首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding the steps and cues that allow hematopoietic cells to be generated during development holds great clinical as well as biological interest. Analysis of these events in mice has provided many important insights into the processes involved, but features that might be unique to humans remain challenging to elucidate because they cannot be studied directly in vivo. Human embryonic stem or induced pluripotent stem cells offer attractive in vitro alternatives to analyze the process. Here we review recent efforts to develop defined and quantitative systems to address outstanding developmental questions against a background of what we know about the development of hematopoietic cells in the fetus and derived from mouse embryonic stem cells.  相似文献   

2.
The mechanism of tumor-induced hematological alterations at the level of pluripotent hematopoietic stem cells (CFU-S) was investigated in mice bearing transplantable ascites tumor, Sarcoma 180. Tumor growth for 10 days caused neutrophilic leukocytosis and decline in hemoglobin and RBC values in the peripheral blood, and significant reduction (p less than 0.05) in the concentration as well as absolute number of CFU-S in the femoral marrow but an increment in the spleen. Intraperitoneal administration of cell-free ascitic fluid caused similar alterations of CFU-S in normal mice, but heat-killed tumor cells failed to elicit such response. Tumor cell-conditioned medium when injected into normal mice caused CFU-S alterations in a pattern similar to that of tumor-bearing animals. It is concluded that alterations of CFU-S following tumor transplantation is attributable to tumor growth rather than the presence of dead or necrotic cells in the tumor inoculum. It is likely that tumor cells elaborate some factor(s) which mediate such changes.  相似文献   

3.
4.
Pluripotent cells represent a powerful tool for tissue regeneration, but their clinical utility is limited by their propensity to form teratomas. Little is known about their interaction with the surrounding niche following implantation and how this may be applied to promote survival and functional engraftment. In this study, we evaluated the ability of an osteogenic microniche consisting of a hydroxyapatite-coated, bone morphogenetic protein-2–releasing poly-l-lactic acid scaffold placed within the context of a macroenvironmental skeletal defect to guide in vivo differentiation of both embryonic and induced pluripotent stem cells. In this setting, we found de novo bone formation and participation by implanted cells in skeletal regeneration without the formation of a teratoma. This finding suggests that local cues from both the implanted scaffold/cell micro- and surrounding macroniche may act in concert to promote cellular survival and the in vivo acquisition of a terminal cell fate, thereby allowing for functional engraftment of pluripotent cells into regenerating tissue.Pluripotent stem cells hold significant promise for the treatment of tissue deficiencies and other human diseases (1, 2). Both human induced pluripotent stem cells (h-iPSCs) and embryonic stem cells (h-ESCs) are capable of differentiating into a multitude of cell types from each of three germ layers, allowing investigators to devise novel platforms for research and therapeutic drug screening (3, 4). This same property has also made these cells a much more powerful tool compared with mesenchymal stromal cells for regenerative medicine. In addition, as h-iPSCs can be reprogrammed from a patient’s own somatic cells, they have the added potential of mitigating some of the concerns over immunogenic sequelae that are raised with other cell types, yet simultaneously enabling development of patient-specific disease modeling (57).Despite dramatic progress made over recent years, widespread application of pluripotent cells in clinical medicine has been hampered by several challenges, chief among which is the propensity for both h-iPSCs and h-ESCs to form tumors in vivo (8). As recent studies have shown development of teratomas to directly correlate with the number of residual undifferentiated cells implanted, several strategies have been proposed to eliminate these persistent pluripotent cells before injection (810). It is still unknown, however, if they can be completely successful in the context of the number of cells required for in vivo tissue regeneration. Furthermore, few reports have also demonstrated engraftment and functional integration of pluripotent cells into the surrounding tissue, and little is known about how transplanted cells truly interact with the endogenous niche following implantation. These niches may in fact play significant roles in stabilizing fully pluripotent cells and guiding acquisition of cell fate, while also minimizing teratoma formation (11).In this study, we evaluated how a skeletal defect macroniche combined with a pro-osteogenic biomimetic scaffold microniche could provide cues affecting survival and differentiation of implanted cells lacking in a developmental program. In response to such an environment, not only did we find a high degree of survival, but the transplanted pluripotent cells were also shown to acquire a fully differentiated osteogenic state, integrating into the surrounding bone without the formation of a teratoma. Our data thus suggest that the surrounding niche is capable of not only supporting cellular viability, but can also guide differentiation of pluripotent cells for functional engraftment into regenerating tissue.  相似文献   

