首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Careful analysis of the NMR structures of cyclo(4-10)[Ac-Delta(3)Pro(1),DFpa(2),DTrp(3),Asp(4),DNal (6), Dpr(10)]GnRH, dicyclo(4-10/5-8)[Ac-DNal(1),DCpa(2),DTrp(3), Asp(4), Glu(5),DArg(6),Lys(8),Dpr(10)]GnRH, and dicyclo(4-10/5, 5'-8)[Ac-DNal(1),DCpa(2),DPal(3),Asp(4), Glu(5)(Gly),DArg(6),Dbu(8), Dpr(10)]GnRH showed that, in the N-terminal tripeptide, a type II beta-turn around residues 1 and 2 was probable along with a gamma-turn around DTrp(3)/DPal(3). This suggested the possibility of constraining the N-terminus by the introduction of a cyclo(1-3) scaffold. Optimization of ring size and composition led to the discovery of cyclo(1-3)[Ac-DAsp(1),DCpa(2),DLys(3),DNal(6), DAla(10)]GnRH (5, K(i) = 0.82 nM), cyclo(1,1'-3)[Ac-DAsp(1)(Gly), DCpa(2),DOrn(3),DNal(6),DAla(10)]GnRH (13, K(i) = 0.34 nM), cyclo(1, 1'-3)[Ac-DAsp(1)(Gly),DCpa(2),DLys(3),DNal(6),DA la(10)]GnRH (20, K(i) = 0.14 nM), and cyclo(1,1'-3)[Ac-DAsp(1)(betaAla), DCpa(2), DOrn(3),DNal(6),DAla(10)]GnRH (21, K(i) = 0.17 nM), which inhibited ovulation significantly at doses equal to or lower than 25 microgram/rat. These results were particularly unexpected in view of the critical role(s) originally ascribed to the side chains of residues 1 and 3.(1) Other closely related analogues, such as those where the [DAsp(1)(betaAla), DOrn(3)] cycle of 21 was changed to [DOrn(1)(betaAla), DAsp(3)] of cyclo(1,1'-3)[Ac-DOrn(1)(betaAla), DCpa(2),DAsp(3),DNal(6),DAla(10)]GnRH (22, K(i) = 2.2 nM) or where the size of the cycle was conserved and [DAsp(1)(betaAla), DOrn(3)] was replaced by [DGlu(1)(Gly), DOrn(3)] as in cyclo(1, 1'-3)[Ac-DGlu(1)(Gly),DCpa(2),DOrn(3),DNal(6),DA la(10)]GnRH (23, K(i) = 4.2 nM), were approximately 100 and 25 times less potent in vivo, respectively. Analogues with ring sizes of 18 ?cyclo(1, 1'-3)[Ac-DGlu(1)(Gly),DCpa(2),DLys(3),DNal(6),DA la(10)]GnRH (24)? and 19 ?cyclo(1,1'-3)[Ac-DGlu(1)(betaAla),DCpa(2),DLys( 3),DNal(6), DAla(10)]GnRH (25)? atoms were also less potent than 21 with slightly higher K(i) values (1.5 and 2.2 nM, respectively). These results suggested that the N-terminal tripeptide was likely to assume a folded conformation favoring the close proximity of the side chains of residues 1 and 3. The dicyclic analogue dicyclo(1-3/4-10)[Ac-DAsp(1),DCpa(2),DLys(3),Asp (4),DNal(6), Dpr(10)]GnRH (26) was fully active at 500 microgram, with a K(i) value of 1 nM. The in vivo potency of 26 was at least 10-fold less than that of monocyclic cyclo(1-3)[Ac-DAsp(1),DCpa(2),DLys(3),DNal(6), DAla(10)]GnRH (5); this suggested the existence of unfavorable interactions between the now optimized and constrained (1-3) and (4-10) cyclic moieties that must interact as originally hypothesized. Tricyclo(1-3/4-10/5-8)[Ac-DGlu(1),DCpa(2), DLys(3),Asp(4),Glu(5), DNal(6),Lys(8),Dpr(10)] GnRH (27) was inactive at 500 microgram/rat with a corresponding low affinity (K(i) = 4.6 nM) when compared to those of the most potent analogues (K(i) < 0.5 nM).  相似文献   

2.
New boron-containing polyamine have been synthesized: (aminoalkylamine)-N-(aminoalkyl)azanonaborane(11) derivatives [H(2)N(CH(2))(n)H(2)NB(8)H(11)NH(CH(2))(n)NH(2)], where n = 4-6 and 12, and [H(2)N(CH(2))(3)H(2)NB(8)H(11)NH(CH(2))(4)NH(2)]. (4-Aminobutylamine)-N-(4-aminobutyl)azanonaborane and (3-aminopropylamine)-N-(4-aminobutyl)azanonaborane were less toxic in vitro (LD(50) of approximately 700 and approximately 1100 microM, respectively) than spermine, while (4-aminobutylamine)-N-isopropylazanonaborane with its hydrophobic isopropyl group and those with n = 5, 6, and 12 were already toxic under similar conditions (LD(50) < 500 microM). These compounds may be useful as delivery agents for boron neutron capture therapy.  相似文献   

