首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Adaptive regulation of gene expression in response to environmental changes is a general property of bacterial pathogens. By screening an ordered transposon mutagenesis library of Mycobacterium tuberculosis, we have identified three mutants containing a transposon in the coding sequence or in the 5' regions of genes coding for two-component signal transduction systems (trcS, regX3, prrA). The intracellular multiplication capacity of the three mutants was investigated in mouse bone marrow-derived macrophages. Only the prrA mutant showed a defect in intracellular growth during the early phase of infection, and this defect was fully reverted when the mutant was complemented with prrA-prrB wild-type copies. The mutant phenotype was transient, as after 1 week this strain recovered full growth capacity to reach levels similar to that of the wild type at day 9. Moreover, a transient induction of prrA promoter activity was observed during the initial phase of macrophage infection, as shown by a prrA promoter-gfp fusion in M. bovis BCG infecting the mouse macrophages. The concordant transience of the prrA mutant phenotype and prrA promoter activity indicates that the PrrA-PrrB two-component system is involved in the environmental adaptation of M. tuberculosis, specifically in an early phase of the intracellular growth, and that, similar to other facultative intracellular parasites, M. tuberculosis can use genes temporarily required at different stages in the course of macrophage infection.  相似文献   

2.
Legionella pneumophila replicates within alveolar macrophages, and possibly, alveolar epithelial cells and also within protozoa in the aquatic environment. Here we characterize an L. pneumophila mutant defective in the HtrA/DegP stress-induced protease/chaperone homologue and show that HtrA is indispensable for intracellular replication within mammalian macrophages and alveolar epithelial cells and for intrapulmonary replication in A/J mice. Importantly, amino acid substitutions of two conserved residues in the catalytic domain of (H103mapstoR and S212mapstoA) and in-frame deletions of either or both of the two conserved PDZ domains of HtrA abolish its function. Interestingly, the htrA mutant exhibits a parental-type phenotype in intracellular replication within the protozoan host Acanthamoeba polyphaga. We used a promoterless lacZ fusion to the htrA promoter to probe the phagosomal microenvironment harboring L. pneumophila within macrophages and within A. polyphaga for the exposure to stress stimuli. The data show that expression through the htrA promoter is induced by 12,000- to 20,000-fold throughout the intracellular infection of macrophages but its induction is by 120- to 500-fold within protozoa compared to in vitro expression. Data derived from confocal laser scanning microscopy reveal that in contrast to the parental strain, phagosomes harboring the htrA mutant within U937 macrophages colocalize with the late endosomal-lysosomal marker LAMP-2, similar to killed L. pneumophila. Coinfection experiments examined by confocal laser scanning microscopy show that in communal phagosomes harboring both the parental strain and the htrA mutant, replication of the mutant is not rescued, while replication of a dotA mutant control, which is normally trafficked into a phagolysosome, is rescued by the parental strain. Our data show, for the first time, that the stress response by L. pneumophila (mediated, at least in part, by HtrA) is indispensable for intracellular replication within mammalian but not protozoan cells.  相似文献   

3.
Salmonella enterica serovar Typhimurium utilizes macrophages to disseminate from the intestine to deeper tissues within the body. While S. enterica serovar Typhimurium has been shown to kill its host macrophage, it can persist intracellularly beyond 18 h postinfection. To identify factors involved in late stages of infection, we screened a transposon library made in S. enterica serovar Typhimurium for the ability to persist in J774 macrophages at 24 h postinfection. Through this screen, we identified a gene, sciS, found to be homologous to icmF in Legionella pneumophila. icmF, which is required for intracellular multiplication, is conserved in several gram-negative pathogens, and its homolog appears to have been acquired horizontally in S. enterica serovar Typhimurium. We found that an sciS mutant displayed increased intracellular numbers in J774 macrophages when compared to the wild-type strain at 24 h postinfection. sciS was maximally transcribed at 27 h postinfection and is repressed by SsrB, an activator of genes required for promoting intracellular survival. Finally, we demonstrate that an sciS mutant is hypervirulent in mice when administered intragastrically. Taken together, these data indicate a role for SciS in controlling intracellular bacterial levels at later stages of infection and attenuating virulence in a murine host.  相似文献   

