucleus, as well as limiting chronic SCI-induced hyperpathia. These results suggest a mechanistic role for CCA in the development of SCI pain, through effects mediated in part by the PO nucleus. Moreover, cell cycle modulation may provide an effective therapeutic strategy to improve reduce both hyperpathia and motor dysfunction after SCI.  相似文献   

9.
In the central nervous system, members of the Src family of tyrosine kinases (SFKs) are widely expressed and are abundant in neurons. The purpose of this study is to examine whether glycogen synthase-3 (GSK-3) is involved in SFK inhibitor-induced apoptosis. PP2 and SU6656, SFK inhibitors, increased apoptotic cell death with morphological changes that were characterized by cell shrinkage, chromatin condensation, or nuclear fragmentation. Moreover, both activation of caspase-9 and caspase-3 were accompanied by the cell death. GSK-3 inhibitors, such as alsterpaullone and SB216763, prevented the PP2-induced apoptosis. In addition, insulin-like growth factor-I prevented the PP2-induced cell death and PP2 inhibited phosphorylation of focal adhesion kinase (FAK). Phosphorylation of FAK on Tyr 576 by Src activates FAK. These results suggest that inhibition of SFK induces apoptosis possibly via blocking of FAK/phosphatidylinositol-3 kinase/Akt signaling pathway and activation of GSK-3 is involved in the cell death in rat cortical neurons.  相似文献   

10.
Thrombin and plasmin are serine proteases involved in blood coagulation and fibrinolysis, whose precursors are circulating in blood stream. These blood-derived proteases might play important roles in the pathogenesis of intracerebral hemorrhage by acting on brain parenchymal cells. We previously reported that thrombin induced delayed neuronal injury through extracellular signal-regulated kinase (ERK)-dependent pathways. Here, we investigated potential cytotoxic actions of plasminogen, a precursor protein of plasmin, using slice cultures prepared from neonatal rat brain and intracortical microinjection model in adult rats. Although plasminogen alone did not evoke prominent neuronal injury, plasminogen caused significant neuronal injury when combined with a moderate concentration of thrombin (30 U/mL) in the cerebral cortex of slice cultures. The cortical injury was prevented by tranexamic acid and aprotinin. The combined neurotoxicity of thrombin and plasminogen was also prevented by PD98059, an inhibitor of ERK pathway, as well as by other agents that have been shown to prevent cortical injury induced by a higher concentration (100 U/mL) of thrombin alone. Extracellular signal-regulated kinase phosphorylation after plasminogen exposure was localized in cortical astrocytes. Moreover, microinjection of plasminogen in vivo potentiated thrombin-induced cortical injury, and inhibition of plasmin ameliorated hemorrhage-induced neuronal loss in the cerebral cortex. These results suggest that plasminogen/plasmin system augmenting thrombin neurotoxicity participates in hemorrhagic cortical injury.  相似文献   

11.
Apoptotic pathways in the brain may differ depending on cell type and developmental stage. To understand these differences, we studied several apoptotic proteins in the murine cortex and primary cultures of neurons and astrocytes of various ages in culture. We then induced apoptosis in our cultures using serum deprivation (SD) and observed changes in these apoptotic proteins. When analyzed by nuclear morphology and TUNEL staining, early cultures showed greater apoptotic injury compared with late cultures, and neuronal cultures showed greater apoptosis than astrocyte cultures. The decrease in apoptosis with development correlated best with a down-regulation of procaspase-3 and bax and decreasing caspase activation. Early culture astrocytes had higher caspase-11 levels compared with neurons. Mitogen-activated protein (MAP) kinases were also differentially expressed with activation of extracellular signal-regulated kinase (ERK) and p38 higher in early culture astrocytes and stress-activated protein kinase/C-jun N-terminal kinase (SAPK/JNK) greater in early culture neurons. However, caspase inhibitors, but not MAP kinase inhibitors reduced cell death. Our findings demonstrate that apoptosis regulatory proteins display cell type and developmentally specific expression and activation.  相似文献   