3.
A family of analogues of des-AA(1,2,5)-[DTrp(8)/D2Nal(8)]-SRIF that contain a 4-(N-isopropyl)-aminomethylphenylalanine (IAmp) at position 9 was identified that has high affinity and selectivity for human somatostatin receptor subtype 1 (sst1). The binding affinities of des-AA(1,2,5)-[DTrp(8),IAmp(9)]-SRIF (c[H-Cys-Lys-Phe-Phe-DTrp-IAmp-Thr-Phe-Thr-Ser-Cys-OH], CH-275) (7), des-AA(1,5)-[Tyr(2),DTrp(8),IAmp(9)]-SRIF (CH-288) (16), des-AA(1,2,5)-[Tyr(7),DTrp(8),IAmp(9)]-SRIF (23), and des-AA(1,2,5)-[DTrp(8),IAmp(9),Tyr(11)]-SRIF (25) are about (1)/(7), (1)/(4), (1)/(125), and (1)/(4) that of SRIF-28 (1) to sst1, respectively, about (1)/(65), (1)/(130), <(1)/(1000), and <(1)/(150) that of 1 to sst3, respectively, and about or less than (1)/(1000) that of 1 to the other three human SRIF receptor subtypes. A substitution of DTrp(8) by D2Nal(8) in 7 to yield des-AA(1,2,5)-[D2Nal(8),IAmp(9)]-SRIF (13) and in 16 to yield des-AA(1,5)-[Tyr(2),D2Nal(8),IAmp(9)]-SRIF (17) was intended to increase chemical stability, selectivity, and affinity and resulted in two analogues that were less potent or equipotent with similar selectivity, respectively. Carbamoylation of the N-terminus as in des-AA(1,2,5)-[DTrp(8),IAmp(9),Tyr(11)]-Cbm-SRIF (27) increased affinity slightly as well as improved selectivity. Monoiodination of 25 to yield 26 and of 27 to yield 28 resulted in an additional 4-fold increase in affinity at sst1. Desamination of the N-terminus of 17 to yield 18, on the other hand, resulted in significant loss of affinity. Attempts at reducing the size of the ring with maintenance of selectivity failed in that des-AA(1,4,5,13)-[Tyr(2),DTrp(8),IAmp(9)]-SRIF (33) and des-AA(1,4,5,6,12,13)-[Tyr(2),DTrp(8),IAmp(9)]-SRIF (34) progressively lost affinity for all receptors. Both des-AA(1,2,5)-[DTrp(8),IAmp(9),Tyr(11)]-Cbm-SRIF (27) and des-AA(1,2,5)-[DCys(3),DTrp(8),IAmp(9),Tyr(11)]-Cbm-SRIF (29) show agonistic activity in a cAMP assay; therefore, the structural basis for the agonist property of this family of analogues is not contingent upon the chirality of the Cys residue at position 3 as shown to be the case in 18-membered ring SRIF octapeptides. None of the high affinity structures described here showed receptor antagonism. We have prepared the radiolabeled des-AA(1,2,5)-[DTrp(8),IAmp(9),(125)ITyr(11)]-SRIF ((125)I-25) and des-AA(1,2,5)-[DTrp(8),IAmp(9), (125)ITyr(11)]-Cbm-SRIF ((125)I-27), used them as in vitro tracers, and found them to be superior to des-AA(1,5)-[(125)ITyr(2),DTrp(8),IAmp(9)]-SRIF ((125)I-16) for the detection of sst1 tumors in receptor autoradiography studies.  相似文献   

4.
Previous structure-activity studies on nociceptin/orphanin FQ (N/OFQ) identified [Phe(1)Psi(CH(2)NH)Gly(2)]N/OFQ(1-13)-NH(2) and [Nphe(1)]N/OFQ(1-13)-NH(2) as a N/OFQ peptide receptor (NOP) partial agonist and pure antagonist, respectively. The addition of fluorine to the Phe(4) or the insertion of a further pair of basic amino acids Arg(14)-Lys(15) generate potent agonists. On the basis of these findings, we combined in the N/OFQ-NH(2) template the chemical modifications Arg(14)-Lys(15) and (pF)Phe(4) that increase the agonist potency with those conferring partial agonist (Phe(1)Psi(CH(2)NH)Gly(2)) or pure antagonist (Nphe(1)) properties. Twelve peptides were synthesized and pharmacologically evaluated in Chinese hamster ovary cells expressing the human recombinant NOP and in electrically stimulated mouse vas deferens and guinea pig ileum assays. All peptides behaved as NOP ligands; the chemical modifications Arg(14)-Lys(15) and (pF)Phe(4) increased ligand affinity/potency. Peptides with the normal Phe(1)-Gly(2) peptide bond behaved as full agonists, and those with the Phe(1)Psi(CH(2)NH)Gly(2) modification behaved as partial agonists, while those with the Nphe(1) modification behaved as partial agonists or pure antagonists depending on the presence or absence of the (pF)Phe(4) modification, respectively. The full agonist [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2), the partial agonist [Phe(1)Psi(CH(2)NH)Gly(2),(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2), and the pure antagonist [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) represent the most potent peptide ligands for NOP.  相似文献   

