首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specificity and mechanism of the histone methyltransferase Pr-Set7   总被引:8,自引:0,他引:8       下载免费PDF全文
Methylation of lysine residues of histones is an important epigenetic mark that correlates with functionally distinct regions of chromatin. We present here the crystal structure of a ternary complex of the enzyme Pr-Set7 (also known as Set8) that methylates Lys 20 of histone H4 (H4-K20). We show that the enzyme is exclusively a mono-methylase and is therefore responsible for a signaling role quite distinct from that established by other enzymes that target this histone residue. We provide evidence from NMR for the C-flanking domains of SET proteins becoming ordered upon addition of AdoMet cofactor and develop a model for the catalytic cycle of these enzymes. The crystal structure reveals the basis of the specificity of the enzyme for H4-K20 because a histidine residue within the substrate, close to the target lysine, is required for completion of the active site. We also show how a highly variable component of the SET domain is responsible for many of the enzymes' interactions with its target histone peptide and probably also how this part of the structure ensures that Pr-Set7 is nucleosome specific.  相似文献   

2.
Although the PR-Set7/Set8/KMT5a histone H4 Lys 20 monomethyltransferase (H4K20me1) plays an essential role in mammalian cell cycle progression, especially during G2/M, it remained unknown how PR-Set7 itself was regulated. In this study, we discovered the mechanisms that govern the dynamic regulation of PR-Set7 during mitosis, and that perturbation of these pathways results in defective mitotic progression. First, we found that PR-Set7 is phosphorylated at Ser 29 (S29) specifically by the cyclin-dependent kinase 1 (cdk1)/cyclinB complex, primarily from prophase through early anaphase, subsequent to global accumulation of H4K20me1. While S29 phosphorylation did not affect PR-Set7 methyltransferase activity, this event resulted in the removal of PR-Set7 from mitotic chromosomes. S29 phosphorylation also functions to stabilize PR-Set7 by directly inhibiting its interaction with the anaphase-promoting complex (APC), an E3 ubiquitin ligase. The dephosphorylation of S29 during late mitosis by the Cdc14 phosphatases was required for APCcdh1-mediated ubiquitination of PR-Set7 and subsequent proteolysis. This event is important for proper mitotic progression, as constitutive phosphorylation of PR-Set7 resulted in a substantial delay between metaphase and anaphase. Collectively, we elucidated the molecular mechanisms that control PR-Set7 protein levels during mitosis, and demonstrated that its orchestrated regulation is important for normal mitotic progression.  相似文献   

3.
4.
5.
Polycomb group protein Ezh2 is an essential epigenetic regulator of embryonic development in mice, but its role in the adult organism is unknown. High expression of Ezh2 in developing murine lymphocytes suggests Ezh2 involvement in lymphopoiesis. Using Cre-mediated conditional mutagenesis, we demonstrated a critical role for Ezh2 in early B cell development and rearrangement of the immunoglobulin heavy chain gene (Igh). We also revealed Ezh2 as a key regulator of histone H3 methylation in early B cell progenitors. Our data suggest Ezh2-dependent histone H3 methylation as a novel regulatory mechanism controlling Igh rearrangement during early murine B cell development.  相似文献   

6.
Gliotoxin, a metabolite of the fungus Aspergillus fumigatus, inhibited phagocytosis of particulate matter by rodent macrophages. In addition, adherence to plastic surfaces by peritoneal and alveolar rodent macrophages, human peripheral blood monocytes, mouse secondary fibroblasts and L929 cells was differentially inhibited by gliotoxin. Electron microscopy which confirmed the inhibition by gliotoxin of phagocytosis of carbon particles by rodent macrophages also revealed gliotoxin-induced morphological alterations. Gliotoxin selectively affected glucose metabolism and macromolecular synthesis of rodent-derived cells and inhibited the basal rate of H2O2 production by human polymorphonuclear neutrophils; bactericidal activity of resident peritoneal macrophages was also abrogated. These gliotoxin-induced changes in cell function and metabolism occurred at concentrations well below generalized toxic levels.  相似文献   

