首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
New quinolonyl diketo acid compounds bearing various substituents at position 6 of the quinolone scaffold were designed and synthesized as potential HIV-1 integrase inhibitors. These new compounds were evaluated for their antiviral and anti-integrase activity and showed inhibitory potency similar to that of 6-bromide analog 2. Molecular modeling and docking studies were performed to rationalize these data and to provide a detailed understanding of the mechanism of inhibition for this class of compounds.  相似文献   

2.
Continuous efforts in microwave-assisted synthesis and the structure-activity relationships' (SARs) studies of novel modified 9-oxo-thiazolo[5,4-f]quinazoline-2-carbonitriles, allowed identification of new amidine and imidate derivatives as potent and dual CDK1/GSK-3 inhibitors. Combination of lead optimization and molecular modeling studies allowed identification of a dual CDK1/GSK-3 inhibitor (compound 13d) with submicromolar values.  相似文献   

3.
The synthesis, biological evaluation, and molecular modeling of new 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxamides(4), 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carbohydrazide (6), and some hexahydropyrimido[5,4-c]quinoline-2,5-diones (9) produced earlier by our laboratory, as AChE/BuChE inhibitors, is described. From these analyses compound 4c resulted equipotent regarding the inhibition of cholinesterases’; inhibitors 6k, 9a, 9b were selective for AChE, whereas product 4d proved selective for BuChE. Docking analysis has been carry out in order to identify the binding mode in the active site, and to explain the observed selectivities. Only compound 9a has been shown to decrease K+-induced calcium signals in bovine chromaffin cells.  相似文献   

4.
Three series of functionalized coumarin compounds were designed and prepared as cholinesterase (AChE and BuChE) inhibitors. The biological profile against AChE and BuChE of the prepared compounds was determined. Compound 7b exhibited a mixed-type of AChE inhibitor with IC50 value for the AChE inhibition of 0.19+/-0.01 microM and a high selectivity for AChE/BuChE, and compound 6b acted as non-competitive AChE inhibitor with IC50 value of 0.43+/-0.02 microM. Structure-activity relationships (SARs) of prepared compounds were discussed.  相似文献   

5.
Synthesis of new potential COX-1 and/or COX-2 inhibitors, derivatives of 1,1-di-(3-carboxyphenyl)ethane, their biological activity, docking results on COX-1 enzyme and absorption, distribution, metabolism, excretion (ADME) properties are presented. In addition to known interactions between ketoprofen and ibuprofen, leading NSAID agents and COX-1 active site, the possibility of formation of additional interactions is explored. Interactions with Ala527, and with one of the water molecules situated within the active site are identified. Molecular mechanics and DFT calculations for studied compounds have revealed free rotation around two central bonds (C1-C3' and C1-C3"), making them flexible, thus easier to enter and adjust to the active site. Further modifications of core structure have been undertaken to optimize biological activity and ADME properties. As a result, two of the compounds are indicated as novel COX-1 inhibitors.  相似文献   

6.
Here we report the synthesis and biological activities of new tripeptidic-based vinyl ester derivative proteasome inhibitors. Starting from Hmb-Val-Ser-Leu-VE prototype, we investigated P2 position and N-terminal substitution. The more effective inhibitors of the series showed remarkable inhibition and selectivity for the trypsin-like (beta2) subunit and were revealed to be specific for the proteasome. In vitro metabolic stability studies of the new vinyl ester analogues are also reported here.  相似文献   

7.
A series of novel chalcone thiosemicarbazide derivatives (4a-4x) have been designed, synthesized, structurally determined, and their biological activities were also evaluated as potential EGFR kinase inhibitors. All the synthesized compounds are first reported. Among the compounds, compound 4r showed the most potent biological activity (IC(50) = 0.78 ± 0.05 μM for HepG2 and IC(50) = 0.35 μM for EGFR), which is comparable to the positive controls. Docking simulation was also performed to position compound 4r into the EGFR active site to determine the probable binding model. Antiproliferative assay results demonstrated that some of these compounds possessed good antiproliferative activity against HepG2. Compound 4r with potent inhibitory activity in tumor growth inhibition may be a potential anticancer agent.  相似文献   

8.
Our previous studies have demonstrated that osthole, a Chinese herbal compound, could be incorporated into the hydroxycinnamide scaffold of LBH-589, a potent HDAC inhibitor, as an effective hydrophobic cap; the resulting compounds showed significant potency against several HDAC isoforms. Here, we presented a series of osthole derivatives fused with the aliphatic-hydroxamate core of suberoylanilide hydroxamic acid (SAHA), a clinically-approved HDAC inhibitor. Several compounds showed potent activity against nuclear HDACs. Further assays against individual HDAC isoforms revealed that some compounds showed not only SAHA-like activity towards HDAC1, -4 and -6, they inhibited HDAC8 by log difference than SAHA and thus exhibited a broader HDAC inhibition spectrum. Among them, compound 6g showed potent antiproliferative effect on several human cancer cell lines.  相似文献   

