首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary White high school girls (n = 120) and boys (n = 120) aged 14–17 years, selected from 9th, 10th, 11th and 12 grades of a northern, midwest U.S. high school performed running exercise on a motor driven treadmill for determinations of maximal O2 uptake ( O2 max).The mean O2 max for all age groups was 40.8±4.0 and 54.7±5.6 ml/kg·min–1 for girls and boys respectively. The difference in O2 max across age groups varied only from 40.2–41.2 ml/kg·min–1 for girls and 54.0–56.3 ml/kg·min–1 for boys. These differences were not significant (P>0.05). The reported O2 max data are compared with those reported in other studies for bicycle ergometer and treadmill exercise using similar age groups.  相似文献   

2.
Summary The purpose of this study was to determine oxygen uptake O2) at various water flow rates and maximal oxygen uptake ( O2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m · s–1 and was increased by 0.05 m· s–1 every 2 min up to 1.00 m · s–1 and then by 0.05 m · s–1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production ( CO2), pulmonary ventilation ( E) and tidal volume (V T) were significantly greater in H than in N. There were no significant differences in the response of submaximal O2, heart rate (f c) or respiratory frequency (f R) between N and H. Maximal E,f R,V T,f c blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l · min–1] was significantly lower by 12.0% (SD 3.4) % than that in N [4.15 (SD 0.18) l · min–1] . This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.  相似文献   

3.
Summary To investigate the effect of endurance training on physiological characteristics during circumpubertal growth, eight young runners (mean starting age 12 years) were studied every 6 months for 8 years. Four other boys served as untrained controls. Oxygen uptake ( O 2) and blood lactate concentrations were measured during submaximal and maximal treadmill running. The data were aligned with each individual's age of peak height velocity. The maximal oxygen uptake ( O 2max; ml · kg–1 · min–1) decreased with growth in the untrained group but remained almost constant in the training group. The oxygen cost of running at 15 km · h–1 ( O 215, ml · kg–1 · min–1) was persistently lower in the trained group but decreased similarly with age in both groups. The development of O 2max and O 215 (1 · min–1) was related to each individual's increase in body mass so that power functions were obtained. The mean body mass scaling factor was 0.78 (SEM 0.07) and 1.01 (SEM 0.04) for O 2max and 0.75 (SEM 0.09) and 0.75 (SEM 0.02) for O 215 in the untrained and trained groups, respectively. Therefore, expressed as ml · kg–0.75 · min–1, O 215 was unchanged in both groups and O 2max increased only in the trained group. The running velocity corresponding to 4 mmol · 1–1 of blood lactate ( la4) increased only in the trained group. Blood lactate concentration at exhaustion remained constant in both groups over the years studied. In conclusion, recent and the present findings would suggest that changes in the oxygen cost of running and O 2max (ml · kg–1 · min–1) during growth may mainly be due to an overestimation of the body mass dependency of O 02 during running. The O 2 determined during treadmill running may be better related to kg0.75 than to kg1.  相似文献   

4.
Summary The purpose of present study was to assess the relationship between anaerobic threshold (AT) and performances in three different distance races (i.e., 5 km, 10 km, and 10 mile). AT, O2 max, and related parameters for 17 young endurance runners aged 16–18 years tested on a treadmill with a discontinuous method. The determination of AT was based upon both gas exchange and blood lactate methods. Performances in the distance races were measured within nearly the same month as the time of experiment. Mean AT- O2 was 51.0 ml·kg–1·min–1 (2.837 l·min–1), while O2 max averaged 64.1 ml·kg–1·min–1 (3.568 l·min–1). AT-HR and %AT (AT- O2/ O2 max) were 174.7 beats·min–1 and 79.6%, respectively. The correlations between O2 max (ml·kg–1·min–1) and performances in the three distance races were not high (r=–0.645, r=–0.674, r=–0.574), while those between AT- O2 and performances was r=–0.945, r=–0.839, and r=–0.835, respectively. The latter results indicate that AT- O2 alone would account for 83.9%, 70.4%, and 69.7% of the variance in the 5 km, 10 km, and 10 mile performances, respectively. Since r=–0.945 (5 km versus AT- O2) is significantly different from r=–0.645 (5 km versus O2 max), the 5 km performance appears to be more related to AT- O2 than VO2 max. It is concluded that individual variance in the middle and long distance races (particularly the 5 km race) is better accounted for by the variance in AT- O2 expressed as milliliters of oxygen per kilogram of body weight than by differences in O2 max.  相似文献   

