首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Bipolar disorder (BD) and attention deficit/hyperactivity disorder (ADHD) may share common genetic risk factors as indicated by the high co-morbidity of BD and ADHD, their phenotypic overlap especially in pediatric populations, the high heritability of both disorders, and the co-occurrence in families. We therefore examined whether known polygenic BD risk alleles are associated with ADHD. We chose the eight best SNPs of the recent genome-wide association study (GWAS) of BD patients of German ancestry and the nine SNPs from international GWAS meeting a ‘genome-wide significance’ level of α = 5 × 10?8. A GWAS was performed in 495 ADHD children and 1,300 population-based controls using HumanHap550v3 and Human660 W-Quadv1 BeadArrays. We found no significant association of childhood ADHD with single BD risk alleles surviving adjustment for multiple testing. Yet, risk alleles for BD and ADHD were directionally consistent at eight of nine loci with the strongest support for three SNPs in or near NCAN, BRE, and LMAN2L. The polygene analysis for the BP risk alleles at all 14 loci indicated a higher probability of being a BD risk allele carrier in the ADHD cases as compared to the controls. At a moderate power to detect association with ADHD, if true effects were close to estimates from GWAS for BD, our results suggest that the possible contribution of BD risk variants to childhood ADHD risk is considerably lower than for BD. Yet, our findings should encourage researchers to search for common genetic risk factors in BD and childhood ADHD in future studies.  相似文献   

4.
5.
We and others have previously reported linkage to schizophrenia on chromosome 10q25-q26 but, to date, a susceptibility gene in the region has not been identified. We examined data from 3606 single-nucleotide polymorphisms (SNPs) mapping to 10q25-q26 that had been typed in a genome-wide association study (GWAS) of schizophrenia (479 UK cases/2937 controls). SNPs with P<0.01 (n=40) were genotyped in an additional 163 UK cases and those markers that remained nominally significant at P<0.01 (n=22) were genotyped in replication samples from Ireland, Germany and Bulgaria consisting of a total of 1664 cases with schizophrenia and 3541 controls. Only one SNP, rs17101921, was nominally significant after meta-analyses across the replication samples and this was genotyped in an additional six samples from the United States/Australia, Germany, China, Japan, Israel and Sweden (n=5142 cases/6561 controls). Across all replication samples, the allele at rs17101921 that was associated in the GWAS showed evidence for association independent of the original data (OR 1.17 (95% CI 1.06-1.29), P=0.0009). The SNP maps 85 kb from the nearest gene encoding fibroblast growth factor receptor 2 (FGFR2) making this a potential susceptibility gene for schizophrenia.  相似文献   

6.
Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N=4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P=6.9 × 10−4). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD.  相似文献   

7.
Genome-wide association studies (GWAS) have identified a large number of gene variants associated with schizophrenia, but these variants explain only a small portion of the heritability. It is becoming increasingly clear that schizophrenia is influenced by many genes, most of which have effects too small to be identified using traditional GWAS statistical methods. By applying recently developed Empirical Bayes statistical approaches, we have demonstrated that functional genic elements show differential contribution to phenotypic variance, with some elements (regulatory regions and exons) showing strong enrichment for association with schizophrenia. Applying related methods, we also showed abundant genetic overlap (pleiotropy) between schizophrenia and other phenotypes, including bipolar disorder, cardiovascular disease risk factors, and multiple sclerosis. We estimated the number of gene variants with effects in schizophrenia and bipolar disorder to be approximately 1.2%. By applying our novel statistical framework, we dramatically improved gene discovery and detected a large number of new gene loci associated with schizophrenia that have not yet been identified with standard GWAS methods. Utilizing independent schizophrenia substudies, we showed that these new loci have high replication rates in de novo samples, indicating that they likely represent true schizophrenia risk genes. The new statistical tools provide a powerful approach for uncovering more of the missing heritability of schizophrenia and other complex disorders. In conclusion, the highly polygenic architecture of schizophrenia strongly suggests the utility of research approaches that recognize schizophrenia neuropathology as a complex dynamic system, with many small gene effects integrated in functional networks.Key words: GWAS, polygenicity, pleiotropy, empirical Bayes approach, molecular genetics  相似文献   