4.
Coxiella burnetii, the etiological agent of Q fever, is an obligate intracellular pathogen, whereas Legionella pneumophila, the causative agent of Legionnaires' disease, is a facultative intracellular pathogen. During infection of humans both of these pathogens multiply in alveolar macrophages inside a closed phagosome. L. pneumophila intracellular multiplication was shown to be dependent on the icm/dot system, which probably encodes a type IV-related translocation apparatus. Recently, genes homologous to all of the L. pneumophila icm/dot genes (besides icmR) were found in C. burnetii. To explore the similarities and differences between the icm/dot pathogenesis systems of these two pathogens, interspecies complementation analysis was performed. Nine C. burnetii icm homologous genes (icmT, icmS, icmQ, icmP, icmO, icmJ, icmB, icmW, and icmX) were cloned under regulation of the corresponding L. pneumophila icm genes and examined for the ability to complement L. pneumophila mutants with mutations in these genes. The C. burnetii icmS and icmW homologous genes were found to complement the corresponding L. pneumophila icm mutants to wild-type levels of intracellular growth in both HL-60-derived human macrophages and Acanthamoeba castellanii. In addition, the C. burnetii icmT homologous gene was found to completely complement an L. pneumophila insertion mutant for intracellular growth in HL-60-derived human macrophages, but it only partially complemented the same mutant for intracellular growth in A. castellanii. Moreover, as previously shown for L. pneumophila, the proteins encoded by the C. burnetii icmS and icmW homologous genes were found to interact with one another, and interspecies protein interaction was observed as well. Our results strongly indicate that the Icm/Dot pathogenesis systems of C. burnetii and L. pneumophila have common features.  相似文献   

5.
6.
7.
Alveolar epithelial cells, which constitute the majority of the alveolar surface, may represent a potential niche for intracellular replication ofLegionella pneumophilathat has been largely overlooked. We examined the phenotypes of a bank of 121 macrophage-defective mutants ofL. pneumophila(designated aspmiandmil) for their cytopathogenicity to and intracellular survival and replication within human alveolar epithelial cells. Our data showed that 91 of 121 mutants that were defective (modest–severe) in macrophages exhibited wild type-like phenotypes in human type I alveolar epithelial cells. In contrast, the other 30 mutants were defective in both macrophages and alveolar epithelial cells. Transmission electron microscopy of the intracellular infection by three mutants showed that the defect in intracellular replication in macrophages and epithelial cells was associated with a defect in recruitment of the RER around the phagosome. Differences in attachment to macrophages and epithelial cells were also exhibited by some of the mutants. Pulmonary infection studies of A/J mice showed that a mutant defective in macrophages but not in alveolar epithelial cells replicated like the wild type strain in the lungs of A/J mice. In contrast, a mutant defective in both macrophages and alveolar epithelial cells failed to replicate and was killed. We conclude that certain distinct genetic loci ofL. pneumophilaare uniquely required for intracellular survival and replication within phagocytic but not epithelial cells, which may be important in vivo.  相似文献   

8.
Previously, we obtained a Legionella pneumophila mutant, NU208, that is hypersensitive to iron chelators when grown on standard Legionella media. Here, we demonstrate that NU208 is also impaired for growth in media that simply lack their iron supplement. The mutant was not, however, impaired for the production of legiobactin, the only known L. pneumophila siderophore. Importantly, NU208 was also highly defective for intracellular growth in human U937 cell macrophages and Hartmannella and Acanthamoeba amoebae. The growth defect within macrophages was exacerbated by treatment of the host cells with an iron chelator. Sequence analysis demonstrated that the transposon disruption in NU208 lies within an open reading frame that is highly similar to the cytochrome c maturation gene, ccmC. CcmC is generally recognized for its role in the heme export step of cytochrome biogenesis. Indeed, NU208 lacked cytochrome c. Phenotypic analysis of two additional, independently derived ccmC mutants confirmed that the growth defect in low-iron medium and impaired infectivity were associated with the transposon insertion and not an entirely spontaneous second-site mutation. trans-complementation analysis of NU208 confirmed that L. pneumophila ccmC is required for cytochrome c production, growth under low-iron growth conditions, and at least some forms of intracellular infection. Although ccm genes have recently been implicated in iron assimilation, our data indicate, for the first time, that a ccm gene can be required for bacterial growth in an intracellular niche. Complete sequence analysis of the ccm locus from strain 130b identified the genes ccmA-H. Interestingly, however, we also observed that a 1.8-kb insertion sequence element was positioned between ccmB and ccmC. Southern hybridizations indicated that the open reading frame within this element (ISLp 1) was present in multiple copies in some strains of L. pneumophila but was absent from others. These findings represent the first evidence for a transposable element in Legionella and the first identification of an L. pneumophila strain-specific gene.  相似文献   