5.
Summary To investigate the effect of hyperthyroidism on the pattern and time course of O2 uptake ( O2) following the transition from rest to exercise, six patients and six healthy subjects performed cycle exercise at an average work rate (WR) of 18 and 20 W respectively. Cardiorespiratory variables were measured breath-by-breath. The patients also performed a progressively increasing WR test (1-min increments) to the limit of tolerance. Two patients repeated the studies when euthyroid. Resting and exercise steady-state (SS) O2 (ml·kg–1·min–1) were higher in the patients than control (5.8, SD 0.9 vs 4.0, SD 0.3 and 12.1, SD 1.5 vs 10.2, SD 1.0 respectively). The increase in O2 during the first 20 s exercise (phase I) was lower in the patients (mean 89 ml·min, SD 30) compared to the control (265 ml·min–1, SD 90), while the difference in half time of the subsequent (phase 11) increase to the SS O2 (patient 26 s, SD 8; controls 17 s, SD 8) were not significant (P = 0.06). The OZ cost per WR increment ( O2/WR) in ml·min–1·–1, measured during the incremental period (mean 10.9; range 8.3–12.2), was always within two standard deviations of the normal value (10.3, SD 1). In the two patients who repeated the tests, both the increment of O2 from rest to SS during constant WR exercise and the O2/WRs during the progressive exercise were higher in the hyperthyroid state than during the euthyroid state. While both resting and exercise O2 are increased in the hyperthyroid patients, the O2 cost of a given increment of WR is within the normal range. However, a small reduction in the O2 requirement to perform exercise following treatment of the hyperthyroid state suggests a subtle change O2 cost of muscle work in this disease.  相似文献   

6.
Verification of the heart rate threshold   总被引:3,自引:0,他引:3  
Among the methods for determining anaerobic threshold (AT), the heart rate (HR) method seems to be the simplest. On the other hand, many conflicting results from comparing this method with others have been presented over the last 10 years. Therefore, the aim of this study was to compare the heart rate threshold (HRT) with the lactate turn point (LTP) —second break point of dependence of lactate (LA) to power output, ventilatory threshold (VT) and threshold determined by electromyography (EMGAT), all determined by the same exercise test and evaluated by the same computer algorithm. A group of 24 female students [mean age 20.5 (SD 1.6) years, maximal oxygen consumption 48.8 (SD 4.7) ml · kg–1 · min–1 performed an incremental exercise test on a cycle ergometer (modified Conconi test) starting with an initial power output (PO) of 40 W with intensity increments of 10 W · min–1 until the subjects were exhausted. The HRT, LTP and EMGAT determination was done by computer-aided break-point regression analysis from dependence of functional measures on PO. The same computer algorithm was used for VT determination from the relationship between ventilation (V) and oxygen uptake ( O2) or carbon dioxide output ( CO2). Nonsignificant differences were found between HRT [ O2 35.2 (SD 4.2) ml · kg–1 · min–1; HR 170.8 (SD 5.5) beats min–1; LA 4.01 (SD 1.03) mmol · l–1; PO 2.27 (SD 0.33) W · kg–1 VT [ O2 35.1 (SD 3.7) ml · kg–1 · min–1 HR 168.3 (SD 4.8) beats · min–1; LA 3.87 (SD 1:17) mmol · l–1; PO 2.22 (SD 0.27) W · kg–1 EMGAT [ O235.6 (SD 4.1) ml · kg–1 · min–1 HR 171.0 (SD 5.4) beats · min–1; LA 4.11 (SD 0.98) mmol · l–1; PO 2.30 (SD 0.31) W · kg–1] and LTP [ O2) 35.3 (SD 4.1) ml · kg–1 · min–1; HR 170.1 (SD 6.0) beats · min–1; LA 3.99 (SD 0.76) mmol · l–1; PO 2.27 (SD 0.29) W · kg–1]. Highly significant correlations (P < 0.01 in all cases) were found among all measurements made at threshold level in all the thresholds investigated. Correlation coefficients ranged in selected variables at different threshold levels from 0.842 to 0.872 in O2 measured in ml · kg–1 · min–1, from 0.784 to 0.912 for LA, from 0.648 to 0.857 for HR, and from 0.895 to 0.936 for PO measured in W · kg–1. These findings have led us to conclude that HRT could be used as an alternative method of determining anaerobic threshold in untrained subjects.  相似文献   

