首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cognitive dysfunction is one of the most typical characteristics in various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (advanced stage). Although several mechanisms like neuronal apoptosis and inflammatory responses have been recognized to be involved in the pathogenesis of cognitive dysfunction in these diseases, recent studies on neurodegeneration and cognitive dysfunction have demonstrated a significant impact of receptor modulation on cognitive changes. The pathological alterations in various receptors appear to contribute to cognitive impairment and/or deterioration with correlation to diversified mechanisms. This article recapitulates the present understandings and concepts underlying the modulation of different receptors in human beings and various experimental models of Alzheimer's disease and Parkinson's disease as well as a conceptual update on the underlying mechanisms. Specific roles of serotonin, adrenaline, acetylcholine, dopamine receptors, and N-methyl-D-aspartate receptors in Alzheimer's disease and Parkinson's disease will be interactively discussed. Complex mechanisms involved in their signaling pathways in the cognitive dysfunction associated with the neurodegenerative diseases will also be addressed. Substantial evidence has suggested that those receptors are crucial neuroregulators contributing to cognitive pathology and complicated correlations exist between those receptors and the expression of cognitive capacities. The pathological alterations in the receptors would, therefore, contribute to cognitive impairments and/or deterioration in Alzheimer's disease and Parkinson's disease. Future research may shed light on new clues for the treatment of cognitive dysfunction in neurodegenerative diseases by targeting specific alterations in these receptors and their signal transduction pathways in the frontal-striatal, fronto-striato-thalamic, and mesolimbic circuitries.  相似文献   

2.
Tissue transglutaminase (tTG) is a multifunctional enzyme that contributes to disease progression in mouse models of Huntington's disease (HD), an inherited neurodegenerative disease that shows an age-related onset. Moreover, administration of the transglutaminase inhibitor cystamine delays the onset of pathology in the R6/2 HD mouse model. However, the contribution of tTG inhibition towards the therapeutic effects of cystamine has not been determined, as this compound likely has multiple mechanisms of action in the R6/2 mouse. In this study, we found that administration of cystamine in drinking water delayed the age of onset for motor dysfunction and extended lifespan to a similar extent in R6/2 mice that had a normal genetic complement of tTG compared with R6/2 mice that did not express tTG. Since the magnitude of cystamine's therapeutic effects was not affected by the genetic deletion of tTG, these results suggest that the mechanism of action for cystamine in this HD mouse model involves targets other than tTG inhibition.  相似文献   

3.
Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders.  相似文献   

4.
5.
Huntington's disease (HD) is an incurable and fatal neurodegenerative disorder. Improvements in the objective measurement of HD will lead to more efficient clinical trials and earlier therapeutic intervention. We hypothesized that abnormalities seen in the R6/2 mouse, a greatly accelerated HD model, might highlight subtle phenotypes in other mouse models and human HD. In this paper, we identify common gene expression changes in skeletal muscle from R6/2 mice, Hdh(CAG(150)) homozygous knock-in mice and HD patients. This HD-triggered gene expression phenotype is consistent with the beginnings of a transition from fast-twitch to slow-twitch muscle fiber types. Metabolic adaptations similar to those induced by diabetes or fasting are also present but neither metabolic disorder can explain the full phenotype of HD muscle. The HD-induced gene expression changes reflect disease progression. This raises the possibility that muscle gene expression may be used as an objective biomarker to complement clinical HD-rating systems. Furthermore, an understanding of the molecular basis of muscle dysfunction in HD should provide insight into mechanisms involved in neuronal abnormalities and neurodegeneration.  相似文献   

6.
Huntington's disease (HD) is an autosomal dominant, late onset, neurodegenerative disease characterized by motor deficits and dementia that is caused by expansion of a CAG repeat in the HD gene. Clinical manifestations result from selective neuronal degeneration of predominantly GABAergic striatal medium-sized spiny neurons (MSNs). A growing number of studies demonstrate that personality, mood and cognitive disturbances are some of the earliest signs of HD and may reflect synaptic dysfunction prior to neuronal loss. Previous studies in striatal MSNs demonstrated early alterations in NMDA-type glutamate receptor currents in several HD mouse models, as well as evidence for presynaptic dysfunction prior to disease manifestations in the R6/2 HD fragment mouse model. We have compared corticostriatal synaptic function in full-length, human HD gene-carrying YAC transgenic mice expressing a non-pathogenic CAG repeat (YAC18; control) with three increasingly severe variants of pathogenic HD gene-expressing mice (YAC72 and two different lines of YAC128), at ages that precede any detectable disease phenotype. We report presynaptic dysfunction and a propensity towards synaptic depression in YAC72 and YAC128 compared to YAC18 mice, and, in the most severe model, we also observed altered AMPA receptor function. When normalized to evoked AMPAR currents, postsynaptic NMDAR currents are augmented in all three pathogenic HD YAC variants. These findings demonstrate multiple perturbations to corticostriatal synaptic function in HD mice, furthering our understanding of the early effects of the HD mutation that may contribute to cognitive dysfunction, mood disorders and later development of more serious dysfunction. Furthermore, this study provides a set of neurophysiological sequelae against which to test and compare other mouse models and potential therapies in HD.  相似文献   