5.
We have evaluated the in vivo amplification potential of purified murine hematopoietic stem cells, identified as Wheat Germ Agglutinin+ (WGA+), 15-1.1(-) , Rhodamine 123 Dull (Rho-dull) cells, by serial transplantation into stem cell defective nonmyeloablated W/Wv mice. C57BL Rho-dull cells (250/ 500 cells/mouse) permanently engrafted nonablated W/Wv mice as defined by the presence of > 95% red and > 20% white donor-derived circulating cells for at least 1.5 years following transplantation. At this time, approximately 61% of Rho-dull cells and all the Rho-bright progenitor and colony forming cells of the engrafted mice were found to be donor-derived by c-Kit genotyping and by their response to stem cell factor (SCF). Retransplantation of 250-1000 Rho-dull cells from primary into secondary W/Wv recipients generated C57BL hematopoiesis in 40%-64% of animals revealing the presence of donor derived hematopoietic stem cells (HSC) in the bone marrow of the primary recipients. One and half years after transplantation, the bone marrow of the secondary engrafted animals contained C57BL Rho-dull cells approximately = 51% by genotype), which were capable of reconstituting tertiary W/Wv recipients. In this respect, 25% of tertiary mice expressed C57BL hematopoiesis when transplanted with 250-1000 Rhodull cells purified from secondary W/Wv recipients. On the basis of the number of Rho-dull cells purified from a single mouse, we calculate that approximately 7.3x10(4) Rho-dull cells, which are genotypically and functionally defined as C57BL long-term repopulating stem cells, were generated in the marrow of reconstituted primary W/Wv recipients transplanted 1.5 years earlier with 250-500 C57BL Rho-dull cells. We conclude that murine HSC have extensive amplification capacity in nonmyeloablated animals.  相似文献   

6.
Bodine  DM; Seidel  NE; Gale  MS; Nienhuis  AW; Orlic  D 《Blood》1994,84(5):1482-1491
Cytokine-mobilized peripheral blood cells have been shown to participate in hematopoietic recovery after bone marrow (BM) transplantation, and are proposed to be useful targets for retrovirus- mediated gene transfer protocols. We treated mice with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) to mobilize hematopoietic progenitor cells into the peripheral blood. These cells were analyzed for the number and frequency of pluripotent hematopoietic stem cells (PHSC). We found that splenectomized animals treated for 5 days with G-CSF and SCF showed a threefold increase in the absolute number of PHSC over normal mice. The number of peripheral- blood PHSC increased 250-fold from 29 per untreated mouse to 7,200 in peripheral-blood PHSC in splenectomized animals treated for 5 days with G-CSF and SCF. Peripheral blood PHSC mobilized by treatment with G-CSF and SCF were analyzed for their ability to be transduced by retroviral vectors. Peripheral-blood PHSC from splenectomized animals G-CSF and SCF were transduced with a recombinant retrovirus containing the human MDR-1 gene. The frequency of gene transfer into peripheral blood PHSC from animals treated for 5 and 7 days was two-fold and threefold higher than gene transfer into PHSC from the BM of 5-fluorouracil-treated mice (P < .01). We conclude that peripheral blood stem cells mobilized by treatment with G-CSF and SCF are excellent targets for retrovirus- mediated gene transfer.  相似文献   

7.
Evidence for the lineage relationship between embryonic and adult hematopoietic stem cells (HSCs) in the mouse is primarily indirect. In order to study this relationship in a direct manner, we expressed the tamoxifen-inducible Cre-ER(T) recombinase under the control of the stem cell leukemia (Scl) stem-cell enhancer in transgenic mice (HSC-SCL-Cre-ER(T)). To determine functionality, HSC-SCL-Cre-ER(T) transgenics were bred with Cre reporter mice. Flow cytometric and transplantation studies revealed tamoxifen-dependent recombination occurring in more than 90% of adult long-term HSCs, whereas the targeted proportion within mature progenitor populations was significantly lower. Moreover, the transgene was able to irreversibly tag embryonic HSCs on days 10 and 11 of gestation. These cells contributed to bone marrow hematopoiesis 5 months later. In order to investigate whether the de novo HSC generation is completed during embryogenesis, HSC-SCL-Cre-ER(T)-marked fetal liver cells were transplanted into adult recipients. Strikingly, the proportion of marked cells within the transplanted and the in vivo-remaining HSC compartment was not different, implying that no further HSC generation occurred during late fetal and neonatal stages of development. These data demonstrate for the first time the direct lineage relationship between midgestation embryonic and adult HSCs in the mouse. Additionally, the HSC-SCL-Cre-ER(T) mice will provide a valuable tool to achieve temporally controlled genetic manipulation of HSCs.  相似文献   