5.
Des-AA(1,2,5)-[d-Trp(8)/d-Nal(8),IAmp(9)]SRIF (AA = amino acid, Nal = 3-(2-naphthyl)-alanine, IAmp = 4-(N-isopropyl)-aminomethylphenylalanine, SRIF = somatostatin), with or without a tyrosine or monoiodotyrosine, were scanned with the introduction of a backbone N-methyl group and tested for binding affinity at the five human somatostatin receptors (sst(1)(-)(5)). N(alpha)-Methylation resulted in loss of sst affinity (2- to >5-fold) when introduced at residues Lys(4) (6), Phe(6) (7), Phe(7) (8), Thr(10) (11), and Phe(11) (12) of the parent compound Des-AA(1,2,5)-[d-Nal(8),IAmp(9)]SRIF (4). N(alpha)-Methylation was tolerated at residues Cys(3) (5), d-Nal(8) (9), Thr(12) (13), and Cys(14) (15) with retention of binding sst affinity and selectivity and resulted in an increase in sst binding affinity at positions IAmp(9) (10) and Ser(13) (14). In these series, the d-Trp(8) substitution versus d-Nal(8) is clearly superior. C-Terminally lysine-extended analogues (21-25) retained sst(1) selectivity and binding affinity when compared to their d-Nal(8)- (4) or d-Trp(8)- (3) containing parent. Des-AA(1,2,5)-[d-Trp(8), (N(alpha)Me)IAmp(9)]SRIF (17), Des-AA(1,2,5)-[d-Trp(8),IAmp(9),(N(alpha)Me)Ser(13)]SRIF (19), Des-AA(1,2,5)-[d-Trp(8),IAmp(9),(N(alpha)Me)Cys(14)]SRIF (20), Des-AA(1,2,5)-[d-Trp(8),(N(alpha)Me)IAmp(9),Tyr(11)]SRIF (34), and Des-AA(1,2,5)-[d-Agl(8)(N(beta)Me,2-naphthoyl),IAmp(9),Tyr(11)]SRIF (42) (Agl = aminoglycine) are sst(1) agonists in their ability to inhibit forskolin-induced cAMP production.  相似文献   

6.
A structure-activity study of the neurokinin A (NKA) fragment NKA(4-10) was performed to investigate the importance of amino acid residues for receptor efficacy, potency and affinity at the NK(2) receptor in human colon circular muscle. Fourteen analogs of NKA(4-10) were produced with substitutions at positions 4, 5, 7, 9 and/or 10 of NKA. Their potencies were determined by in vitro contractile responses and affinities by radioligand binding using [125I]NKA. Functional potency was enhanced 8-fold by single amino acid substitutions with Lys(5) and MeLeu(9) but not significantly altered by substitutions Glu(4), Arg(5), His(5) and Nle(10). The multiply-substituted analogs [MeLeu(9),Nle(10)]NKA(4-10), [Lys(5),MeLeu(9),Nle(10)]NKA(4-10) and [Lys(5),(Tyr(7)),MeLeu(9),Nle(10)]NKA(4-10) displayed 6-9-fold increase in potency. Although [Arg(5),Nle(10)]NKA(4-10) was similar in potency to NKA(4-10), it was the only analog to show significantly reduced efficacy. All analogs were able to compete fully for [125I]NKA binding. [Lys(5),MeLeu(9)]NKA(4-10), [MeLeu(9),Nle(10)]NKA(4-10), [Lys(5),Nle(10)]NKA(4-10) and analogs containing single substitutions with Glu(4), Arg(5), Lys(5) and MeLeu(9) displayed significantly higher affinity, whereas those with Nle(10) and [Glu(4),Nle(10)] substitutions showed significantly lower affinity than NKA(4-10). There was a positive correlation (r=0.63) between binding affinity and functional potency, which was markedly improved (r=0.95) by removal of three analogs: [Lys(5),MeLeu(9),Nle(10)]NKA(4-10), [Lys(5),Tyr(7),MeLeu(9),Nle(10)]NKA(4-10) and [Lys(5),Tyr(I(2))(7),MeLeu(9),Nle(10)]NKA(4-10). These exhibited similar binding affinities to that of NKA(4-10) but were more potent in functional studies, possibly indicating a different mechanism of receptor interaction. In conclusion, substitution of Ser(5) with Lys, and/or N-methylation of Leu(9), were the most effective changes to increase functional and binding potency of NKA(4-10) at the human colon NK(2) receptor.  相似文献   