12.
Thrombin, the ultimate enzyme in the blood coagulation cascade, has prominent actions on various cells, including neurons. As in platelets, thrombin increases [Ca2+ i mobilization in neurons, and also retracts neurites. Both these effects are mediated through a G protein-coupled, proteolytically activated receptor for thrombin (PAR-1). Prolonged exposure to thrombin kills neurons via apoptosis, that may also involve PAR-1 activation. Increased [Ca2+]i has been a unifying mechanism proposed for cell death in several neurodegenerative diseases. Thrombin-elevated calcium levels may activate intracellular cascades in neurons leading to cell death. Since thrombin mediates its diverse effects on cells through both heterotrimeric and monomeric G proteins, we also explored what effect altering differential G protein coupling would have on the neuronal response to thrombin. We studied calcium mobilization by thrombin in a model motor neuronal cell line, NSC19, using fluorescence image analysis. Confirming effects in other neuronal types, thrombin caused dramatic increases in [Ca2+]i levels, both transiently and after prolonged exposure, which involved activation and cleavage of the PAR-1 receptor. Using enzyme linked immunosorbent assay (ELISA) and dot-blot analysis, we found that the N-terminal fragment of PAR-1 was released into the medium after exposure to thrombin. We confirmed that PAR-1 protein and mRNA expression occurred in motor neurons. We found that cholera toxin inhibited thrombin-mediated Ca2+ influx, pertussis toxin did not significantly alter thrombin action, and lovastatin, a small 21-kDa Ras GTPase (Rho) modulator, showed a tendency to reduce the thrombin effect. These data indicate that thrombin-increased [Ca2+]i, sufficient to trigger cell death in motor neurons, might be approached in vivo by modulating thrombin signaling through PAR-1.  相似文献   

13.
Traumatic brain injury (TBI) induces secondary injury mechanisms, including cell cycle activation (CCA), that leads to neuronal death and neurological dysfunction. We recently reported that delayed administration of roscovitine, a relatively selective cyclin-dependent kinase (CDK) inhibitor, inhibits CCA and attenuates neurodegeneration and functional deficits following controlled cortical impact (CCI) injury in mice. Here we evaluated the neuroprotective potential of CR8, a more potent second-generation roscovitine analog, using the mouse CCI model. Key CCA markers (cyclin A and B1) were significantly up-regulated in the injured cortex following TBI, and phosphorylation of CDK substrates was increased. Central administration of CR8 after TBI, at a dose 20 times less than previously required for roscovitine, attenuated CCA pathways and reduced post-traumatic apoptotic cell death at 24 h post-TBI. Central administration of CR8, at 3 h after TBI, significantly attenuated sensorimotor and cognitive deficits, decreased lesion volume, and improved neuronal survival in the cortex and dentate gyrus. Moreover, unlike roscovitine treatment in the same model, CR8 also attenuated post-traumatic neurodegeneration in the CA3 region of the hippocampus and thalamus at 21 days. Furthermore, delayed systemic administration of CR8, at a dose 10 times less than previously required for roscovitine, significantly improved cognitive performance after CCI. These findings further demonstrate the neuroprotective potential of cell cycle inhibitors following experimental TBI. Given the increased potency and efficacy of CR8 as compared to earlier purine analog types of CDK inhibitors, this drug should be considered as a candidate for future clinical trials of TBI.  相似文献   

14.
《Neurological research》2013,35(6):632-643
Abstract

Apoptotic pathways in the brain may differ depending on cell type and developmental stage. To understand these differences, we studied several apoptotic proteins in the murine cortex and primary cultures of neurons and astrocytes of various ages in culture. We then induced apoptosis in our cultures using serum deprivation (SD) and observed changes in these apoptotic proteins. When analyzed by nuclear morphology and TUNEL staining, early cultures showed greater apoptotic injury compared with late cultures, and neuronal cultures showed greater apoptosis than astrocyte cultures. The decrease in apoptosis with development correlated best with a down-regulation of procaspase-3 and bax and decreasing caspase activation. Early culture astrocytes had higher caspase-11 levels compared with neurons. Mitogen-activated protein (MAP) kinases were also differentially expressed with activation of extracellular signal-regulated kinase (ERK) and p38 higher in early culture astrocytes and stress-activated protein kinase/C-jun N-terminal kinase (SAPK/JNK) greater in early culture neurons. However, caspase inhibitors, but not MAP kinase inhibitors reduced cell death. Our findings demonstrate that apoptosis regulatory proteins display cell type and developmentally specific expression and activation.  相似文献   