9.
The ability of Legionella pneumophila to cause pneumonia is dependent on intracellular replication within alveolar macrophages. The Icm/Dot secretion apparatus is essential for the ability of L. pneumophila to evade endocytic fusion, to remodel the phagosome by the endoplasmic reticulum (ER), and to replicate intracellularly. Protozoan and macrophage infectivity (pmi) mutants of L. pneumophila, which include 11 dot/icm mutants, exhibit defects in intracellular growth and replication within both protozoa and macrophages. In this study we characterized one of the pmi loci, pmiA. In contrast to the parental strain, the pmiA mutant is defective in cytopathogenicity for protozoa and macrophages. This is a novel mutant that exhibits a partial defect in survival within U937 human macrophage-like cells but exhibits a severe growth defect within Acanthamoeba polyphaga, which results in elimination from this host. The intracellular defects of this mutant are complemented by the wild-type pmiA gene on a plasmid. In contrast to phagosomes harboring the wild-type strain, which exclude endosomal-lysosomal markers, the pmiA mutant-containing phagosomes acquire the late endosomal-lysosomal markers LAMP-1 and LAMP-2. In contrast to the parental strain-containing phagosomes that are remodeled by the ER, there was a decrease in the number of ER-remodeled phagosomes harboring the pmiA mutant. Among several Legionella species examined, the pmiA gene is specific for L. pneumophila. The predicted amino acid sequence of the PmiA protein suggests that it is a transmembrane protein with three membrane-spanning regions. PmiA is similar to several hypothetical proteins produced by bacteria with a type IV secretion apparatus. Importantly, the defect in pmiA abolishes the pore-forming activity, which has been attributed to the Icm/Dot type IV secretion system. However, the mutant is sensitive to NaCl, and this sensitivity is abrogated in the icm/dot mutants. These results suggest that PmiA is a novel virulence factor that is involved in intracellular survival and replication of L. pneumophila in macrophages and protozoan cells.  相似文献   

10.
To examine the role of the PmrA/PmrB two-component system (TCS) of Legionella pneumophila in global gene regulation and in intracellular infection, we constructed pmrA and pmrB isogenic mutants by allelic exchange. Genome-wide microarray gene expression analyses of the pmrA and pmrB mutants at both the exponential and the postexponential phases have shown that the PmrA/PmrB TCS has a global effect on the expression of 279 genes classified into nine groups of genes encoding eukaryotic-like proteins, Dot/Icm apparatus and secreted effectors, type II-secreted proteins, regulators of the postexponential phase, stress response genes, flagellar biosynthesis genes, metabolic genes, and genes of unknown function. Forty-one genes were differentially regulated in the pmrA or pmrB mutant, suggesting a possible cross talk with other TCSs. The pmrB mutant is more sensitive to low pH than the pmrA mutant and the wild-type strain, suggesting that acidity may trigger this TCS. The pmrB mutant exhibits a significant defect in intracellular proliferation within human macrophages, Acanthamoeba polyphaga, and the ciliate Tetrahymena pyriformis. In contrast, the pmrA mutant is defective only in the ciliate. Despite the intracellular growth defect within human macrophages, phagosomes harboring the pmrB mutant exclude late endosomal and lysosomal markers and are remodeled by the rough endoplasmic reticulum. Similar to the dot/icm mutants, the intracellular growth defect of the pmrB mutant is totally rescued in cis within communal phagosomes harboring the wild-type strain. We conclude that the PmrA/PmrB TCS has a global effect on gene expression and is required for the intracellular proliferation of L. pneumophila within human macrophages and protozoa. Differences in gene regulation and intracellular growth phenotypes between the pmrA and pmrB mutant suggests a cross talk with other TCSs.  相似文献   