9.
New arylidene-thiazolidinediones (ATZDs) were synthesized and evaluated in the alloxan-induced hyperglycemia mice model. The molecular target taken into consideration is the nuclear PPAR-gamma whose crystallographic structure is available on the PDB database as 2PRG. Thus the hypoglycemic and hypolipidemic activities of compounds were compared with the result of their docking after removal of the co-crystallized ligand present in the 2PRG structure. Molecular modeling studies were carried out using the Autodock 3.0.5 and ADT 1.1 programs.  相似文献   

10.
The synthesis, biological evaluation and molecular modeling of new multipotent inhibitors of type I and type II, able to simultaneously inhibit monoamine oxidases (MAO) as well as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), is described. Compounds of type I were prepared by sequential reaction of 2,6-dichloro-4-phenylpyridine-3,5-dicarbonitrile (14) [or 2,6-dichloropyridine-3,5-dicarbonitrile (15)] with prop-2-yn-1-amine (or N-methylprop-2-yn-1-amine) and 2-(1-benzyl-piperidin-4-yl)alkylamines 22-25. Compounds of type II were prepared by Friedl?nder type reaction of 6-amino-5-formyl-2-(methyl(prop-2-yn-1-yl)amino)nicotinonitriles 32 and 33 with 4-(1-benzylpiperidin-4-yl)butan-2-one (31). The biological evaluation of molecules 1-11 showed that most of these compounds are potent, in the nanomolar range, and selective AChEI, with moderate and equipotent selectivity for MAO-A and MAO-B inhibition. Kinetic studies of compound 8 proved that this is a EeAChE mixed type inhibitor (IC(50) = 16 ± 2; Ki = 12 ± 3 nM). Molecular modeling investigation on compound 8 confirmed its dual AChE inhibitory profile, binding simultaneously at the catalytic active site (CAS) and at the peripheric anionic site (PAS). In overall, compound 11, as a potent and selective dual AChEI, showing a moderate and selective MAO-A inhibitory profile, can be considered as an attractive multipotent drug for further development on two key pharmacological targets playing key roles in the therapy of Alzheimer's disease.  相似文献   

11.
Schistosomiasis is a serious public health problem in Brazil and worldwide. Although the drugs used to treatment schistosomiasis are effective, the disease continues to expand in all endemic countries due to constant reinfection, poor sanitation, and the lack of effective programs for disease control. However, advances generated through genome projects have provided important information that has improved the understanding of the biology of this parasite. These advances, associated with the advent of bioinformatic analysis, are becoming an important tool in reverse vaccinology.Through database access to the DNA and protein sequences of Schistosoma mansoni and the use of bioinformatics programs, fourteen epitopes were identified. Five epitopes were obtained from proteins whose immunogenic potential had already been assessed in other studies (KP), and nine whose immunogenic potential is unknown (UP). To improve stimulation of the host immune system, the selected epitopes were modeled with a sugar moiety. After this addition, all of the epitopes showed structures similar to those observed in the native proteins, but only eleven of the peptides presented thermodynamically stable structures. Prediction analysis and molecular modeling showed that the glycopeptides presented here are important targets in the search for a vaccine against schistosomiasis. Additionally, they suggest that these molecules may be used in immunological assays to evaluate the level of protection, the effect on pathology reduction and the profile of cytokines and antibodies induced by them.  相似文献   

12.
We here report the synthesis and biological evaluation of new 3-[(2-indolyl)]-5-phenyl-3,5-pyridine, 3-[(2-indolyl)]-5-phenyl-2,4-pyridine and 3-[(2-indolyl)]-5-phenyl-2,6-pyrazine derivatives designed as potential CDK inhibitors. Indoles and phenyls were used to generate several substitutions of the pyridine and pyrazine rings. The synthesis included Stille or Suzuki type reactions, which were carried out on the 3,5-dibromopyridine, 2,4-dichloropyridine and 2,6-dichloro-1-4-pyrazine moieties. Cell effects of the V-shaped family were in the micromolar range. Kinase assays were conducted and showed that compound 11 inhibited CDK5 with an inhibitory concentration of 160 nM with a moderate selectivity over GSK3 compared to the reference C which exhibited a slightly lower activity on CDK5 (1.5 μM). Compound 11 was also found to be the most potent compound in the series and was identified as a new lead for DYRK1A inhibitor discovery (IC50 = 60 nM). Docking studies were carried out in order to investigate the inhibition of DYRK1A.  相似文献   

13.
This study is focused on a new series of benzylindole derivatives with various substituents at the benzene-fused ring, suggested by our 3D pharmacophore model developed for HIV-1 integrase inhibitors (INIs). All synthesized compounds proved to be active in the nanomolar range (6-35 nM) on the strand-transfer step (ST). In particular, derivative 4-[1-(4-fluorobenzyl)-5,7-dimethoxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid (8e), presenting the highest best-fit value on pharmacophore model, showed a potency comparable to that of clinical INSTIs GS 9137 (1) and MK-0518 (2). The binding mode of our molecules has been investigated using the recently published crystal structure of the complex of full-length integrase from the prototype foamy virus in complex with its cognate DNA (PFV-IN/DNA). The results highlighted the ability of derivative 8e to assume the same binding mode of MK-0518 and GS 9137.  相似文献   