7.
Summary Twelve male and female subjects (eight trained, four untrained) exercised for 30 min on a treadmill at an intensity of maximal O2 consumption (% O2max) 90.0%, SD 4.7 greater than the anaerobic threshold of 4 mmol ·1–1 (Than =83.6% O2max, SD 8.9). Time-dependent changes in blood lactate concentration ([lab]) during exercise occurred in two phases: the oxygen uptake ( O2) transient phase (from 0 to 4 min) and the O2 steady-state phase (4–30 min). During the transient phase, [lab] increased markedly (l.30 mmol · l –1 · min –1, SD 0.13). During the steady-state phase, [lab] increased slightly (0.02 mmol · 1–1 · min–1, SD 0.06) and when individual values were considered, it was seen that there were no time-dependent increases in [lab] in half of the subjects. Following hyperlacticaemia (8.8 mmol -l–1, SD 2.0) induced by a previous 2 min of supramaximal exercise (120% O2max), [lab] decreased during the O2 transient (–0.118 mmol · 1–1 · min–1, SD 0.209) and steady-state (–0.088 mmol · 1–1 · min –1, SD 0.103) phases of 30 min exercise (91.4% O2max, SD 4.8). In conclusion, it was not possible from the Than to determine the maximal [lab] steady state for each subject. In addition, lactate accumulated during previous supramaximal exercise was eliminated during the O2 transient phase of exercise performed at an intensity above the Than. This effect is probably largely explained by the reduction in oxygen deficit during the transient phase. Under these conditions, the time-course of changes in [lab] during the O2 steady state was also affected.  相似文献   

8.
Summary On the basis of maximal oxygen uptake ( O2 max) 18 normal, healthy men were divided into two groups of equal size: moderately trained subjects (MTR) each having O2 max below 65.0 ml·min–1·kg–1 body weight (54.0±8.3) and well trained subjects (WTR), whose O2 max exceeded 65.0 ml·min–1·kg–1 body weight (69.2±4.1). The WTR group had slightly (non significant, n.s.) higher percentage of slow twitch, oxidative (SO) fibers in M. vastus lateralis and higher (n.s.) activities of cytochrome c oxidase (CytOx), succinate dehydrogenase (SDH), 3-hydroxyacyl-CoA-dehydrogenase (HADH), and citrate synthase (CS), while lactate dehydrogenase (LDH) activity was lower (n.s.). In the MTR group only, the SO-%, and the activities of CytOx, SDH and HADH correlated positively with O2 max, and LDH negatively with O2 max. These correlations were not significant in the WTR group possibly because of the adaptations produced by training in this group. Multiple regression analysis was used to elucidate the best combination of variables to explain the variance in O2 max. The best model consisted of the sum of relative activities of oxidative muscle enzymes (CytOx, SDH, HADH, CS), muscle LDH activity, body fat content (% F) and lean body mass. This model explained 69% of the variance in O2 max; and of the individual variables % F was of utmost importance.  相似文献   