7.
Prostacyclin, a potent vasodilator and inhibitor of platelet aggregation, acts through a cell-surface G protein-coupled receptor [prostacyclin (IP)]. The human (h) IP contains two consensus sites for N-linked glycosylation (N(7) and N(78)). However, the role of glycosylation is unknown. Mutant receptors (N(7)-Q(7),N(78)-Q(78) and N(7),N(78)-Q(7),Q(78)) were generated by replacing N(7) and/or N(78) with Q's. Receptor glycosylation was similar in the wild-type and N(7)-Q(7) and was inhibited with tunicamycin. N(78)-Q(78) and N(7),N(78)-Q(7),Q(78) demonstrated little or no glycosylation. Membrane localization was reduced for each mutant concomitant with impaired glycosylation. Partial localization to the plasma membrane allowed direct examination of the effect of glycosylation on IP function. High-affinity binding to N(7)-Q(7) was similar (K(d) = 21.7 +/- 1.7 nM, n = 4) to that of the wild-type receptor (K(d) = 24.3 +/- 3.6 nM, n = 4), despite a reduced value for B(max) (0.35 +/- 0.03 fmol/mg of protein versus 3.34 +/- 0.52 fmol/mg of protein, n = 4). Binding to N(78)-Q(78) (B(max) = 0.27 +/- 0.03 fmol/mg of protein, n = 3; K(d) = 149.1 +/- 11.1, n = 3) and N(7),N(78)-Q(7),Q(78) (no specific binding) was further impaired. Agonist-induced adenylyl cyclase activation was reduced in N(7)-Q(7) cells, whereas N(78)-Q(78) cells responded only to high concentrations of iloprost and N(7),N(78)-Q(7),Q(78) were unresponsive. Inositol phosphate generation was evident only with the wild-type. Only the wild-type and N(7)-Q(7) receptors underwent agonist-induced sequestration. Our findings demonstrate greater glycosylation at N(78) compared with N(7). The extent of N-linked glycosylation of hIP may be important for membrane localization, ligand binding, and signal transduction.  相似文献   

8.
Speciation of arsenic in biological samples   总被引:13,自引:0,他引:13  
Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs(III), 11.3), arsenate (iAs(V), 10.1), monomethylarsonous acid (MMA(III), 6.6), monomethylarsonic acid (MMA(V), 10.5), dimethylarsinous acid (DMA(III), 13.0), and dimethylarsinic acid (DMA(V), 47.5); fingernail contained iAs(III) (62.4%), iAs(V) (20.2), MMA(V) (5.7), DMA(III) (8.9), and DMA(V) (2.8); hair contained iAs(III) (58.9%), iAs(V) (34.8), MMA(V) (2.9), and DMA(V) (3.4); RBCs contained AsB (22.5%) and DMA(V) (77.5); and blood plasma contained AsB (16.7%), iAs(III) (21.1), MMA(V) (27.1), and DMA(V) (35.1). MMA(III), DMA(III), and iAs(V) were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas.  相似文献   

9.
It has been found that S-allylcysteine (SAC), a garlic-derived compound, has in vivo and in vitro antioxidant properties. In addition, it is known that SAC is able to scavenge different reactive oxygen or nitrogen species including superoxide anion (O(2)(-)), hydrogen peroxide (H(2)O(2)), hydroxyl radical (OH()), and peroxynitrite anion (ONOO(-)) although the IC(5O) values for each reactive species has not been calculated and the potential ability of SAC to scavenge singlet oxygen ((1)O(2)) and hypochlorous acid (HOCl) has not been explored. The purposes of this work was (a) to explore the potential ability of SAC to scavenge (1)O(2) and HOCl, (b) to further characterize the O(2)(-), H(2)O(2), OH(), and ONOO(-) scavenging ability of SAC by measuring the IC(50) values using in vitro assays, and (c) to explore the potential ability of SAC to ameliorate the potassium dichromate (K(2)Cr(2)O(7))-induced cytotoxicity in LLC-PK1 cells in which oxidative stress is involved. The scavenging activity was compared against the following reference compounds: N-acetylcysteine for O(2)(-), sodium pyruvate for H(2)O(2), dimethylthiourea for OH(), lipoic acid and glutathione for (1)O(2), lipoic acid for HOCl, and penicillamine for ONOO(-). It was found that SAC was able to scavenge concentration-dependently all the species assayed with the following IC(5O) (mean+/-SEM, mM): O(2)(-) (14.49+/-1.67), H(2)O(2) (68+/-1.92), OH() (0.68+/-0.06), (1)O(2) (1.93+/-0.27), HOCl (2.86+/-0.15), and ONOO(-) (0.80+/-0.05). When the ability of SAC to scavenge these species was compared to those of the reference compounds it was found that the efficacy of SAC (a) to scavenge O(2)(-), H(2)O(2), OH(), and ONOO(-) was lower, (b) to scavenge HOCl was similar, and (c) to scavenge (1)O(2) was higher. In addition, it was found that SAC was able to prevent K(2)Cr(2)O(7)-induced toxicity in LLC-PK1 cells in culture. It was showed for the first time that SAC is able to scavenge (1)O(2) and HOCl and to ameliorate the K(2)Cr(2)O(7)-induced toxicity.  相似文献   