8.
A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.  相似文献   

9.
Yan  XQ; Briddell  R; Hartley  C; Stoney  G; Samal  B; McNiece  I 《Blood》1994,84(3):795-799
In this study, we have compared the ability of recombinant human granulocyte colony-stimulating factor (rhG-CSF) alone and the combination of low doses of recombinant rat pegylated stem cell factor (rrSCF-PEG) plus rhG-CSF to mobilize peripheral blood progenitor cells (PBPCs) with long-term engrafting potential. Female recipient irradiated mice were transplanted with PBPCs from male mice that were mobilized with rhG-CSF alone (group A) or rrSCF-PEG plus rhG-CSF (group B). As previously shown, greater short-term survival resulted in group B compared with group A, with 80% and 40% survival at 30 days posttransplant, respectively. Both groups of animals showed long-term donor-derived engraftment in greater than 95% of animals, as determined by quantitative specific polymerase chain reaction amplification of a Y chromosome sequence from whole blood of the mice at 6 to 12 months posttransplantation. Analysis of individual granulocyte-macrophage colonies, picked up from semisolid methylcellulose culture of bone marrow cells from transplanted mice, resulted in detection of donor- derived DNA in 98% of colonies from group B mice compared with 81% from group A mice. These data show that cells with long-term potential are mobilized by rhG-CSF alone and the combination of rrSCF-PEG plus rhG- CSF. Furthermore, an increased number of cells with short-term and long- term engraftment potential was obtained with rrSCF-PEG plus rhG-CSF compared with rhG-CSF alone.  相似文献   

10.
Granulocyte colony-stimulating factor (G-CSF) induces proliferation of bone marrow–derived cells. G-CSF is neuroprotective after experimental brain injury, but the mechanisms involved remain unclear. Stem cell factor (SCF) is a cytokine important for the survival and differentiation of hematopoietic stem cells. Its receptor (c-kit or CD117) is present in some endothelial cells. We aimed to determine whether the combination of G-CSF/SCF induces angiogenesis in the central nervous system by promoting entry of endothelial precursors into the injured brain and causing them to proliferate there. We induced permanent middle cerebral artery occlusion in female mice that previously underwent sex-mismatched bone marrow transplantation from enhanced green fluorescent protein (EGFP)–expressing mice. G-CSF/SCF treatment reduced infarct volumes by more than 50% and resulted in a 1.5-fold increase in vessel formation in mice with stroke, a large percentage of which contain endothelial cells of bone marrow origin. Most cells entering the brain maintained their bone marrow identity and did not transdifferentiate into neural cells. G-CSF/SCF treatment also led to a 2-fold increase in the number of newborn cells in the ischemic hemisphere. These findings suggest that G-CSF/SCF treatment might help recovery through induction of bone marrow–derived angiogenesis, thus improving neuronal survival and functional outcome.  相似文献   

11.
Hematopoietic stem cells (HSC) lose their capacity for engraftment during ex vivo cytokine expansion. It has been shown that mesenchymal stem cells (MSC) improve HSC transplantability; however, the molecular mechanisms responsible for this effect have not yet been completely elucidated. This paper reports that expanding HSC in co-culture with MSC enhances a vascular cell adhesion molecule (VCAM-1)-dependent pro-migratory phenotype. MSC did not regulate the HSC expression of CD49d (VCAM-1 counter-receptor molecule), but did decrease the cytokine-induced HSC VCAM-1-mediated pro-adhesive phenotype. Co-culture with MSC reduced the expression of the inactive conformation of lymphocyte function-associated antigen (LFA-1) at the HSC uropod, and induced higher expression of an LFA-1 activation epitope. Interestingly, VCAM-1-dependent HSC migration was modulated by targeting this LFA-1 high affinity form, suggesting integrin cross-regulation. VCAM-1-mediated HSC transmigration appeared to favor the more primitive HSC immunophenotype. Our results suggested that co-culture with MSC improved VCAM-1-dependent migration of primitive HSC, which was affected in ex vivo cytokine-expanded HSCs by a mechanism involving LFA-1 modulation.  相似文献   