9.
The effect of power output increment, based on an increase in pedal rate, on blood lactate accumulation during graded exercise is unknown. Therefore, in the present study, we examined the effect of two different rates of power output increments employing two pedal rates on pulmonary ventilation and blood lactate responses during graded cycle ergometry in young men. Males (n=8) with an mean (SD) peak oxygen uptake of 4.2 (0.1) 1·min–1 served as subjects. Each subject performed two graded cycle ergometer tests. The first test, conducted at 60 rev· min–1, employed 4 min of unloaded pedaling followed by a standard power output step increment (SI) of 60 W every 3rd min. The second test, conducted at 90 rev·min–1, employed 4 min of unloaded pedaling followed by a high power output step increment (HI) of 90 W every 3rd min. Venous blood was sampled from a forearm vein after 5 min of seated rest, 4 min of unloaded pedaling, and every 3rd min of graded exercise. Peak exercise values for heart rate, oxygen uptake ( O2), and ventilation ( E) were similar (P > 0.05) for SI and HI exercise, as was the relationship between E and O2, and between E and carbon dioxide production ( CO2). However, the relationship between blood lactate concentration and O2 was dissimilar between SI and HI exercise with blood lactate accumulation beyond the lowest ventilatory equivalent of oxygen, and peak exercise blood lactate concentration values significantly higher (P < 0.05) for SI [12.8 (2.6) mmol·l–1] compared to HI [8.0(1.9) mmol·l–1] exercise. Our findings demonstrate that blood lactate accumulation and E during graded exercise are dissociated. Blood lactate accumulation is influenced by the rate of external power output increment, while E is related to O2 and CO2.  相似文献   

10.
The present study was designed to determine the relative importance of individual characteristics such as maximal oxygen uptake ( O2max), adiposity, DuBois body surface area (A D), surface to mass ratio (A D: mass) and body mass, for the individual's reaction to humid heat stress. For this purpose 27 subjects (19 men, 8 women), with heterogeneous characteristics ( O2max 1.86–5.28 1 · min–1; fat% 8.0%–31.9%; mass 49.8–102.1 kg; A D 1.52–2.33 m2) first rested (30 min) and then exercised (60 W for 1 h) on a cycle ergometer in a warm humid climate (35°C, 80% relative humidity). Their physiological responses at the end of exercise were analysed to assess their relationship with individual characteristics using a stepwise multiple regression technique. Dependent variables (with ranges) included final values of rectal temperature (T re 37.5–39.0°C), mean skin temperature (T sk 35.7–37.5°C), body heat storage (S 3.2–8.1 J · g–1), heart rate (HR 100–172 beat · min–1), sweat loss (397–1403g), mean arterial blood pressure (BPa, 68–96 mmHg), forearm blood flow (FBF, 10.1–33.9 ml · 100ml–1 · min–1) and forearm vascular conductance (FVC = FBF/BPa, 0.11–0.49 ml · 100 ml–1 · min–1 · mmHg–1). The T re, T sk and S were (34%–65%) determined in the: main by ( O2max), or by exercise intensity expressed as a percent age of O2max (% O2max). For T re, A D: mass ratio also contributed to the variance explained, with about half the effect of ( O2max), For T sk, fat% contributed to the variance explained with about two-third the effect of O2max. Total body sweat loss was highly dependent (50%) on body size (A D or mass) with regular activity level having a quarter of the effect of body size on sweat loss. The HR, similar to T re, was determined by O2max (48%–51%), with less than half the effect of A D or A D :mass (20%). Other circulatory parameters (FBF, BPa, FVC) showed little relationship with individual characteristics ( < 36% of variance explained). In general, the higher the ( O2max), and/or the bigger the subject, the lower the heat strain observed. The widely accepted concept, that body core temperature is determined by exercise intensity expressed as % O2max and sweat loss by absolute heat load, was only partially supported by the results. For both variables, other individual characteristics were also shown to contribute.  相似文献   