15.
Central nervous system injury causes a marked increase in the expression of cell cycle-related proteins. In this study, we show that cell cycle activation (CCA) is detected in mature neurons at 24 hours after rat lateral fluid percussion (LFP)-induced traumatic brain injury (TBI), as reflected by increased expression of cyclin G1, phosphorylated retinoblastoma (phospho-Rb), E2F1 and proliferating cell nuclear antigen (PCNA). These changes were associated with progressive cortical, hippocampal, and thalamic neuronal loss and microglial and astrocyte activation. Notably, we detected 5-bromo-2′-deoxyuridine (BrdU)-positive neurons, microglia, and astrocytes at 7 days, but not at 24 hours, suggesting that cell cycle reaches the S phase in these cell types at the latter time point. A delayed systemic post-LFP administration at 3 hours of CR8—a potent second-generation cyclin-dependent kinase (CDK) inhibitor—reduced CCA; cortical, hippocampal, and thalamic neuronal loss; and cortical microglial and astrocyte activation. Furthermore, CR8 treatment attenuated sensorimotor and cognitive deficits, alleviated depressive-like symptoms, and decreased lesion volume. These findings underscore the contribution of CCA to progressive neurodegeneration and chronic neuroinflammation following TBI, and demonstrate the neuroprotective potential of cell cycle inhibition in a clinically relevant experimental TBI model.  相似文献   

16.
Matrix metalloproteinase-2 (MMP-2, gelatinase A) and thrombin contribute to many long-term (patho)physiological processes requiring the proteolytic breakdown of the vascular extracellular matrix (e.g., normal tissue repair, remodeling, tumor invasion, atherosclerosis plaque rupture). Thrombin (10 to 1000 nM, 0.5 to 50 U/ml) induced a rapid secretion of MMP-2 from freshly isolated rat aortic tissue (detectable after 1 min of thrombin exposure). This secretion was mediated by an unidentified thrombin receptor, distinct from the proteinase activated receptors (PAR)-1 and -2. Protein tyrosine kinase/phosphatase activity differentially modulated the basal and the thrombin-induced release of MMP-2. The inhibitors of protein tyrosine kinase, herbymicin A, genistein, and tyrphostin 1288 (1 to 100 microM), enhanced the basal release of MMP-2 but did not affect the thrombin-induced secretion of MMP-2. The inhibitor of phosphotyrosine phosphatases, vanadate (100 microM), selectively inhibited the thrombin-induced, but not the basal, release of MMP-2. Rapid release of vascular MMP-2 by thrombin could contribute to short-term processes where thrombin is involved such as the regulation of platelet aggregation and vascular reactivity. Vascular tyrosine kinase/phosphatase likely modulates this action of thrombin to prevent exaggerated platelet aggregation, thrombosis, and vasospasm.  相似文献   

17.
Thrombin is a multifunctional protease. Recent studies on cultured neuronal cells have suggested a function for thrombin in the development and maintenance of the nervous system. Thrombin has been found to induce neurite retraction and reverse stellation in neuroblastoma cell lines and rat astrocytes, respectively. The major focus of our study was to investigate the potential role of thrombin in peripheral nervous system development using the rat embryonic dorsal root ganglion model. We found a dose dependent inhibition of neurite outgrowth from explant dorsal root ganglion cultures upon exposure to 2 to 200 nM thrombin. This effect was reversed by the specific thrombin inhibitor, hirudin. A synthetic peptide that imitates the fully active receptor, thrombin receptor activating peptide, was also found to inhibit neurite outgrowth from dorsal root ganglia. bis-Benzimide stained neuronal cultures did not show any evidence of cell death after exposure to thrombin or thrombin receptor activating peptides. Immunohistochemical studies revealed specific staining of the thrombin receptor on neurons, with intense labeling along neurites. Enriched neuronal cultures exposed to thrombin and thrombin receptor activating peptides revealed rapid activation of phospholipase Cγ-1, a second messenger associated with the thrombin receptor. These findings are the first to describe the localization of the thrombin receptor to dorsal root ganglion neurons. We propose that receptor activation is associated with thrombin induced inhibition of neurite outgrowth.  相似文献   