7.
Zhang  Junshi  Zhang  Ying  Xin  Shifeng  Wu  Min  Zhang  Yaling  Sun  Lihua 《Inflammation research》2020,69(5):523-532
Inflammation Research - Myocardial infarction (MI) is one of the primary causes leading to heart failure in coronary artery disease. However, the mechanisms of macrophage that dominate pathogenesis...  相似文献   

8.
9.
《Mucosal immunology》2015,8(5):1131-1143
The generation of regulatory T (Treg) cells is driven by Foxp3 and is responsible for dampening inflammation and reducing autoimmunity. In this study, the epigenetic regulation of inducible Treg (iTreg) cells was examined and an H3K4 histone methyltransferase, SMYD3 (SET and MYND Domain 3), which regulates the expression of Foxp3 by a TGFβ1/Smad3 (transforming growth factor-β1/Smad3)-dependent mechanism, was identified. Using chromatin immunoprecipitation assays, SMYD3 depletion led to a reduction in H3K4me3 in the promoter region and CNS1 (conserved noncoding DNA sequence) of the foxp3 locus. SMYD3 abrogation affected iTreg cell formation while allowing dysregulated interleukin-17 production. In a mouse model of respiratory syncytial virus (RSV) infection, a model in which iTreg cells have a critical role in regulating lung pathogenesis, SMYD3−/− mice demonstrated exacerbation of RSV-induced disease related to enhanced proinflammatory responses and worsened pathogenesis within the lung. Our data highlight a novel activation role for the TGFβ-inducible SMYD3 in regulating iTreg cell formation leading to increased severity of virus-related disease.  相似文献   

10.

Aim

Although calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 4 (TRPV4) channels are functionally expressed on macrophages, it is unclear if they work coordinately to mediate macrophage function. The present study investigates whether CaSR couples to TRPV4 channels and mediates macrophage polarization via Ca2+ signaling.

Methods

The role of CaSR/TRPV4/Ca2+ signaling was assessed in lipopolysaccharide (LPS)-treated peritoneal macrophages (PMs) from wild-type (WT) and TRPV4 knockout (TRPV4 KO) mice. The expression and function of CaSR and TRPV4 in PMs were analyzed by immunofluorescence and digital Ca2+ imaging. The correlation factors of M1 polarization, CCR7, IL-1β, and TNFα were detected using q-PCR, western blot, and ELISA.

Results

We found that PMs expressed CaSR and TRPV4, and CaSR activation-induced marked Ca2+ signaling predominately through extracellular Ca2+ entry, which was inhibited by selective pharmacological blockers of CaSR and TRPV4 channels. The CaSR activation-induced Ca2+ signaling was significantly attenuated in PMs from TRPV4 KO mice compared to those from WT mice. Moreover, the CaSR activation-induced Ca2+ entry via TRPV4 channels was inhibited by blocking phospholipases A2 (PLA2)/cytochromeP450 (CYP450) and phospholipase C (PLC)/Protein kinase C (PKC) pathways. Finally, CaSR activation promoted the expression and release of M1-associated cytokines IL-1β and TNFɑ, which were attenuated in PMs from TRPV4 KO mice.

Conclusion

We reveal a novel coupling of the CaSR and TRPV4 channels via PLA2/CYP450 and PLC/PKC pathways, promoting a Ca2+-dependent M1 macrophage polarization. Modulation of this coupling and downstream pathways may become a potential strategy for the prevention/treatment of immune-related disease.  相似文献   

11.
12.
Here, epigenetic regulation of centromeric chromatin in fission yeast (Schizosaccharomyces pombe) is reviewed, focussing on the role of histone modifications and the link to RNA interference (RNAi). Fission yeast centromeres are organized into two structurally and functionally distinct domains, both of which are required for centromere function. The central core domain anchors the kinetochore structure while the flanking heterochromatin domain is important for sister centromere cohesion. The chromatin structure of both domains is regulated epigenetically. In the central core domain, the histone H3 variant Cnp1(CENP-A) plays a key role. In the flanking heterochromatin domain, histones are kept underacetylated by the histone deacetylases (HDACs) Clr3, Clr6 and Sir2, and methylated by Clr4 methyltransferase (HMTase) to create a specific binding site for the Swi6 protein. Swi6 then directly mediates cohesin binding to the centromeric heterochromatin. Recently, a surprising link was made between heterochromatin formation and RNAi.  相似文献   