11.
Summary To determine the effects of wearing heavy footwear on physiological responses five male and five female subjects were measured while walking on a treadmill (4, 5.25, and 6.5 km·h–1) with different external loads (barefooted, combat boots, and waist pack). While walking without an external load the oxygen uptake, as a percentage of maximal oxygen uptake (% O2max) of the men increased from 25% O2max at 4 km·h–1 to 31% O2max at 5.25 km·h–1 and to 42% O2max at 6.5 km·h–1. The women had a significantly higher oxygen uptake of 30%, 40%, and 55% O2max, respectively. In the most strenuous condition, walking at 6.5 km·h–1 with combat boots and waist pack (12 kg), the oxygen uptake for the men and women amounted to 53% and 75% O2max, respectively. The heart rate showed a similar response to the oxygen uptake, the women having a heart rate which was 15–40 beats·min–1 higher than that of the men, depending on the experimental condition. The perceived exertion was shown to be greatly dependent on the oxygen uptake. From the results a regression formula was calculated predicting the oxygen uptake depending on the mass of the footwear, walking speed and body mass. It was concluded that the mass of footwear resulted in an increase in the energy expenditure which was a factor 1.9–4.7 times greater than that of a kilogram of body mass, depending on sex and walking speed.  相似文献   

12.
Increase in energy cost of running at the end of a triathlon   总被引:3,自引:0,他引:3  
The purpose of the present study was to verify the increase in energy cost of running at the end of a triathlon. A group 11 trained male subjects performed a triathlon (15-km swimming, 40-km cycling, 10-km running). At least 1 week later the subjects ran 10-km as a control at the same pace as the triathlon. Oxygen uptake ( O2), ventilation ( E) and heart rate (HR) were measured during both 10-km runs with a portable telemetry system. Blood samples were taken prior to the start of the triathlon and control run, after swimming, cycling, triathlon run and control run. Compared to the control values the results demonstrated that triathlon running elicited a significantly higher (P < 0.005) mean O2 [51.2 (SEM 0.4) vs 47.8 (SEM 0.4) ml·min–1·kg] E [86 (SEM 4.2) vs 74 (SEM 5.3) l·min–1], and HR [162 (SEM 2) vs 156 (SEM 1.9) beats·min–1)]. The triathlon run induced a greater loss in body mass than the control run [2 (SEM 0.2) vs 0.6 (SEM 0.2) kg], and a greater decrease in plasma volume [14.4% (SEM 1.5) vs 6.7% (SEM 0.9)]. The lactate concentrations observed at the end of both 10-km runs did not differ [2.9 (SEM 0.2) vs 2.5 (SEM 0.2) m·mol·l–1]. Plasma free fatty acids concentrations were higher (P < 0.01) after the triathlon than after the control run [1.53 (SEM 0.2) to 0.51 (SEM 0.07) mmol·l–1]. Plasma creatine kinase concentrations rose under both conditions from 58 (SEM 12) to 112 (SEM 14) UI·l–1 after the triathlon, and from 61 (SEM 7) to 80 (SEM 6) UI·l–1 after the control run. This outdoor study of running economy at the end of an Olympic distance triathlon demonstrated a decrease in running efficiency.  相似文献   

13.
Summary The aim of this study was to determine whether the greater ventilation in children at rest and during exercise is related to a greater CO2 ventilatory response. The CO2 ventilatory response was measured in nine prepubertal boys [10.3 years (SD 0.1)] and in 10 adults [24.9 years (SD 0.8)] at rest and during moderate exercise ( CO2 = 20 ml·kg–1·min–1) using the CO2-rebreathing method. Three criteria were measured in all subjects to assess the ventilatory response to CO2: the CO2 sensitivity threshold (Th), which was defined as the value of end titalPCO2 (P ETCO2) where the ventilation increased above its steady-state level; the reactivity slope expressed per unit of body mass (SBM), which was the slope of the linear relation between minute ventilation ( E) andP ETCO2 above Th; and the slope of the relationship between the quotient of tidal volume (V T) and inspiration time (t I) andP ETCO2 (V T ·t I –1 ·P ETCO2 –1) values above Th. The E,V T, breathing frequency (f R), oxygen uptake ( O2), and CO2 production ( CO2) were also measured before the CO2-rebreathing test. The following results were obtained. First, children had greater ventilation per unit body weight than adults at rest (P<0.001) and during exercise (P<0.01). Second, at rest, onlyV T ·t I –1 ·P ETCO2 –1 was greater in children than in adults (P<0.001). Third, during exercise, children had a higher SBM (P < 0.02) andV T ·t I –1 ·P ETCO2 –1 (P<0.001) while Th was lower (P<0.02). Finally, no correlation was found between E/ CO2 and Th while a significant correlation existed between E/ CO2 and SBM (adults,r=0.79,P<0.01; children,r=0.73,P<0.05). We conclude that children have, mainly during exercise, a greater sensitivity of the respiratory centres than adult. This greater CO2 sensitivity could partly explain their higher ventilation during exercise, though greater CO2 production probably plays a role at rest.  相似文献   