11.
Salmonella enterica serovar Typhimurium strain 798 is a clinical isolate from a pig and is known to be able to cause persistent, asymptomatic infections. This strain also is known to exist in two phenotypes (adhesive and nonadhesive to enterocytes) and can switch between the two phenotypes at a rate consistent with phase variation. Cells in the adhesive phenotype are more readily phagocytosed by leukocytes than nonadhesive cells. Once in a leukocyte, adhesive-phase cells survive while nonadhesive-phase cells die. In the present study, nonadhesive mutants were obtained with the transposon TnphoA. A nonadhesive mutant was selected for study and was shown by electron microscopy not to produce fimbriae. The gene encoding the adhesin was cloned and sequenced. Based on its sequence, the adhesin was shown to be FimA, the major subunit of type 1 fimbriae. The nonadhesive mutant was attenuated in its ability to colonize both mouse and pig intestines, but remained capable of systemic spread in mice. The nonadhesive mutant was phagocytosed to the same extent as parental cells in the adhesive phase and then survived intracellularly. These results demonstrated that type 1 fimbriae were important for attachment to enterocytes and promoted intestinal colonization. However, they were not important in promoting phagocytosis or intracellular survival.  相似文献   

12.
We have recently shown that many mutants of Legionella pneumophila exhibit similar defective phenotypes within both U937 human-derived macrophages and the protozoan host Acanthamoeba (L.-Y. Gao, O. S. Harb, and Y. Abu Kwaik, Infect. Immun. 65:4738–4746, 1997). These observations have suggested that many of the mechanisms utilized by L. pneumophila to parasitize mammalian and protozoan cells are similar, but our data have not excluded the possibility that there are unique mechanisms utilized by L. pneumophila to survive and replicate within macrophages but not protozoa. To examine this possibility, we screened a bank of 5,280 miniTn10::kan transposon insertion mutants of L. pneumophila for potential mutants that exhibited defective phenotypes of cytopathogenicity and intracellular replication within macrophage-like U937 cells but not within Acanthamoeba polyphaga. We identified 32 mutants with various degrees of defects in cytopathogenicity, intracellular survival, and replication within human macrophages, and most of the mutants exhibited wild-type phenotypes within protozoa. Six of the mutants exhibited mild defects in protozoa. The defective loci were designated mil (for macrophage-specific infectivity loci). Based on their intracellular growth defects within macrophages, the mil mutants were grouped into five phenotypic groups. Groups I to III included the mutants that were severely defective in macrophages, while members of the other two groups exhibited a modestly defective phenotype within macrophages. The growth kinetics of many mutants belonging to groups I to III were also examined, and these were shown to have a similar defective phenotype in peripheral blood monocytes and a wild-type phenotype within another protozoan host, Hartmannella vermiformis. Transmission electron microscopy of A. polyphaga infected by three of the mil mutants belonging to groups I and II showed that they were similar to the parent strain in their capacity to recruit the rough endoplasmic reticulum (RER) around the phagosome. In contrast, infection of macrophages showed that the three mutants failed to recruit the RER around the phagosome during early stages of the infection. None of the mil mutants was resistant to NaCl, and the dot or icm NaClr mutants are severely defective within mammalian and protozoan cells. Our data indicated that in addition to differences in mechanisms of uptake of L. pneumophila by macrophages and protozoa, there were also genetic loci required for L. pneumophila to parasitize mammalian but not protozoan cells. We hypothesize that L. pneumophila has evolved as a protozoan parasite in the environment but has acquired loci specific for intracellular replication within macrophages. Alternatively, ecological coevolution with protozoa has allowed L. pneumophila to possess multiple redundant mechanisms to parasitize protozoa and that some of these mechanisms do not function within macrophages.  相似文献   