8.
Psychotic experiences are not uncommon in general population samples, but no studies have examined to what extent confirmed risk variants for schizophrenia are associated with such experiences. A total of 3483 children in a birth cohort study participated in semistructured interviews for psychotic experiences at ages 12 and 18. We examined whether (1) a composite measure of risk for schizophrenia conferred by common alleles (polygenic score) was associated with psychotic experiences, (2) variants with genome-wide evidence for association with schizophrenia were associated with psychotic experiences, and (3) we could identify genetic variants for psychotic experiences using a genome-wide association (GWA) approach. We found no evidence that a schizophrenia polygenic score, or variants showing genome-wide evidence of association with schizophrenia, were associated with adolescent psychotic experiences within the general population. In fact, individuals who had a higher number of risk alleles for genome-wide hits for schizophrenia showed a decreased risk of psychotic experiences. In the GWA study, no variants showed GWA for psychotic experiences, and there was no evidence that the strongest hits (P < 5 × 10−5) were enriched for variants associated with schizophrenia in large consortia. Although polygenic scores are weak tools for prediction of schizophrenia, they show strong evidence of association with this disorder. Our findings, however, lend little support to the hypothesis that psychotic experiences in population-based samples of adolescents share a comparable genetic architecture to schizophrenia, or that utilizing a broader and more common phenotype of psychotic experiences will be an efficient approach to increase understanding of the genetic etiology of schizophrenia.Key words: psychosis, schizophrenia, epidemiology, ALSPAC, GWAS, polygenic  相似文献   

9.
It has been suggested that altered neurogenesis may be involved in the etiology of schizophrenia,so genes impacting on neurogenesis could be potential candidates for schizophrenia.A member of the Musashi family,the human MSI2 gene plays a substantial role in stem-cell maintenance,asymmetric division,and differentiation during neurogenesis.Our previous genome-wide association study(GWAS)implied an association of MSI2 with schizophrenia in a Han Chinese population.To further explore this association,three single-nucleotide polymorphisms(SNPs),rs9892791,rs11657292,and rs1822381,were selected for a replication study involving 921 schizophrenia cases and 1244 controls.After rigorous Bonferroni correction,two of the SNPs(rs9892791 and rs11657292) displayed significant differences in allele and genotype distribution frequencies between the case and control groups.When our GWAS and replication samples were combined,the three MSI2 SNPs were all strongly associated with schizophrenia(rs9892791:allelic P = 1.07E-5;rs11657292:allelic P = 1.95E-12;rs1822381:allelic P = 1.44E-4).These results indicate that the human MSI2 gene might be a susceptibility gene forschizophrenia and encourage future research on the functional relationship between this gene and schizophrenia.  相似文献   

10.
11.
We have performed a genome-wide association study (GWAS) of schizophrenia in a Norwegian discovery sample of 201 cases and 305 controls (TOP study) with a focused replication analysis in a larger European sample of 2663 cases and 13,780 control subjects (SGENE-plus study). Firstly, the discovery sample was genotyped with Affymetrix Genome-Wide Human SNP Array 6.0 and 572,888 markers were tested for schizophrenia association. No SNPs in the discovery sample attained genome-wide significance (P < 8.7 × 10−8). Secondly, based on the GWAS data, we selected 1000 markers with the lowest P values in the discovery TOP sample, and tested these (or HapMap-based surrogates) for association in the replication sample. Sixteen loci were associated with schizophrenia (nominal P value < 0.05 and concurring OR) in the replication sample. As a next step, we performed a combined analysis of the findings from these two studies, and the strongest evidence for association with schizophrenia was provided for markers rs7045881 on 9p21, rs433598 on 16p12 and rs10761482 on 10q21. The markers are located in PLAA, ACSM1 and ANK3, respectively. PLAA has not previously been described as a susceptibility gene, but 9p21 is implied as a schizophrenia linkage region. ACSM1 has been identified as a susceptibility gene in a previous schizophrenia GWAS study. The association of ANK3 with schizophrenia is intriguing in light of recent associations of ANK3 with bipolar disorder, thereby supporting the hypothesis of an overlap in genetic susceptibility between these psychopathological entities.  相似文献   

12.
Schizophrenia is a highly heritable, severe psychiatric disorder affecting approximately 1% of the world population. A substantial portion of heritability is still unexplained and the pathophysiology of schizophrenia remains to be elucidated. To identify more schizophrenia susceptibility loci, we performed a genome-wide association study (GWAS) on 498 patients with schizophrenia and 2025 controls from the Han Chinese population, and a follow-up study on 1027 cases and 1005 controls. In the follow-up study, we included 384 single nucleotide polymorphisms (SNPs) which were selected from the top hits in our GWAS (130 SNPs) and from previously implicated loci for schizophrenia based on the SZGene database, NHGRI GWAS Catalog, copy number variation studies, GWAS meta-analysis results from the international Psychiatric Genomics Consortium (PGC) and candidate genes from plausible biological pathways (254 SNPs).Within the chromosomal region Xq28, SNP rs2269372 in RENBP achieved genome-wide significance with a combined P value of 3.98×10−8 (OR of allele A = 1.31). SNPs with suggestive P values were identified within 2 genes that have been previously implicated in schizophrenia, MECP2 (rs2734647, P combined = 8.78×10−7, OR = 1.28; rs2239464, P combined = 6.71×10−6, OR = 1.26) and ARHGAP4 (rs2269368, P combined = 4.74×10−7, OR = 1.25). In addition, the patient sample in our follow-up study showed a significantly greater burden for pre-defined risk alleles based on the SNPs selected than the controls. This indicates the existence of schizophrenia susceptibility loci among the SNPs we selected. This also further supports multigenic inheritance in schizophrenia. Our findings identified a new schizophrenia susceptibility locus on Xq28, which harbor the genes RENBP, MECP2, and ARHGAP4.Key words: schizophrenia, genome-wide association study, Han Chinese, MECP2, ARHGAP4, RENBP  相似文献   