14.
Summary The reduced early mortality and the increased life span of persons with spinal cord injury (SCI) and other chronically disabling conditions which result in loss of use of the legs places them at increased risk of coronary heart disease, diabetes, and hypertension. Exercise testing in this population is becoming more common, but there is a need for assessment of protocols in order to determine the best method to elicita maximal response in a reasonable time without endangering the patient. Three wheelchair treadmill protocols were compared in seven men with paraplegia aged 21–44 years (five SCI, two post-polio). Subjects repeated each protocol to estimate reliability. Protocol G consisted of increasing treadmill grade at a constant speed (4.8 km·h–1); in protocol S, the speed was increased at a constant grade (0%), and in protocol C, speed and grade were increased. Two-minute stages were used in all protocols. Peak oxygen uptake [ O2max; mean (SD): 23.6 (5.8) ml·kg–1·min–1; 1.66 (0.37) l·min–1], CO2 production [1.98 (0.46) l·min–1], ventilation volume [83.0 (25.6) l·min–1], respiratory exchange ratio [1.2 (0.12)], and heart rate [173 (18)] were determined. Over all trials none of the variables was significantly different among the three protocols, but all were highest in C and lowest in S. Reliability coefficients for absolute and relative O2max ranged from 0.76 and 0.81 in G to 0.95 and 0.98 in C (all P<0.05). These data suggest that an incremental treadmill test similar to the C protocol may be the optimal method to use when evaluating the exercise capacity of wheelchair users.  相似文献   

15.
The aim of this study was to investigate heart rate threshold (HRT) related exercise intensities by means of two endurance cycle ergometer tests using blood lactate concentration. [La], pulmonary ventilation ( E), oxygen uptake ( ), heart rate (HR) and electromyogram (EMG) activity of working muscle. Firstly, 16 healthy female students [age, 21.4 (SD 2.8) years; height, 167.1 (SD 5.1) cm; body mass 62.7 (SD 7.1) kg] performed an incremental exercise test (10 W each minute) on an electrically braked cycle ergometer until they felt exhausted. The HRT and lactate turn point (LTP) were assessed by means of computer-aided linear regression break point analysis from the relationship of HR or [La] to power output. No significant difference was found between HRT and LTP for all the variables measured. Secondly, two endurance tests (ET) of 20 min duration were performed by 7 subjects. The first (ET I) was performed at an exercise intensity which was about 10% lower than the power output at HRT [61.2 (SD 3.1) % maximal oxygen uptake ( max)], the second (ET II) at an exercise intensity about 10% higher than the power output at HRT [79.2 (SD 3.4) % max]. The parameters measured showed a clear steady state in ET I. All mean values were lower than values at HRT [power, 138.7 (SD 18.9) W; HR, 172.1 (SD 4.7) beats·min–1; , 2.2 (SD 0.3) l·min–1; E, 54.0 (SD 9.1) l·min–1; [La], 3.7 (SD 1.1) mmol·l–1; EMG, 81.1 (SD 24.0) V] except HR which was the same. No parameters showed a steady state (except EMG activity) in ET II. No subject was able to maintain the exercise for the whole 20 min in ET II [mean time to cessation of the exercise was 10.4 (SD 3.7) min]. At the end of ET II all variables measured were significantly higher (P < 0.05) than in ET I (except EMG activity) [HR, 184.3 (SD 5.2) and 172.1 (SD 8.7) beats·min1; E: 75.2 (SD 11.7) and 49.6 (SD 8.4) l·min–1; , 2.9 (SD 0.7) and 2.1 (SD 0.5) l·min–1; [La], 7.0 (SD 1.8) and 3.3 (SD 2.2) mmol·l–1; EMG, 86.3 (SD 28.7) and 75.9 (SD 21.5) V]. Although no exercise, at HRT exactly was performed, we assume that maximal steady state lay in between ET I and ET II.  相似文献   