12.
The in vivo effects of recombinant human interleukin 6 (IL-6) on the hematopoietic system of sublethally (4.8 Gy) x-irradiated mice were investigated. Animals were injected twice daily s.c. with IL-6 (10 micrograms/kg body weight/day) for 7 days following irradiation, and the numbers of hematopoietic stem, progenitor, and circulating blood cells were evaluated at 4, 7, 13, and 23 days. IL-6 caused significant depression of early hematopoiesis (decreased numbers of spleen colony-forming units [CFU-S] and granulocyte-macrophage colony-forming cells [GM-CFC]) in the spleens of irradiated mice. Marrow hematopoiesis was less affected by IL-6 injection, although the number of hematopoietic cells was also significantly lower than in irradiated mice injected with carrier alone. The observed decrease in the numbers of hematopoietic cells was not reflected by any significant change in the circulating blood cell numbers, which were similar to those in control irradiated animals. In contrast, IL-6 administered in 100 times higher doses (1000 micrograms/kg/day) caused significant increases in bone marrow and spleen cellularity and GM-CFC numbers, thus accelerating postirradiation hematopoietic regeneration. Our studies show that IL-6, administered in relatively low doses, suppresses postirradiation hematopoietic recovery, decreasing the numbers of stem and progenitor cells in sublethally irradiated mice.  相似文献   

13.
The effect of chronic administration of CRF on rat pituitary morphology was studied. Experimental animals received CRF (10 micrograms/day) over a period of 52 days by means of sc osmotic pumps changed at 10- to 14-day intervals. The average 0800 h plasma corticosterone levels in the treated animals were significantly greater than control values [7.52 +/- 0.99 (+/- SE) vs. 1.14 +/- 0.5 micrograms/dl; P less than 0.001]. The CRF-treated animals also had a significantly greater adrenal weight (16.44 +/- 1.38 vs. 12.24 +/- 0.85 mg; P less than 0.05) and lower thymus weight (164 +/- 12 vs. 248 +/- 27 mg; P less than 0.005). There was a marked increase in the number of ACTH-producing cells in the anterior pituitaries of the rats that received CRF (13.3 +/- 0.8% vs. 4.5 +/- 0.3% ACTH-producing cells; P less than 0.001), as determined by immunocytochemical methods. Corticotrophs of rats treated with CRF manifested a significant increase in nuclear area (24.0 +/- 0.7 vs. 21.4 +/- 0.4 micron 2; P less than 0.001) and an increased diameter of forming and storage granules (191.1 +/- 1.1 vs. 158.6 +/- 3.5 nm and 196.1 +/- 1.2 vs. 170.1 +/- 3.7 nm, respectively; P less than 0.001). There was no demonstrable increase in ACTH cell area. These data indicate that long term administration of CRF is capable of increasing the number of pituitary corticotrophs. It also supports the view that the corticotroph hyperplasia occurring after adrenalectomy, in unusual cases of ectopic CRF production, and in rare instances of Cushing's disease is a proliferative response to CRF.  相似文献   