13.
Legionella pneumophila does not induce apoptosis in the protozoan host, but induces pore formation-mediated cytolysis after termination of intracellular replication (L.-Y. Gao and Y. Abu Kwaik, Environ. Microbiol. 2:79-90, 2000). In contrast to this single mode of killing of protozoa, we have recently proposed a biphasic model by which L. pneumophila kills macrophages, in which the first phase is manifested through the induction of apoptosis during early stages of the infection, followed by an independent and temporal induction of necrosis during late stages of intracellular replication. Here we show that, similar to the protozoan host, the induction of necrosis and cytolysis of macrophages by L. pneumophila is mediated by the pore-forming toxin or activity. This activity is temporally and maximally expressed only upon termination of bacterial replication and correlates with cytolysis of macrophages and alveolar epithelial cells in vitro. We have identified five L. pneumophila mutants defective in the pore-forming activity. The phagosomes harboring the mutants do not colocalize with the late endosomal or lysosomal marker Lamp-1, and the mutants replicate intracellularly similar to the parental strain. Interestingly, despite their prolific intracellular replication, the mutants are defective in cytotoxicity and are "trapped" within and fail to lyse and egress from macrophages and alveolar epithelial cells upon termination of intracellular replication. However, the mutants are subsequently released from the host cell, most likely due to apoptotic death of the host cell. Data derived from cytotoxicity assays, confocal laser scanning microscopy, and electron microscopy confirm the defect in the mutants to induce necrosis of macrophages and the failure to egress from the host cell. Importantly, the mutants are completely defective in acute lethality (24 to 48 h) to intratracheally inoculated A/J mice. We conclude that the pore-forming activity of L. pneumophila is not required for phagosomal trafficking or for intracellular replication. This activity is expressed upon termination of bacterial replication and is essential to induce cytolysis of infected macrophages to allow egress of intracellular bacteria. In addition, this activity plays a major role in pulmonary immunopathology in vivo.  相似文献   

14.
Pseudomonas aeruginosa causes severe respiratory tract infections in patients with cystic fibrosis (CF). We have been examining nonopsonic phagocytosis of P. aeruginosa by macrophages. To study the P. aeruginosa-macrophage interaction at the molecular level, we have constructed a transposon Tn5G bank in a clinical isolate of P. aeruginosa (strain 4020) and identified mutants resistant to nonopsonic phagocytosis. Phagocytosis-resistant mutants were enriched by passaging the transposon bank over 18 macrophage monolayers. Of 900 individual mutants isolated from this enriched pool in a nonopsonic phagocytosis assay, we identified 85 putative mutants that were resistant to phagocytosis. In this study, we have characterized one of these transposon mutants, P. aeruginosa 4020 H27A, which was poorly ingested. H27A possessed a Tn5G insertion in a gene encoding a protein with homology to the MotA proteins of several species of bacteria. We have called this gene rpmA for required for phagocytosis by macrophages. RpmA is one of two MotA paralogs in P. aeruginosa. This rpmA::Tn5G mutant was motile both on agar plates and in visual examination of wet mounts. The phagocytosis defect was partially complemented by providing the rpmA gene in trans and fully complemented when both rpmA and rpmB were provided. A rpmA null mutant was ingested by macrophages similar to the H27A transposon mutant. These data suggest that the rpmA and rpmB gene products are required for the efficient ingestion of P. aeruginosa by macrophages.  相似文献   

15.
Legionella pneumophila, the causative organism of Legionnaires' disease, is a fresh-water bacterium and intracellular parasite of amoebae. This study examined the effects of incubation in water and amoeba encystment on L. pneumophila strain JR32 and null mutants in dot/icm genes encoding a type IVB secretion system required for entry, delayed acidification of L. pneumophila-containing phagosomes, and intracellular multiplication when stationary-phase bacteria infect amoebae and macrophages. Following incubation of stationary-phase cultures in water, mutants in dotA and dotB, essential for function of the type IVB secretion system, exhibited entry and delay of phagosome acidification comparable to that of strain JR32. Following encystment in Acanthamoeba castellanii and reversion of cysts to amoeba trophozoites, dotA and dotB mutants exhibited intracellular multiplication in amoebae. The L. pneumophila Lvh locus, encoding a type IVA secretion system homologous to that in Agrobacterium tumefaciens, was required for restoration of entry and intracellular multiplication in dot/icm mutants following incubation in water and amoeba encystment and was required for delay of phagosome acidification in strain JR32. These data support a model in which the Dot/Icm type IVB secretion system is conditionally rather than absolutely required for L. pneumophila virulence-related phenotypes. The data suggest that the Lvh type IVA secretion system, previously thought to be dispensable, is involved in virulence-related phenotypes under conditions mimicking the spread of Legionnaires' disease from environmental niches. Since environmental amoebae are implicated as reservoirs for an increasing number of environmental pathogens and for drug-resistant bacteria, the environmental mimics developed here may be useful in virulence studies of other pathogens.  相似文献   