16.
The aim of this study was to evaluate the validity of a velodrome field test consisting of repeated rides of 2,280 m, with an initial speed of 28 km·h–1 and increments of 1.5 km·h–1 interspersed with 1-min recovery periods until exhaustion. A group of 12 male competitive road cyclists performed maximal cycling tests under velodrome and laboratory conditions. Velodrome oxygen uptake ( O2) and power output were estimated using equations previously published. Physiological responses to the two tests were compared. Relationships between performance in the velodrome and physiological parameters measured in the laboratory were studied. Maximal power output, heart rate and O2 were similar in the velodrome and the laboratory [372 (SD 50) vs 365 (SD 36) W, 195 (SD 8) vs 196 (SD 9) beats·min–1 and 4.49 (SD 0.56) vs 4.49 (SD 0.46) l·min–1, respectively], while maximal velodrome blood lactate concentration was significantly higher [13.5 (SD 2.1) vs 11.8 (SD 3.1) mmol·l–1]. Velodrome heart rate was higher at submaximal exercise intensities representing 40%, 50% and 60% of maximal aerobic power, and velodrome blood lactate concentration was also higher at 60%, 70% and 80% of maximal aerobic power. The laboratory parameter that showed the highest correlation with the maximal cycling speed in the velodrome was maximal oxygen uptake ( O2max) expressed per unit of body mass (r = 0.93). In addition, the accuracy of different methods of estimation of the metabolic cost of cycling, rolling resistance, air resistance coefficients and O2max were compared. Significant differences were found. In conclusion, the present results indicated the validity of a velodrome test used to estimate maximal aerobic parameters of competitive road cyclists, as long as the estimation is made using established equations. When road cyclists are tested in the laboratory, physiological values should be expressed per unit of body surface area or body mass, to predict more accurately the cyclist's performance level under specific field conditions.  相似文献   

17.
Summary The present investigation examined the relationship between CO2 sensitivity [at rest (S R) and during exercise (S E)] and the ventilatory response to exercise in ten elderly (61–79 years) and ten younger (17–26 years) subjects. The gradient of the relationship between minute ventilation and CO2 production ( E/ CO2) of the elderly subjects was greater than that of the younger subjects [mean (SEM); 32.8 (1.6) vs 27.3 (0.4); P<0.01]. At rest, S R was lower for the elderly than for the younger group [10.77 (1.72) vs 16.95 (2.13) 1 · min–1 · kPa–1; 1.44 (0.23) vs 2.26 (0.28) 1 · min–1 · mmHg–1; P<0.05], but S E was not significantly different between the two groups [17.85 (2.49) vs 19.17 (1.62) l · min–1 · kPa–1; 2.38 (0.33) vs 2.56 (0.21) 1 · min–1 · mmHg–1]. There were significant correlations between both S R and S E, and E/ CO2 (P<0.05; P<0.001) for the younger group, bot none for the elderly. The absence of a correlation for the elderly supports the suggestion that E/ CO2 is not an appropriate index of the ventilatory response to exercise for elderly humans.  相似文献   