10.
11.
Phe(4) in the nociceptin (NC) sequence has been identified as the most critical residue for receptor interaction. In the present study, we investigated the pharmacological activity of a series of NC(1-13)NH(2) analogues, in which the hydrogen atom in the para position of Phe(4) was substituted with F, NO(2), CN, Cl, Br, I, CH(3), OH or NH(2).In receptor binding studies, performed using CHO cells expressing the recombinant human NC receptor (CHO(hOP4)) and in rat cerebral cortex membranes, [(pF)Phe(4)]NC(1-13)NH(2), [(pNO(2))Phe(4)]NC(1-13)NH(2), and [(pCN)Phe(4)]NC(1-13)NH(2) displayed higher affinity than NC(1-13)NH(2). The affinity of [(pCl)Phe(4)]NC(1-13)NH(2) was essentially identical to that of NC(1-13)NH(2), while the remaining compounds displayed reduced affinity. In a series of functional assays (stimulation of GTPgammaS binding in CHO(hOP4)cells and rat cerebral cortex membranes and inhibition of cAMP accumulation in CHO(hOP4) cells), the para substituted analogues behaved as full agonists (with the exception of [(pOH)Phe(4)]NC(1-13)NH(2) which acted as a partial agonist in the GTPgammaS binding assays) with the following rank order potency:[(pF)Phe(4)]NC(1-13)NH(2) and [(pNO(2))Phe(4)]NC(1-13)NH(2) were either inactive or displayed micromolar potencies in cAMP accumulation experiments performed on cells expressing classical opioid receptors. All compounds were full agonists in isolated tissues from various species (guinea pig ileum, mouse colon and mouse/rat vas deferens) with the exception of [(pOH)Phe(4)]NC(1-13)NH(2) which displayed partial agonist/weak antagonist activities. The rank order of potency was similar to that found in the other assays. The effects of all analogues were not modified by naloxone. The selective OP(4) receptor antagonist [Nphe(1)]NC(1-13)NH(2), tested in all preparations against one or both of the highly potent derivatives [(pF)Phe(4)]NC(1-13)NH(2) and [(pNO(2))Phe(4)]NC(1-13)NH(2), showed pA(2) values similar to those found against NC, the pA(2) in the GTPgammaS binding/rat cerebral cortex assay being much higher (ca. 7.5) than in the other functional assays (ca. 6).This study further supports the notion that Phe(4) of NC is the critical residue for receptor occupation and activation. Moreover, as part of this study, we have identified two novel, highly potent and selective agonists for the OP(4) receptor, [(pF)Phe(4)]NC(1-13)NH(2) and [(pNO(2))Phe(4)]NC(1-13)NH(2).  相似文献   

12.
Four new main saponins (canadensis-saponins 5-8) (compounds 5-8) were isolated from Solidago canadensis L. (Asteraceae). Using GC/MS, FAB-MS, and mainly 2D-NMR techniques their structures were identified as 3-O-[beta-D-glucopyranosyl(1----3)-beta-D- glucopyranosyl]-28-O-[beta-D-galactopyranosyl(1----2)-alpha-L- rhamnopyranosyl-(1----3)-beta-D-xylopyranosyl-(1----4)-[beta-D- xylopyranosyl-(1----3)]-alpha-L-rhamnopyranosyl-(1----2)-[beta-D-apio -D- furanosyl-(1----3)]-beta-D-6-deoxyglucopyranosyl-(1----)]-bayog enin(5),3-O- [beta-D-glucopyranosyl-(1----3)-beta-D-glucopyranosyl]-28-O-[beta-D- galactopyranosyl-(1----2)-alpha-L-rhamnopyranosyl-(1----3)-beta-D- xylopyranosyl-(1----4)-[beta-D-xylopyranosyl-(1----3)]-alpha-L- rhamnopyranosyl-(1----2)-[beta-D-apio-D-furanosyl-(1----3)]- arabinopyranosyl-(1----)]bayogenin(6),3-O-[beta-D-glucopy ran osyl-(1----3)- beta-D-glucopyranosyl]-28-O-[beta-D-galactopyranosyl-(1----2)- alpha-L-rhamnopyranosyl-(1----3)-beta-D-xylopyranosyl-(1----4)-[beta-D- xylopyranosyl-(1----3)]-alpha-L-rhamnopyranosyl-(1----2)-[alpha-L- rhamnopyranosyl-(1----3)]-beta-D-6-deoxyglucopyranosyl-(1----)]-++ +bayogenin (7), and 3-O-[beta-D-glucopyranosyl-(1----3)-beta-D-glucopyranosyl]-28-[O- beta-D-galactopyranosyl-(1----2)-alpha-L-rhamnopyranosyl-(1----3)-beta-D - xylopyranosyl-(1----4)-[beta-D-xylopyranosyl-(1----3)]-alpha-L- rhamnopyranosyl-(1----2)-[alpha-L-rhamnopyranosyl-(1----3)]arabinopyr anosyl - (1----)[-bayogenin (8).  相似文献   

13.
Two new dammarane triterpene glycosides named notoginsenosides Rw 1 (1) and Rw 2 (2) were isolated from the rhizomes of Panax notoginseng, together with 20 known compounds including protopanaxadiol (3), protopanaxatriol (4), ginsenosides Rb1 (5), Rd (6), Re (7), Rg1 (8), Rg2 (9), 20-(S)-Rg3 (10), 20-(R)-Rg(3) (11), Rh1 (12), Rh4 (13), Rf (14), 20-O-glucopyranosyl Rf (15), notoginsenosides R1 (16), R2 (17), T5 (18), S (19), T (20), and Fa (21), and koryoginsenoside R1 (22). Based on FABMS, HRFABMS, IR, (1)H, 13C, and 2D-NMR (HSQC, HMBC, and COSY) spectral data, the structures of the new compounds were elucidated as 6-O-beta-d-xylopyranosyl-20-O-beta-d-xylopyranosyl-(1 --> 6)-beta-d-glucopyranosyldammar-24-ene-3beta,6alpha,12beta,20(S)tetraol (1) and 6-O-beta-d-xylopyranosyl-(1 --> 2)-beta-d-glucopyranosyldammar-22-ene-(trans)-3beta,6alpha,12beta,20(S), 25-pentaol (2). Compounds 3, 4, 13, and 22 were isolated from P. notoginseng for the first time.  相似文献   