13.
Macrophages (MPh) and dendritic cells (DC) are members of the mononuclear phagocyte system. In chickens, markers to distinguish MPh from DC are lacking, but whether MPh and DC can be distinguished in humans and mice is under debate, despite the availability of numerous markers. Mucosal MPh and DC are strategically located to ingest foreign antigens, suggesting they can rapidly respond to invading pathogens.  相似文献   

14.
F Q Cunha  D W Moss  L M Leal  S Moncada    F Y Liew 《Immunology》1993,78(4):563-567
Murine peritoneal macrophages stimulated in vitro with killed Gram-positive bacteria Staphylococcus aureus or its membrane components in the presence of interferon-gamma (IFN-gamma) expressed high levels of nitric oxide (NO) synthase and produced large amounts of NO in a dose-dependent manner. This is not due to the contamination by Gram-negative endotoxin because the stimulatory activity was not affected by the addition of polymyxin B. The expression of the NO synthase and the synthesis of NO by macrophages stimulated with toxic shock syndrome toxin-1 (TSST), lipoteichoic acid (LTA) or killed whole S. aureus together with IFN-gamma was inhibited by the glucocorticoid, dexamethasone or by the specific inhibitor of NO synthesis, L-N-iminoethyl-ornithine (L-NIO). The exotoxins together with IFN-gamma also activated macrophages to kill the intracellular parasite Leishmania major. The leishmanicidal activity was completely inhibited by L-NIO.  相似文献   

15.
16.
The transition from the juvenile to the mature phase during vegetative development in plants is characterized by changes in leaf shape. We show that GENERAL TRANSCRIPTION FACTOR GROUP E6 (GTE6) regulates differences in leaf patterning between juvenile and mature leaves in Arabidopsis. GTE6 encodes a novel small bromodomain-containing protein unique to plants. Mutations in GTE6 disrupt the formation of elliptical leaf laminae in mature leaves, whereas overexpression of GTE6 resulted in elongated juvenile leaves. GTE6 positively regulates the expression of ASYMMETRIC LEAVES1 (AS1), which encodes a myb-domain protein that controls proximodistal patterning of leaves. Using chromatin immunoprecipitation (ChIP) assays, we show that GTE6 is associated with the promoter and the start of the transcribed region of AS1 and up-regulates expression of AS1 through acetylation of histones H3 and H4. Genetic studies demonstrated that AS1 is epistatic to GTE6, indicating that GTE6 regulates AS1 during leaf morphogenesis. Chromatin remodeling at AS1 is a key regulatory mechanism in leaf development, which ensures the continual production of mature leaves following juvenile-adult transition, thereby maintaining the identity of the mature vegetative phase.  相似文献   

17.
Histone deacetylases (HDACs) play fundamental roles in the epigenetic regulation of gene expression and contribute to the growth, differentiation, and apoptosis of cancer cells. Although HDACs are recognized to be closely related to cancer development and altered expression of certain HDACs is observed in tumor samples, the arcane characters of HDACs in tumorigenesis have not been fully illustrated. Herein, we report that HDAC7 is a crucial player in cancer cell proliferation. Knockdown of HDAC7 resulted in significant G1/S arrest in different cancer cell lines. Subsequent investigations indicated that HDAC7 silencing blocked cell cycle progression through suppressing c-Myc expression and increasing p21 and p27 protein levels. The ectopic expression of c-Myc in turn antagonized the cell cycle arrest and repressed the elevation of p21 and p27 in HDAC7 silencing setting. Of note, HDAC7 deficiency was further identified to induce cellular senescence program, which was also reversed by c-Myc re-expression. Further chromatin immunoprecipitation assays indicated that HDAC7 directly binds with c-Myc gene and HDAC7 silencing decreased c-Myc mRNA level via reducing histone H3/H4 acetylation and repressing the association of RNA polymerase II (RNAP II) with c-Myc gene. Taken together, our findings highlight for the first time an unrecognized link between HDAC7 and c-Myc and offer a novel mechanistic insight into the contribution of HDAC7 to tumor progression.  相似文献   