18.
Ten young (aged 23–30 years) and nine older (aged 54–59 years) healthy men with similar estimated limb muscle volumes performed, in random order, three different types of ergometer exercise tests (one-arm cranking, two-arm cranking, and two-leg cycling) up to the maximal level. Values for work load (WL), peak oxygen consumption , peak heart rate (HR), peak ventilation , respiratory gas exchange ratio (R), recovery blood lactate concentration [La], and rating of perceived exertion (RPE) were compared between the age-groups in the given exercise modes. No significant age-related differences in WL, peak , peak HR, R, [La], or RPE were found in one-arm or two-arm cranking. During one-arm cranking the mean peak was 1.65 (SD 0.26)1 · min–1 among the young men and 1.63 (SD 0.10)1 · min–1 among the older men. Corresponding mean peak during two-arm cranking was 2.19 (SD 0.32)1 · min-1 and 2.09 (SD 0.18)1 · min–1, respectively. During one-arm cranking peak was higher (P < 0.05) among the older men compared to the young men. During two-leg cycling the young men showed higher values in WL (P < 0.001), peak (P < 0.001), and peak HR (P < 0.001). The mean peak was 3.54 (SD 0.24)1 · min–1 among the young men and 3.02 (SD 0.20)1 · min–1 among the older men. Corresponding mean peak HR was 182 (SD 5) beats · min–1 and 170 (SD 8) beats · min–1, respectively. During two-leg cycling, peak , R, [La], and RPE did not differ between the two age-groups. In summary, the older men with similar sizes of estimated arm and leg muscle volumes as the young men had a reduced physical work capacity in two-leg cycling. In one-arm or two-arm cranking, no significant difference in work capacity was found between the age-groups. These results indicate, that in healthy men, age, at least up to the 6th decade of life, is not necessarily associated with a decline in physical work capacity in exercises using relatively small muscle groups, in which the limiting factors are more peripheral than central.  相似文献   

19.
Summary Six male subjects with spinal cord injuries (SCI) participated in this investigation to compare peak values of oxygen uptake ( O2). heart rate (f c), ventilation ( E), respiratory exchange ratio (R) and power output (W) obtained using a discontinuous (DP) and a continuous jump max protocol (JMP) in a maximal wheelchair exercise test on a treadmill. The W increments were achieved by imposing an extra mass upon the wheelchair through a pulley system. The DP involved exercise periods of 3 min separated by 2-min intervals at relative rest. Increments in W consisted of 0.10 or 0.15 W · kg–1 total mass. During the rest intervals no mass was imposed on the wheelchair. The JMP involved an increase in W each minute. Increments and velocity in the JMP were the same as during the exercise periods for DP. Mean peak values for W [99.5 (SD 13.6) W], O2 [2.13 (SD 0.27) l · min–1, standard temperature and pressure, dry], R [1.25 (SD 0.16)] and E [82.8 (SD 11.2) l · min–1, body temperature and pressure, saturated] in DP were not different from values observed for W [103.5 (SD 13.1)], O2 [2.18 (SD 0.31) l · min–1], R [1.17 (SD 0.16)] and E [78.9 (SD 16.0) l · min–1] in the JMP. The only significant difference was observed for f c: 198 (SD 11) beats · min–1 in DP and 187 (SD 11) beats · min–1 in JMP. The higher values for f c elicited using DP have been discussed. It was concluded that both a DP and a JMP seem to be equally appropriate in determining peak O2 and peak W in SCI persons. In terms of time saving, JMP would seem to be a more favourable protocol.  相似文献   

20.
Summary Eight male subjects were studied during incremental bicycle exercise. From the forearm, arterial and venous blood lactate concentrations were measured every minute until exhaustion. There was a statistically significant difference (P<0.01) in the points at which the arterial and venous blood lactates began to increase above the resting level. The onset of increase of lactate in arterial blood occurred at 1.00±0.07 l·min–1 in O2 (mean ± SEM), which corresponded to 37.0±1.5% of O2max. Its venous counterpart occurred at 1.50±0.17 l·min–1 in O2, 55.0±3.8% of O2max. The arterio-venous lactate difference became greater after the onset of increase in arterial blood lactate (anaerobic threshold), presumably as consequence of lactate utilization by the forearm muscles.It was concluded that the onset of blood lactate increase differs according to the sites of blood sampling, which should be considered for the interpretation of anaerobic threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号