14.
(1) The existence of multiple classes of neuropeptide Y (NPY) receptors (Y(1), Y(2), Y(4), Y(5) and y(6)) is now well established. However, one of the major difficulties in the study of these various receptor subtypes is the current lack of highly selective probes to investigate a single receptor class. Up to most recently, this was particularly true for the Y(4) and Y(5) subtypes. (2) [hPP(1-17), Ala(31), Aib(32)]NPY, the first highly selective Y(5) agonist, was iodinated using the chloramine T method and purified by high-pressure liquid chromatography. (3) Binding performed in rat brain homogenates revealed that equilibrium was reached after 120 min (t(1/2)=21 min) and 60 min (t(1/2)=12 min) at 25 and 100 pM [(125)I][hPP(1-17), Ala(31), Aib(32)]NPY, respectively. (4) Isotherm saturation binding experiments demonstrated that [(125)I][hPP(1-17), Ala(31), Aib(32)]NPY binds to an apparent single population with high-affinity (K(D) of 1.2 and 1.7 nM) and low-capacity (B(max) of 14+/-3 fmol/100,000 cells and 20+/-5 fmol/mg protein) sites in Y(5) receptor HEK293-transfected cells and rat brain membrane homogenates, respectively. No specific [(125)I][hPP(1-17), Ala(31), Aib(32)]NPY binding sites could be detected in Y(1), Y(2) or Y(4) receptors transfected HEK293 cells, demonstrating the high selectivity of this ligand for the Y(5) subtype. (5) Competition binding experiments performed in rat brain membrane homogenates and Y(5)-receptor transfected HEK293 cells demonstrated that specific [(125)I][hPP(1-17), Ala(31), Aib(32)]NPY binding was competed with high affinity by Y(5) agonists and antagonists such as [Ala(31), Aib(32)]NPY, [hPP(1-17), Ala(31), Aib(32)]NPY, hPP, CGP71683A and JCF109, but not by Y(1) (BIBP3226), Y(2) (BIIE0246) and Y(1)/Y(4) (GR231118) preferential ligands. (6) Taken together, these data demonstrate that [(125)I][hPP(1-17), Ala(31), Aib(32)]NPY is the first highly selective Y(5) radioligand to be developed. This new probe should prove most useful for further detailed studies of the molecular and pharmacological properties of this receptor subtype in brain and peripheral tissues.  相似文献   

15.
A total of 32 compounds was prepared to investigate the functional role of Phe(4) in NC(1-13)-NH(2), the minimal sequence maintaining the same activity as the natural peptide nociceptin. These compounds could be divided into three series in which Phe(4) was replaced with residues that would (i) alter aromaticity or side chain length, (ii) introduce steric constraint, and (iii) modify the phenyl ring. Compounds were tested for biological activity as (a) inhibitors of the electrically stimulated contraction of the mouse vas deferens; (b) competitors of the binding of [(3)H]-NC-NH(2) to mouse brain membranes; and (c) inhibitors of forskolin-stimulated cAMP accumulation in CHO cells expressing the recombinant human OP(4) receptor. Results indicate that all compounds of the first and second series were inactive or very weak with the exception of [N(CH(3))Phe(4)]NC(1-13)-NH(2), which was only 3-fold less potent than NC(1-13)-NH(2). Compounds of the third series showed higher, equal, or lower potencies than NC(1-13)-NH(2). In particular, [(pF)Phe(4)]NC(1-13)-NH(2) (pF) and [(pNO(2))Phe(4)]NC(1-13)-NH(2) (pNO(2)) were more active than NC(1-13)-NH(2) by a factor of 5. In the mVD, these compounds showed the following order of potency: (pF) = (pNO(2)) > or = (pCN) > (pCl) > (pBr) > (pI) = (pCF(3)) = (pOCH(3)) > (pCH(3)) > (pNH(2)) = (pOH). (oF) and especially (mF) maintained high potencies but were less active than (pF). Similar orders of potency were observed in binding competition and cAMP accumulation studies. There was a strong (r(2) > or = 0.66) correlation between data observed in these assays. Biological activity data of compounds of the third series were plotted against some Hansch parameters that are currently used to quantify physicochemical features of the substituents. In the three biological assays agonist potency/affinity positively correlates with the electron withdrawal properties of the groups in the p-position of Phe(4) and inversely with their size.  相似文献   