13.
Genome-wide association studies (GWAS) of schizophrenia have strongly implicated a risk locus in close proximity to the gene for miR-137. While there are candidate single-nucleotide polymorphisms (SNPs) with functional implications for the microRNA’s expression encompassed by the common haplotype tagged by rs1625579, there are likely to be others, such as the variable number tandem repeat (VNTR) variant rs58335419, that have no proxy on the SNP genotyping platforms used in GWAS to date. Using whole-genome sequencing data from schizophrenia patients (n = 299) and healthy controls (n = 131), we observed that the MIR137 4-repeats VNTR (VNTR4) variant was enriched in a cognitive deficit subtype of schizophrenia and associated with altered brain morphology, including thicker left inferior temporal gyrus and deeper right postcentral sulcus. These findings suggest that the MIR137 VNTR4 may impact neuroanatomical development that may, in turn, influence the expression of more severe cognitive symptoms in patients with schizophrenia.  相似文献   

14.
15.
Objectives. Genome-wide association studies (GWAS) in complex phenotypes, including psychiatric disorders, have yielded many replicated findings, yet individual markers account for only a small fraction of the inherited differences in risk. We tested the performance of polygenic models in discriminating between cases and healthy controls and among cases with distinct psychiatric diagnoses. Methods. GWAS results in bipolar disorder (BD), major depressive disorder (MDD), schizophrenia (SZ), and Parkinson's disease (PD) were used to assign weights to individual alleles, based on odds ratios. These weights were used to calculate allele scores for individual cases and controls in independent samples, summing across many single nucleotide polymorphisms (SNPs). How well allele scores discriminated between cases and controls and between cases with different disorders was tested by logistic regression. Results. Large sets of SNPs were needed to achieve even modest discrimination between cases and controls. The most informative SNPs were overlapping in BD, SZ, and MDD, with correlated effect sizes. Little or no overlap was seen between allele scores for psychiatric disorders and those for PD. Conclusions. BD, SZ, and MDD all share a similar polygenic component, but the polygenic models tested lack discriminative accuracy and are unlikely to be useful for clinical diagnosis.  相似文献   

16.
The heritable component to attempted and completed suicide is partly related to psychiatric disorders and also partly independent of them. Although attempted suicide linkage regions have been identified on 2p11-12 and 6q25-26, there are likely many more such loci, the discovery of which will require a much higher resolution approach, such as the genome-wide association study (GWAS). With this in mind, we conducted an attempted suicide GWAS that compared the single-nucleotide polymorphism (SNP) genotypes of 1201 bipolar (BP) subjects with a history of suicide attempts to the genotypes of 1497 BP subjects without a history of suicide attempts. In all, 2507 SNPs with evidence for association at P<0.001 were identified. These associated SNPs were subsequently tested for association in a large and independent BP sample set. None of these SNPs were significantly associated in the replication sample after correcting for multiple testing, but the combined analysis of the two sample sets produced an association signal on 2p25 (rs300774) at the threshold of genome-wide significance (P=5.07 × 10(-8)). The associated SNPs on 2p25 fall in a large linkage disequilibrium block containing the ACP1 (acid phosphatase 1) gene, a gene whose expression is significantly elevated in BP subjects who have completed suicide. Furthermore, the ACP1 protein is a tyrosine phosphatase that influences Wnt signaling, a pathway regulated by lithium, making ACP1 a functional candidate for involvement in the phenotype. Larger GWAS sample sets will be required to confirm the signal on 2p25 and to identify additional genetic risk factors increasing susceptibility for attempted suicide.  相似文献   