16.
Pathogenic mycobacteria survive and replicate within host macrophages, but the molecular mechanisms involved in this necessary step in the pathogenesis of infection are not completely understood. Mycobacterium marinum has recently been used as a model for aspects of the pathogenesis of tuberculosis because of its close genetic relationship to Mycobacterium tuberculosis and because of similarities in the pathology and course of infection caused by this organism in its natural hosts, fish and frogs, with tuberculosis in humans. In order to advance the utility of the M. marinum model, we have developed efficient transposon mutagenesis of the organism by using a Drosophila melanogaster mariner-based transposon. To determine the efficiency of transposition, we have analyzed pigmentation mutants from the transposon mutant library. In addition to insertions in four known genes in the pathway of pigment biosynthesis, two insertions in novel genes were identified in our mutant library. One of these is in a putative inhibitor of the carotenoid biosynthesis pathway. The second unexpected insertion is in an intergenic region between two genes homologous to Rv2603c and Rv2604c of M. tuberculosis. In addition to a pigmentation defect, this mutant showed increased susceptibility to singlet oxygen and grew poorly in murine macrophages. Complementation with M. tuberculosis genomic DNA encompassing Rv2603c to Rv2606c corrected the pigmentation and growth defects of the mutant. These data demonstrate the utility of mariner-based transposon mutagenesis of M. marinum and that M. marinum can be used to study the function of M. tuberculosis genes involved in intracellular survival and replication.  相似文献   

17.
Legionella pneumophila, the causative agent of legionnaires' disease, is a broad-host-range facultative intracellular pathogen. Thus far, 24 genes (icm/dot genes) required for L. pneumophila intracellular growth, have been discovered. In this study, a deletion substitution was constructed in the L. pneumophila homolog of the gacA response regulator (letA) and its involvement in L. pneumophila pathogenicity and icm/dot gene expression was characterized. The letA mutant constructed had no intracellular growth defect when analyzed in HL-60 derived human macrophages, but it was found to be severely attenuated for intracellular growth in the protozoan host Acanthamoeba castellanii. The growth defect in amoebae was fully complemented by introducing the L. pneumophila letA gene on a plasmid. In addition, the LetA regulator was found to be involved in the expression of three icm genes (icmT, icmP and icmR). The level of expression of the icmT::lacZ and icmR::lacZ fusions was found to be higher, while the level of expression of the icmP::lacZ fusion was found to be lower when analyzed in the letA mutant strain, in comparison to the wild-type strain. We concluded that LetA has a moderate effect on icm/dot gene expression, but it probably plays a major role in the expression of L. pneumophila genes required for intracellular growth in protozoan hosts. A similar host specific phenotype was previously described for the RpoS sigma factor and the type II general secretion system of L. pneumophila.  相似文献   

18.
lvgA,a novel Legionella pneumophila virulence factor   总被引:5,自引:0,他引:5       下载免费PDF全文
Several novel Legionella pneumophila virulence genes were previously discovered by use of signature-tagged mutagenesis (P. H. Edelstein, M. A. Edelstein, F. Higa, and S. Falkow, Proc. Natl. Acad. Sci. 96:8190-8195, 1999). One of these mutants appeared to be defective in multiplication in guinea pig lungs and spleens, yet it multiplies normally in guinea pig alveolar macrophages. Here we report further characterization of the mutated gene and its protein and the virulence role of the gene. The complete sequence of the gene, now called lvgA, is 627 bp long, and its protein product is approximately 27 kDa in size. lvgA was present in all 50 strains of L. pneumophila tested. No significant nucleic acid or protein homology was found in the GenBank database for the gene, nor were any distinctive motifs discovered in a search of other databases. The expression of both DotA and IcmX in the lvgA mutant was normal. Subcellular fractionation studies localized LvgA to the outer membrane fraction, and protease digestion studies suggested that at least some of the protein is surface expressed. No change in bacterial lipopolysaccharide composition or reactivity to serogroup-specific antisera was detected in the mutant. Growth competition studies with alveolar macrophages showed that the mutant was outcompeted by its parent 3-fold in 24 h and 24-fold in 48 h, in contrast to what was observed with the null phenotype in parallel testing with alveolar macrophages or with the A549 alveolar epithelial cell line. This macrophage defect of the mutant bacterium was due to slower growth, as the mutant invaded alveolar macrophages normally. Electron microscopy showed that the mutant bacterium resided in a ribosome-studded phagosome in alveolar macrophages, with no distinction from its parent. The lvgA mutant was outcompeted by its parent about sixfold in guinea pig lungs and spleens; prolonged observation of infected animals showed no late-onset virulence of the mutant. Transcomplementation of the mutant restored the parental phenotype in guinea pigs. The lvgA mutant was twofold more susceptible to killing by human beta-defensin 2 but not to killing by other cationic peptides, serum complement, or polymorphonuclear neutrophils. lvgA is a novel virulence gene that is responsible for pleiotropic functions involving both extracellular and intracellular bacterial resistance mechanisms.  相似文献   