16.
Jeong HJ  Whang WK  Kim IH 《Planta medica》1997,63(4):329-334
The studies were carried out to evaluate the constituents in the aerial part of Aconitum chiisanense (Ranunculaceae). From the butanol fraction of the methanol extract, kaempferol 3- O-beta-glucopyranoside-7- O-(6-trans-caffeoyl)-beta-glucopyranosyl-(1-->2)-alpha-rhamnopyranoside (I), quercetin 3- O-beta-glucopyranoside-7- O-(6-trans-caffeoyl)-beta-glucopyranosyl-(1-->2)-alpha-rhamnopyranoside (II), kaempferol 3- O-beta-glucopyranoside-7- O-(6-trans-feruloyl)-beta-glucopyranosyl-(1-->2)-alpha-rhamnopyranoside (III), kaempferol 3- O-beta-glucopyranoside-7- O-(6-benzoyl)-beta-glucopyranosyl-(1-->2)-alpha-rhamnopyranoside (IV), kaempferol 7- O-(6-trans)-caffeoyl)-beta-glucopyranosyl-(1-->2)-alpha-rhamnopyranoside (V), and kaempferol 7- O-beta-glucopyranosyl-(1-->2)-alpha-rhamnopyranoside (VI) were isolated and identified on the basis of their physicochemical and spectroscopic evidence (UV, IR, FAB(-)MS, (1)H-NMR, (13)C-NMR, (1)H- (1)H COSY, HMQC and HMBC). New compounds I-VI were named chiisanin (I), chiiribanin (II), chiiribaconin (III), chiirin (IV), chiiricanin (V), and chiirirhamnin (VI), respectively.  相似文献   

17.
The aurocyanide anion, Au(CN) (2) (-) , is a human metabolite of several anti-rheumatic gold complexes containing monovalent gold (I) bound to a sulphur ligand. This article reviews some of the chemical and pharmacological properties of this intriguing metabolite, and reports its anti-arthritic and anti-inflammatory activity in rats. Au(CN) (2) (-) is generated from the therapeutic gold complexes by small amounts of hydrogen cyanide, HCN, produced from thiocyanate, SCN(-), by myeloperoxidase (MPO) an enzyme in neutrophils which normally produces hypochlorite, OCl(-). Thus, Au(CN) (2) (-) is formed at sites of inflammation where activated neutrophils are present. This includes atherosclerotic lesions as well as inflamed joints. MPO also oxidises Au(CN) (2) (-) to Au(III) complexes such as Au(CN) (4) (-) .Au(CN) (2) (-) is normally a very stable monovalent gold complex. In a biological context, only low concentrations are ever present at both extracellular and intracellular sites. However, Au(CN) (2) (-) produced locally may facilitate the cellular uptake and hence the therapeutic and toxic effects of gold drugs. Au(CN) (2) (-) may also be involved in a redox cycle where Au(CN) (2) (-) is oxidised to Au(CN) (4) (-) which is, in turn, reduced back to Au(CN) (2) (-) by endogenous thiols. There are still many questions to be resolved concerning Au(CN) (2) (-) including its intrinsic toxicity and the extent to which it may contribute to the overall anti-arthritic activities of the gold-thiolates from which it is formed in vivo.  相似文献   

18.
The present study characterizes the alpha(1)-adrenoceptor subtypes mediating contractions to noradrenaline in isolated ring preparations of rat tail artery. Concentration-response (E/[A]) curves to noradrenaline were apparently monophasic (pEC(50) 6.47) but became biphasic in the presence of the selective alpha(1A)-adrenoceptor antagonist (+/-)-1,3,5-trimethyl-6-[[3-[4-((2,3-dihydro-2-hydroxymethyl)-1,4-benzodioxin-5-yl)-1-piperazinyl]propyl]amino]-2,4(1H,3H)-pyrimidinedione (B8805-033). Whereas the first phase of contraction to noradrenaline remained nearly unaffected in the presence of B8805-033 (0.03-3 microM), the second phase was concentration-dependently shifted to the right (pK(B) 8.06). In the presence of B8805-033 (3 microM), noradrenaline-induced contractions (pEC(50) 6.55) were antagonized in a competitive manner by prazosin (pK(B) 9.24), tamsulosin (pK(B) 8.55), 2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane (WB 4101; pK(B) 7.81), spiperone (pK(B) 7.69), 4-amino-2-[4-[1-(benzyloxycarbonyl)-2(S)-[[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6,7-dimethoxyquinazoline (L-765,314; pK(B) 7.31), 5-methylurapidil (pK(B) 6.55), 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY 7378; pK(B) 6.43), and 8-[2-(1,4-benzodioxan-2-ylmethylamino)ethyl]-8-azaspiro[4.5]decane-7,9-dione (MDL 73005EF; pK(B) 5.71), and were also antagonized by 100 microM chloroethylclonidine. N-[2-(2-cyclopropylmethoxyphenoxy)ethyl]-5-chloro-alpha,alpha-dimethyl-1H-indole-3-ethanamine (RS-17053) behaved as a noncompetitive antagonist (apparent pA(2) 6.55). Antagonist affinities obtained under these experimental conditions correlated highly with affinities at native and cloned alpha(1B)-adrenoceptors. Pretreatment of arterial rings with B8805-033 (3 microM) followed by receptor inactivation with chloroethylclonidine (100 microM) yielded monophasic E/[A] curves to noradrenaline (pEC(50) 6.14). Noradrenaline-induced contractions were competitively antagonized by tamsulosin (pK(B) 10.32), 5-methylurapidil (pK(B) 8.66), RS-17053 (pK(B) 8.44), B8805-033 (pK(B) 7.87), BMY 7378 (pK(B) 6.54), and L-765,314 (pK(B) 6.41). Antagonist affinities obtained under these experimental conditions correlated highly with affinities at native and cloned alpha(1A)-adrenoceptors. It is concluded that the contraction to noradrenaline in rat tail artery is mediated by both alpha(1B)- and alpha(1A)-adrenoceptors, each component of contraction being separable by use of selective alpha(1A)-adrenoceptor blockade and alpha(1B)-adrenoceptor alkylation, respectively.  相似文献   