14.
OBJECTIVE: Stem cell factor (SCF) is the ligand for the receptor tyrosine kinase (RTK) Kit. The literature contains conflicting reports regarding the capacity of SCF to activate JAK2. Previous work has addressed this controversial issue using biochemical approaches. Here we use a genetic approach to determine the direct role of JAK2 in SCF-mediated growth and differentiation of primary hematopoietic cells. MATERIALS AND METHODS: Fetal liver cells were isolated from JAK2-deficient murine embryos at day 12 of development. SCF-induced growth and differentiation of this unfractionated population of cells were determined by 3H-thymidine incorporation in bulk cultures, single-cell colony assays, and cytochemistry. In addition, Kit+ cells were isolated from fetal liver by fluorescence-activated cell sorting (FACS) and assessed for growth using 3H-thymidine and colony assays. RESULTS: SCF-induced growth of unfractionated JAK2-deficient fetal liver cells was reduced by 70% compared to cells from wild-type fetal liver in single-cell assays. This was of particular note because there were three-fold more Kit+ cells in JAK2-deficient fetal liver. Reductions in SCF-induced growth were not observed in bulk cultures of JAK2-deficient fetal liver, suggesting that additional factors cooperate with SCF to overcome the absence of JAK2 in this heterogeneous population of cells. SCF-induced 3H-thymidine incorporation of FACS-purified Kit+ fetal liver deficient for JAK2 was impaired by approximately 50%, whereas colony formation in methylcellulose was reduced 95%. JAK2 also was required for differentiation of this purified population of progenitors into mast cells. CCONCLUSION: JAK2 contributes to the intrinsic capacity of fetal liver hematopoietic progenitor cells to proliferate and differentiate in response to SCF.  相似文献   

15.
16.
The hematopoietic stem cells of alpha-thalassemic mice   总被引:1,自引:0,他引:1  
Barker  JE; McFarland  E 《Blood》1985,66(3):595-601
The alpha-thalassemic mouse has a hereditary microcytic anemia, almost certainly has a shortened RBC life span, and is a potential candidate for cell replacement therapy. In a routine study of bone marrow repopulating capacity using hemoglobin as a cell marker, normal donor marrow cells, but not alpha-thalassemic donor marrow cells, completely replaced the host cells. Further analysis showed that at least 30 times more alpha-thalassemic cells were required to outcompete normal donor cells injected simultaneously. The results were more extreme then expected and suggested a defect in a stem cell population as well as in the RBCs. Evidence that the multipotent and erythroid-committed stem cells in alpha-thalassemic mice are not decreased was shown by CFU-S and CFU-E assays. The combined results indicate that the deletion expresses itself most conspicuously in the RBC population. Tests were also performed to analyze repopulation kinetics in the Hbath-J/+ mice. In unirradiated alpha-thalassemic hosts, the hemoglobin from a normal donor persisted but did not replace the host hemoglobin. Sublethally irradiated alpha-thalassemic hosts, on the other hand, were easily repopulated with normal cells. We conclude that the alpha-thalassemic mouse is a good model for cell replacement therapy.  相似文献   

17.
Hematopoietic stem cells (HSC) are unique in that they give rise both to new stem cells (self-renewal) and to all blood cell types. The cellular and molecular events responsible for the formation of HSC remain unknown mainly because no system exists to study it. Embryonic stem (ES) cells were induced to differentiate by coculture with the stromal cell line RP010 and the combination of interleukin (IL) 3, IL-6, and F (cell-free supernatants from cultures of the FLS4.1 fetal liver stromal cell line). Cell cytometry analysis of the mononuclear cells produced in the cultures was consistent with the presence of PgP-1+ Lin- early hematopoietic (B-220- Mac-1- JORO 75- TER 119-) cells and of fewer B-220+ IgM- B-cell progenitors and JORO 75+ T-lymphocyte progenitors. The cell-sorter-purified PgP-1+ Lin- cells produced by induced ES cells could repopulate the lymphoid, myeloid, and erythroid lineages of irradiated mice. The ES-derived PgP-1+ Lin- cells must possess extensive self-renewal potential, as they were able to produce hematopoietic repopulation of secondary mice recipients. Indeed, marrow cells from irradiated mice reconstituted (15-18 weeks before) with PgP-1+ Lin- cell-sorter-purified cells generated by induced ES cells repopulated the lymphoid, myeloid, and erythroid lineages of secondary mouse recipients assessed 16-20 weeks after their transfer into irradiated secondary mice. The results show that the culture conditions described here support differentiation of ES cells into hematopoietic cells with functional properties of HSC. It should now be possible to unravel the molecular events leading to the formation of HSC.  相似文献   