19.
Francisella tularensis is a facultative intracellular bacterial pathogen and the causative agent of tularemia. After infection of macrophages, the organism escapes from its phagosome and replicates to high density in the cytosol, but the bacterial factors required for these aspects of virulence are incompletely defined. Here, we describe the isolation and characterization of Francisella tularensis subsp. tularensis strain Schu S4 mutants that lack functional iglI, iglJ, or pdpC, three genes of the Francisella pathogenicity island. Our data demonstrate that these mutants were defective for replication in primary human monocyte-derived macrophages and murine J774 cells yet exhibited two distinct phenotypes. The iglI and iglJ mutants were similar to one another, exhibited profound defects in phagosome escape and intracellular growth, and appeared to be trapped in cathepsin D-positive phagolysosomes. Conversely, the pdpC mutant avoided trafficking to lysosomes, phagosome escape was diminished but not ablated, and these organisms replicated in a small subset of infected macrophages. The phenotype of each mutant strain was reversed by trans complementation. In vivo virulence was assessed by intranasal infection of BALB/c mice. The mutants appeared avirulent, as all mice survived infection with 108 CFU iglJ- or pdpC-deficient bacteria. Nevertheless, the pdpC mutant disseminated to the liver and spleen before being eliminated, whereas the iglJ mutant did not. Taken together, our data demonstrate that the pathogenicity island genes tested are essential for F. tularensis Schu S4 virulence and further suggest that pdpC may play a unique role in this process, as indicated by its distinct intermediate phenotype.  相似文献   

20.
The streptococcal transposon Tn916 (Tcr) was used to isolate mutants of Streptococcus mutans altered in glycogen accumulation to investigate whether glycogenlike intracellular polysaccharides (IPS) play an important role in S. mutans-induced caries formation. S. mutans UA130 (serotype c) was transformed with the Escherichia coli plasmid pAM620 (Tn916), and the resultant transposon libraries were screened for glycogen content by iodine staining. A transposon mutant, designated SMS201, demonstrated a glycogen-deficient phenotype on glucose-enriched medium. Quantitative electron microscopy confirmed that IPS concentrations were significantly reduced in SMS201 relative to the wild-type progenitor strain, UA130. Importantly, reversion to wild type correlated at all times with loss of the transposon. Transposon excisants were used to facilitate cloning of the streptococcal gene(s) involved in glycogen biosynthesis and storage. A 2.1-kb chromosomal determinant (glgR) which encodes a putative regulator of S. mutans glycogen accumulation was isolated. A stable deletion mutation (delta glgR) was subsequently generated in E. coli and introduced into S. mutans by allelic exchange. The resultant glycogen synthesis-deficient mutant, SMS203, demonstrated a significantly reduced cariogenic potential (P less than 0.01) on the buccal, sulcal, and proximal surfaces of teeth in germfree rats, relative to animals challenged with the glycogen synthesis-proficient progenitor strain, UA130. These observations confirm previous reports (J. M. Tanzer, M. L. Freedman, F. N. Woodiel, R. L. Eifert, and L. A. Rinehimer, p. 597-616, in H. M. Stiles, W. J. Loesche, and T. L. O'Brien, ed., Proceedings in Microbiology. Aspects of Dental Caries. Special Supplement to Microbiology Abstracts, vol. 3, 1976) which implicate IPS as significant contributors to the S. mutans cariogenic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号