19.
We previously engineered a novel, non-viral, multifunctional gene vector (STR-CH(2)R(4)H(2)C) containing stearoyl (STR) and a block peptide consisting of Cys (C), His (H), and Arg (R). STR-CH(2)R(4)H(2)C forms a nano-complex with pDNA and is stabilized by electronic interactions and disulfide cross linkages. In blood, pDNA, a cytosol-sensitive gene vector, is released from the complex into the cytosol. The current study aimed to make STR-CH(2)R(4)H(2)C capable of active nuclear localization. The dynein light chain association sequence (DLCAS) was disulfide cross-linked to STR-CH(2)R(4)H(2)C/pDNA through disulfide linkages, and the gene expression ability of this DLCAS cross-linked gene vector was evaluated. We examined the gene transfection efficiency of S-180 cells transfected with the STR-CH(2)R(4)H(2)C/DLCAS/pDNA complex. STR-CH(2)R(4)H(2)C/DLCAS/pDNA showed significantly higher and faster gene expression compared with STR-CH(2)R(4)H(2)C/pDNA. We also evaluated the cellular uptake ability of STR-CH(2)R(4)H(2)C/DLCAS/Cy5-labeled pDNA complex. STR-CH(2)R(4)H(2)C/DLCAS/pDNA showed significantly lower cellular uptake compared with STR-CH(2)R(4)H(2)C/pDNA. This result indicates that high gene expression of STR-CH(2)R(4)H(2)C/DLCAS/pDNA does not facilitate its cellular uptake. In addition, the gene expression of DLCAS/STR-CH(2)R(4)H(2)C/pDNA in S-180 cells pretreated with the tubulin polymerization inhibitor, nocodazole (NCZ), was significantly lower than that in the absence of NCZ. These results indicate that the high transfection efficiency of DLCAS/STR-CH(2)R(4)H(2)C/pDNA is dependent on intra-cellular transport utilizing the microtubule motor protein, dynein. Taken together, our results suggest that DLCAS-modified STR-CH(2)R(4)H(2)C may be a promising gene delivery system.  相似文献   

20.
1. The effects of chlorpromazine on sympathetic neuroeffector transmission have been studied in the rabbit isolated pulmonary artery and aorta. 2. Chlorpromazine (10(-8)-10(-5) M), prazosin (10(-9)-10(-7) M) and phentolamine (3 x 10(-8)-3 x 10(-5) M) decreased the contractions of pulmonary artery evoked by electrical field stimulation (150 pulses; 3 Hz). The rank order of inhibitory potency (ID50) was prazosin greater than chlorpromazine greater than phentolamine. 3. Rauwolscine (3 x 10(-9) M-4 x 10(-6) M) enhanced the neurogenic response by up to 201%. However, higher concentrations (6 x 10(-6)-3 x 10(-5) M) reduced the contractions evoked by transmural stimulation. 4. The inhibitory effect of prazosin (10(-6) M) was reversible, while that of chlorpromazine (10(-8) M) was not. 5. Chlorpromazine (10(-8)-10(-4) M), desmethylimipramine (3 x 10(-9)-10(-5) M), cocaine (10(-7)-3 x 10(-4) M) and phentolamine (10(-5)-3 x 10(-4) M) reduced the accumulation of [3H]-noradrenaline ([3H]-NA, 10(-8) M) by aorta. The rank order of inhibitory potency (ID50) was: desmethylimipramine greater than chlorpromazine greater than cocaine greater than phentolamine. Prazosin (10(-7)-10(-5) M) and rauwolscine (10(-8)-10(-4) M) did not reduce [3H]-NA accumulation. 6. Chlorpromazine (10(-8)-10(-6) M) and prazosin (3 x 10(-9)-10(-7) M) antagonized the contractions of aorta evoked by exogenous noradrenaline (10(-9)-3 x 10(-4) M) and phenylephrine (10(-9)-3 x 10(-3) M). The pA2 values for chlorpromazine on the alpha 1-adrenoceptors were 8.24 (noradrenaline) and 8.27 (phenylephrine). The corresponding values for prazosin were 8.64 and 8.57, respectively. 7. It is concluded that chlorpromazine and prazosin are potent inhibitors of postsynaptic alpha 1-adrenoceptors. Chlorpromazine and phentolamine, unlike prazosin and rauwolscine, are also inhibitors of Uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号