18.
Objective: Gastrodin, a glucoside of gastrodigenin, inhibits cerebral oxidant stress and apoptosis in multiple central nervous system injury, but its effect in intracerebral hemorrhage (ICH) remains unclear. This study investigated the effect of gastrodin on neuronal apoptosis and neurological deficits in rat ICH model. Methods: In vitro experiments were performed using hematoma lysate-induced cell damage model in primary cortical neurons. Rat ICH model was produced by a caudatum injection of collagenase. Gastrodin was intraperitoneal injected after 2 hours following ICH. Cell viability, brain water content, neurological score, western blot, and immunofluorescence experiments were performed. Results: Gastrodin significantly decreased hematoma lysate-induced reduction of cell viability and cell apoptosis in primary cortical neurons. Gastrodin significantly improved brain edema and neurological deficits post-ICH. Moreover, gastrodin administration significantly reduced levels of ROS, 8-OHDG, 3-Nitrotyrosine and MDA, while increased GSH-Px and SOD activity, and stimulated the upregulation of Keap1, Nrf2, and HO-1 signaling at 72 hours post-ICH. Furthermore, gastrodin significantly increased Bcl-2 expression, while reduced level of Bax, active caspase-3 and active caspase-9, also reduced the number of active caspase-3 or TUNEL positive neurons at 72 hours post-ICH. Conclusion: These results suggest that gastrodin is neuroprotective after ICH and the mechanism may be associated with the inhibition of oxidative stress and neuronal apoptosis.  相似文献   

19.
Potentiation of NMDA receptor function by the serine protease thrombin.   总被引:39,自引:0,他引:39  
Although serine proteases and their receptors are best known for their role in blood coagulation and fibrinolysis, the CNS expresses many components of an extracellular protease signaling system including the protease-activated receptor-1 (PAR1), for which thrombin is the most effective activator. In this report we show that activation of PAR1 potentiates hippocampal NMDA receptor responses in CA1 pyramidal cells by 2.07 +/- 0.27-fold (mean +/- SEM). Potentiation of neuronal NMDA receptor responses by thrombin can be blocked by thrombin and a protein kinase inhibitor, and the effects of thrombin can be mimicked by a peptide agonist (SFLLRN) that activates PAR1. Potentiation of the NMDA receptor by thrombin in hippocampal neurons is significantly attenuated in mice lacking PAR1. Although high concentrations of thrombin can directly cleave both native and recombinant NR1 subunits, the thrombin-induced potentiation we observe is independent of NMDA receptor cleavage. Activation of recombinant PAR1 also potentiates recombinant NR1/NR2A (1.7 +/- 0.06-fold) and NR1/NR2B (1.41 +/- 0.11-fold) receptor function but not NR1/NR2C or NR1/NR2D receptor responses. PAR1-mediated potentiation of recombinant NR1/NR2A receptors occurred after activation with as little as 300 pm thrombin. These data raise the intriguing possibility that potentiation of neuronal NMDA receptor function after entry of thrombin or other serine proteases into brain parenchyma during intracerebral hemorrhage or extravasation of plasma proteins during blood-brain barrier breakdown may exacerbate glutamate-mediated cell death and possibly participate in post-traumatic seizure. Furthermore, the ability of neuronal protease signaling to control NMDA receptor function may also have roles in normal brain development.  相似文献   

20.
The p21-activated serine/threonine kinases (PAK) play an important role in a variety of cellular functions. However, their role in the smooth muscle response to thrombin, which is activated upon vascular injury and promotes vascular remodelling processes, is not resolved. Here we investigated the role of PAK in thrombin signalling and regulation of tissue factor (TF), the activator of the extrinsic coagulation cascade, in pulmonary artery smooth muscle cells (PASMC), the main cell type responsible for vascular remodelling in pulmonary hypertension. PAK was rapidly phosphorylated in response to thrombin. Thrombin and active PAKT423E phosphorylated p38 MAP kinase (p38MAPK), ERK1/2, phosphatidylinositol-dependent kinase-1 (PDK1) and protein kinase B/Akt (PKB) whereas kinase-deficient PAK1 prevented activation of these kinases by thrombin. In addition, kinase- deficient MKK3 inhibited activation of PDK1 and PKB by thrombin. Further, thrombin and active PAK1 induced TF expression and promoter activity while kinase-deficient PAK1 diminished thrombin-induced TF upregulation. Moreover, kinase-deficient MKK3, PDK1 and PKB inhibited thrombin- and PAK-dependent TF expression and promoter activity. Together these findings show that PAK is a critical element of thrombin signalling in PASMC which is involved in the regulation of TF expression by sequentially activating MKK3/p38MAPK, PDK1 and PKB. Thus, PAK may play an important role in promoting vascular remodelling processes in pulmonary hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号