17.
OBJECTIVE The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs). METHOD The family sample included 2,461 individuals from 631 pedigrees (581 in the primary European-ancestry analyses). Association was tested for single SNPs and genetic pathways. Polygenic scores based on family study results were used to predict case-control status in the Schizophrenia Psychiatric GWAS Consortium (PGC) data set, and consistency of direction of effect with the family study was determined for top SNPs in the PGC GWAS analysis. Within-family segregation was examined for schizophrenia-associated rare CNVs. RESULTS No genome-wide significant associations were observed for single SNPs or for pathways. PGC case and control subjects had significantly different genome-wide polygenic scores (computed by weighting their genotypes by log-odds ratios from the family study) (best p=10-17, explaining 0.4% of the variance). Family study and PGC analyses had consistent directions for 37 of the 58 independent best PGC SNPs (p=0.024). The overall frequency of CNVs in regions with reported associations with schizophrenia (chromosomes 1q21.1, 15q13.3, 16p11.2, and 22q11.2 and the neurexin-1 gene [NRXN1]) was similar to previous case-control studies. NRXN1 deletions and 16p11.2 duplications (both of which were transmitted from parents) and 22q11.2 deletions (de novo in four cases) did not segregate with schizophrenia in families. CONCLUSIONS Many common SNPs are likely to contribute to schizophrenia risk, with substantial overlap in genetic risk factors between multiply affected families and cases in large case-control studies. Our findings are consistent with a role for specific CNVs in disease pathogenesis, but the partial segregation of some CNVs with schizophrenia suggests that researchers should exercise caution in using them for predictive genetic testing until their effects in diverse populations have been fully studied.  相似文献   

18.
全基因组关联分析(genome-wide association study, GWAS)是一种在人类全基因组范围内寻找与疾病相关的序列变异的方法,它也是寻找精神疾病易感基因的一个有力工具。然而,疾病遗传力的来源在很大程度上仍未知,期待将来的研究能发现更多的疾病易感基因。对遗传变异生物学功能的了解能提高GWAS发现新易感基因的效能。表达数量性状遗传位点(expression quantitative trait loci, eQTLs)是指一些能调节基因表达水平的位点。eQTL作图法可揭示众多单核苷酸多态(single nucleotide polymorphisms, SNPs)的未知生物学功能。本综述主要回顾了脑组织中eQTL的研究现状,并对eQTL定位方法的局限性及相应的对策进行了讨论。此外,对在实际研究中经常被忽略的一些能导致假阳性和假阴性关联结果的问题(例如批次效应、协变量和多重测试)进行了探讨。最后,对eQTL研究在GWAS 分析中的应用进行了展望。  相似文献   

19.
Numerous linkage studies suggest that chromosome 5q may be one of the important cytogenetic regions containing risk loci for schizophrenia susceptibility. Recently, genetic variations (rs254664 and rs10046055) in the intron 1 and 5' flanking regions of the ENTH (also known as Epsin 4) gene, which is located in 5q 33.3, have been demonstrated to be significantly associated with schizophrenia. The present study investigates whether this finding could be replicated in a population of Han Chinese, consisting of 269 patients with schizophrenia and 236 normal controls, by analyzing 9 single nucleotide polymorphisms (SNPs) ranging from the 5' upstream region to intron 8 of the ENTH gene and covering 96 kb. The results showed that we failed to identify the associations of rs1186922 and rs10046055 with schizophrenia. Although another genetic variation (rs1186922) showed a weak association with schizophrenia (uncorrected p value for alleles = 0.038), the significance did not survive after Bonferroni correction. This study thus fails to support an association of genetic variations in the ENTH gene and schizophrenia.  相似文献   

20.
Background: Epidemiological studies have documented higher than expected comorbidity (or, in some cases, inverse comorbidity) between schizophrenia and several autoimmune disorders. It remains unknown whether this comorbidity reflects shared genetic susceptibility loci.

Aims: The present study aimed to investigate whether verified genome wide significant variants of autoimmune disorders confer risk of schizophrenia, which could suggest a common genetic basis.

Methods: Seven hundred and fourteen genome wide significant risk variants of 25 autoimmune disorders were extracted from the NHGRI GWAS catalogue and examined for association to schizophrenia in the Psychiatric Genomics Consortium schizophrenia GWAS samples (36,989 cases and 113,075 controls).

Results: Two independent loci at 4q24 and 6p21.32–33 originally identified from GWAS of autoimmune diseases were found genome wide associated with schizophrenia (1.7?×?10?8??p?≥?4.0?×?10?21). While these observations confirm the existence of shared genetic susceptibility loci between schizophrenia and autoimmune diseases, the findings did not show a significant enrichment.

Conclusion: The findings do not support a genetic overlap in common SNPs between autoimmune diseases and schizophrenia that in part could explain the observed comorbidity from epidemiological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号