14.
With the aim of obtaining compounds possessing high SERT selectivity, in the present work we synthesized and studied the inhibition of serotonin (SERT), dopamine (DAT) and norepinephrine (NET) transporters by docking studies and experimental binding measurements of a series of 4-(aryl)piperidin-3-one O-4-benzyl oxime hydrochlorides (1-10) of both E and Z configuration. E configuration compounds showed high SERT binding affinities (Ki = 10-98 nM) and high SERT selectivities over both NET and DAT. The molecular docking studies allowed a rationalization of the molecular basis of drug-SERT interactions both of the synthesized compounds and paroxetine and fluoxetine used as reference antidepressant drugs.  相似文献   

15.
In the present work we describe the synthesis and the in vitro evaluation of a series of arachidonic acid derivatives of general structure I as endocannabinoid transporter inhibitors. In addition, we report the first in vivo studies of the most potent derivative (4, UCM707) within this series. The majority of compounds studied are highly potent (IC(50)=24-0.8 micro M) and selective endocannabinoid uptake inhibitors with very low affinities for either the enzyme fatty acid amide hydrolase (IC(50)=30-113 micro M) or for cannabinoid receptor subtype 1 (CB(1)), cannabinoid receptor subtype 2 (CB(2)) and vanilloid receptor subtype 1 (VR(1)) (K(i)=1000-10000 nM). Among them, (5Z,8Z,11Z,14Z)-N-(fur-3-ylmethyl)icosa-5,8,11,14-tetraenamide (UCM707) behaves as the most potent endocannabinoid transporter inhibitor described to date (IC(50)=0.8 micro M) and exhibits improved potency for the anandamide transporter, high selectivity for CB(1) and VR(1) receptors, and modest selectivity for CB(2). In vivo it enhances the analgesia and hypokinetic effects induced by a subeffective dose of anandamide.  相似文献   

16.
We report the synthesis and the pharmacological evaluation of a new class of human carbonic anhydrase (hCA) inhibitors prepared regio- and stereoselectively by reacting sulfanilamide with ethyl trans-phenylglycidate in the presence of cobalt(II) chloride. Various derivatizations of the ester moiety in the parent compound led to a small library of derivatives (2R,3R and 2S,3S) which displayed interesting inhibitory activities towards the human tumor-associated isoform CA IX. One of the new compounds shows high selectivity in inhibiting hCA IX compared to the two physiologically relevant, cytosolic isozymes hCA I and hCA II. A molecular modeling study was conducted in order to simulate the binding mode of this new family of enzyme inhibitors within the active sites of hCA IX and hCA II.  相似文献   

17.
The synthesis and antimicrobial activity of a new series of 5-ethylsulphonyl-2-(substituted-phenyl/substituted-benzyl and/or phenylethyl)benzoxazole derivatives (3a-3t) except 3a, 3g, 3h, 3k [R.S. Pottorf, N.K. Chadha, M. Katkevies, V. Ozola, E. Suna, H. Ghane, T. Regberg, M.R. Player, Tetrahedron Lett. 44 (1) (2003) 175] were described. The in vitro antimicrobial activity of the compounds was determined against some Gram-positive, Gram-negative bacteria, a fungi Candida albicans and their drug-resistant isolates in comparison with standard drugs. Antimicrobial results indicated that the synthesized compounds possessed a broad spectrum of activity with MIC values 250-7.81 microg/ml. While all compounds are less potent than fluconazole against C. albicans, most of them are more potent than fluconazole against C. albicans isolate.  相似文献   

18.
Sixty-four new indanones and thiaindanones related to donepezil were synthesized and evaluated in vitro as potential AChE inhibitors. Among them, 11 derivatives were found to inhibit the enzyme in the submicromolar range; the best compound revealed its inhibitory activity with an IC50 in the same range (0.06 microM) than the reference compound, donepezil (IC50=0.02 microM).  相似文献   

19.
We report herein the synthesis and the in vitro antileishmanial evaluation of a series of 6-substituted purines. The most active compounds against Leishmania amazonensis promastigotes were 6-(3'-chloropropylthio)purine 2 (D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp, D.L. Wheeler, Genbank. Nucleic Acids Res. 28 (2000) 15-18; E.V. Aleksandrova, P.M.I.E. Valashek, J. Med. Pharm. Chem. 35 (2001) 172-173), 6-(3'-(thioethylamine)propylthio)purine 5, 6-(alpha-aceticacidthio)purine 7 and 6-(6'-deoxy-1'-O-methyl-beta-D-ribofuranose)purine 14 with an IC(50)=50, 50, 39 and 29 microM, respectively.  相似文献   

20.
A series of new and novel Schiff base derivatives were synthesized and investigated as potential new inhibitors of Jack bean urease. The most potent compounds were 3f with (Ki = 0.09 μM) and 3k (Ki = 0.122 μM). A pure competitive mechanism of inhibition was observed. Molecular docking studies were also performed to illustrate the binding mode of the compounds. Docking studies were performed on both enzymes from Jack bean urease and H. pylori urease. It was observed that both share the same binding mode. The binding sites of the two urease structures also aligned very well indicating the similarity in binding sites of the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号