18.
Gene transduction of pluripotent human hematopoietic stem cells (HSCs) is necessary for successful gene therapy of genetic disorders involving hematolymphoid cells. Evidence for transduction of pluripotent HSCs can be deduced from the demonstration of a retroviral vector integrated into the same cellular chromosomal DNA site in myeloid and lymphoid cells descended from a common HSC precursor. CD34+ progenitors from human bone marrow and mobilized peripheral blood were transduced by retroviral vectors and used for long-term engraftment in immune-deficient (beige/nude/XIS) mice. Human lymphoid and myeloid populations were recovered from the marrow of the mice after 7-11 months, and individual human granulocyte-macrophage and T-cell clones were isolated and expanded ex vivo. Inverse PCR from the retroviral long terminal repeat into the flanking genomic DNA was performed on each sorted cell population. The recovered cellular DNA segments that flanked proviral integrants were sequenced to confirm identity. Three mice were found (of 24 informative mice) to contain human lymphoid and myeloid populations with identical proviral integration sites, confirming that pluripotent human HSCs had been transduced.  相似文献   

19.
S Okada  H Nakauchi  K Nagayoshi  S Nishikawa  Y Miura  T Suda 《Blood》1992,80(12):3044-3050
c-kit is expressed on hematopoietic stem cells and progenitor cells, but not on lymphohematopoietic differentiated cells. Lineage marker-negative, c-kit-positive (Lin-c-kit+) bone marrow cells were fractionated by means of Ly6A/E or Sca-1 expression. Lin-c-kit+Sca-1+ cells, which consisted of 0.08% of bone marrow nucleated cells, did not contain day-8 colony-forming units-spleen (CFU-S), but 80% were day-12 CFU-S. One hundred cells rescued the lethally irradiated mice and reconstituted hematopoiesis. On the other hand, 2 x 10(3) of Lin-c-kit+Sca-1- cells formed 20 day-8 and 11 day-12 spleen colonies, but they could not rescue the lethally irradiated mice. These data indicate that Lin-c-kit+Sca-1+ cells are primitive hematopoietic stem cells and that Sca-1-cells do not contain stem cells that reconstitute hematopoiesis. Lin-c-kit+Sca-1+ cells formed no colonies in the presence of stem cell factor (SCF) or interleukin-6 (IL-6), and only 10% of them formed colonies in the presence of IL-3. However, approximately 50% of them formed large colonies in the presence of IL-3, IL-6, and SCF. Moreover, when single cells were deposited into culture medium by fluorescence-activated cell sorter clone sorting system, 40% of them proliferated on a stromal cell line (PA-6) and proliferated for more than 2 weeks. In contrast, 15% of the Lin-c-kit+Sca-1-cells formed colonies in the presence of IL-3, but no synergistic effects were observed in combination with SCF plus IL-6 and/or IL-3. Approximately 10% proliferated on PA-6, but most of them degenerated within 2 weeks. The population ratio of c-kit+Sca-1+ to c-kit+Sca-1- increased 2 and 4 days after exposure to 5-fluorouracil (5-FU). These results are consistent with the relative enrichment of highly proliferative colony-forming cells by 5-FU. These data show that, although c-kit is found both on the primitive hematopoietic stem cells and progenitors, Sca-1+ cells are more primitive and respond better than Sca-1- cells to a combination of hematopoietic factors, including SCF and stromal cells.  相似文献   

20.
We show here for the first time that pluripotent hematopoietic stem cells express the CD4 antigen. CD4+ cells isolated from mouse marrow repopulated all hematopoietic lineages in both the long-term repopulation assay and the competitive repopulation assay. This finding indicates that the CD4+ population contains primitive stem cells with extensive repopulation capacity. Interestingly, the CD4- population had significant life-sparing activity, even though this population was depleted of long-term repopulating stem cells when compared with CD4+ cells. The majority of the cells that respond to the stroma in Whitlock-Witte cultures with B-cell differentiation were recovered in the CD4- population. Thus, this bone marrow (BM)-derived B-cell precursor lacks CD4, which is in contrast to myeloid precursors and thymus-derived lymphoid precursors that reportedly express CD4. We show further that the CD4 molecule expressed on BM cells is similar in molecular weight and epitope makeup to the CD4 antigen found on thymocytes. Detection of CD4 on BM cells is dependent on using high concentrations of antibodies. Thus, it is not surprising that expression of CD4 on pluripotent stem cells has been missed previously. Taken together, our data suggest that the CD4 molecule may play an important role in lineage definition in early hematopoietic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号