18.
Schmidt DR  Kao WJ 《Biomaterials》2007,28(3):371-382
Macrophages play a critical role in mediating the host response to biomaterials, perhaps most notably by guiding the host inflammatory response through the release of inflammatory molecules such as the cytokine interleukin-1 (IL-1). The extent of the macrophage response following interaction with the biomaterial surface contributes greatly to device efficacy, yet the molecular mechanisms of this interaction are still unclear. The extracellular matrix (ECM) protein fibronectin (FN) is recognized by macrophages and frequently used in biomaterial modification to elicit greater cellular adhesion and tissue integration. Macrophage interaction with FN and other ECM molecules on the biomaterial surface has been shown to induce a variety of inflammatory responses, thus both FN and IL-1 can be utilized as model molecules to better understand the mechanisms of material-mediated macrophage responses. This literature review presents a comprehensive survey of past and current research on the interrelated role of IL-1, FN, and FN-derivatives in determining biomaterial-modulated macrophage function.  相似文献   

19.
The macrophage in atherosclerosis: modulation of cell function by sterols.   总被引:1,自引:0,他引:1  
Lipid-laden macrophage foam cells are an early and persistent component of atherosclerotic lesions. As such they are likely to play a key role in disease progression, both as scavengers of lipid and as inflammatory mediators. The sterol content of macrophage foam cells is largely native cholesterol together with a small but significant proportion of oxidized cholesterol (oxysterols). Few in vitro investigations of the influence of sterol accumulation on macrophage function have used cells that contain physiologically or even pathologically representative amounts of cholesterol or, more particularly, oxysterols. However, recent studies, using macrophages with a sterol content much closer to that of authentic foam cells, show that the presence of oxysterols causes an impairment in macrophage cholesterol export, suggesting a key role for oxysterols in the maintenance of the foam cell phenotype. The implications of physiologically relevant levels of oxysterols on a wider range of macrophage function remain to be investigated.  相似文献   

20.
Quan S  Nelson RS  Deom CM 《Archives of virology》2008,153(8):1505-1516
The type strain of cowpea chlorotic mottle virus (CCMV-T) induces a local and systemic infection in California Blackeye cowpea (Vigna unguiculata (L.) Walp. subs. unguiculata cv. California Blackeye), but accumulates to low levels in inoculated leaves and fails to accumulate systemically in the cowpea plant introduction (PI) 186465. CCMV-R, a mutant strain derived from CCMV-T, accumulates to higher levels than CCMV-T in inoculated leaves and systemically infects PI 186465 plants. The phenotypic determinant of CCMV-R was previously mapped to viral RNA1, but the location of the determinant within RNA1 was not identified. Pseudorecombinants generated from genomic cDNA clones of CCMV-T and CCMV-R indicated that the phenotypic differences on PI 186465 were independent of replication. Through the use of chimeric RNA1 cDNA clones containing portions of CCMV-T and CCMV-R and site-directed mutagenesis, two nucleotides, 299 (amino acid residue 77) and 951 (amino acid residue 294), were identified as being independently critical for the local and systemic accumulation patterns of CCMV-R in PI 186465 plants. A second independently derived CCMV-R-like mutant, identified nucleotide 216 (amino acid residue 49) as being critical for induction of the CCMV-R infection phenotype. Amino acid residues 49, 77, and 294 are within the methytransferase domain of the CCMV 1a protein, suggesting that the methytransferase domain has a role in cell-to-cell and systemic accumulation of the virus that is independent of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号