7.
Huntington's disease (HD) is a neurodegenerative disorder in humans caused by an expansion of a CAG trinucleotide repeat that produces choreic movements, which are preceded by cognitive deficits. The HD transgenic rat (tgHD), which contains the human HD mutation with a 51 CAG repeat allele, exhibits motor deficits that begin when these rats are 12 months of age. However, there are no reports of cognitive dysfunction occurring prior to this. To assess whether cognitive dysfunction might precede motor deficits in tgHD rats, one group of 9-month-old male rats with homozygotic mutated genes and one group of wild-type (WT) rats underwent three testing phases in a unique Spatial Operant Reversal Test (SORT) paradigm, as well as assessment of spontaneous motor activity. After testing, morphological and histological examination of the brains were made. Results indicated that tgHD rats acquired the cued-response (Phase 1) portion of the SORT, but made significantly more errors during the reversal (Phase 2) and during the pseudorandomized reversals (Phase 3) portion of the study, when compared to WT rats. Analysis of the data using mathematical principles of reinforcement revealed no memory, motor, or motivational deficits. These results indicate that early cognitive dysfunction, as measured by the SORT, occur prior to motor deficits, gross anatomical changes, or cell loss in the tgHD rat with 51 CAG repeats, and suggest that this protocol could provide a useful screen for therapeutic studies.  相似文献   

8.
A cohort of 33 people at risk for Huntington's disease (HD), applying for genetic testing, were tested with a battery of neuropsychological tests covering attentional, visuospatial, learning, memory, and planning functions. A psychiatric rating scale, SCL-90R, was also applied, mainly as a control, since cognitive dysfunction could be ascribed to functional disorders as well as neurodegenerative processes. Self-rating did not indicate any psychiatric symptoms in carriers or non-carriers. However, significantly inferior cognitive functioning in the gene carriers was disclosed by the neuropsychological tests. Primarily, attentional, learning, and planning functions were affected. It is concluded that premorbid cognitive decline occurs in HD.  相似文献   

9.
Huntington's disease (HD) is an inherited neurodegenerative disease, in which there is progressive motor and cognitive deterioration, and for which the pathogenesis of neuronal death remains controversial. Mitochondrial toxins like 3-nitropropionic acid (3-NP) and malonate, functioning as the inhibitors of the complex II of mitochondrial respiratory chain, have been found to effectively induce specific behavioral changes and selective striatal lesions in rats and non-human primates mimicking those in HD. Furthermore, several kinds of transgenic mouse models of HD have been recently developed, and used in the development and assessment of novel treatments for HD. In the past, most studies evaluating the animal models for HD were based on histological changes or in vitro neuronal cultures. With the emergence of advanced magnetic resonance technologies, non-invasive magnetic resonance imaging (MRI) and spectroscopy provide more detail of cerebral alterations, including the changes of cerebral structure, function and metabolites. These studies support the hypothesis that mitochondrial dysfunction with increased excitation of N-methyl-D-aspartate (NMDA) receptors can replicate the neurobehavioral changes, selective brain injury and neurochemical alterations in HD. The present review focuses on our work as well as that of others regarding 3-NP-induced neurotoxicity and other animal models of HD. Using both conventional and advanced MRI and spectroscopy, we summarize the pathogenesis and possible therapeutic strategies in chemical and transgenic models of HD. The results show magnetic resonance techniques to be powerful techniques in the evaluation of pathogenesis and therapeutic intervention for both chemical and transgenic models of HD.  相似文献   

10.
A central unresolved problem in research on Alzheimer disease is the nature of the molecular entity causing dementia. Here we provide the first direct experimental evidence that a defined molecular species of the amyloid-beta protein interferes with cognitive function. Soluble oligomeric forms of amyloid-beta, including trimers and dimers, were both necessary and sufficient to disrupt learned behavior in a manner that was rapid, potent and transient; they produced impaired cognitive function without inducing permanent neurological deficits. Although beta-amyloidosis has long been hypothesized to affect cognition, the abnormally folded protein species associated with this or any other neurodegenerative disease has not previously been isolated, defined biochemically and then specifically characterized with regard to its effects on cognitive function. The biochemical isolation of discrete amyloid-beta moieties with pathophysiological properties sets the stage for a new approach to studying the molecular mechanisms of cognitive impairment in Alzheimer disease and related neurodegenerative disorders.  相似文献   

11.
Abstract Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics. Antioxid. Redox Signal. 17, 1610-1655.  相似文献   

12.
13.
Transgenic rat model of Huntington's disease   总被引:12,自引:0,他引:12  
Huntington's disease (HD) is a late manifesting neurodegenerative disorder in humans caused by an expansion of a CAG trinucleotide repeat of more than 39 units in a gene of unknown function. Several mouse models have been reported which show rapid progression of a phenotype leading to death within 3-5 months (transgenic models) resembling the rare juvenile course of HD (Westphal variant) or which do not present with any symptoms (knock-in mice). Owing to the small size of the brain, mice are not suitable for repetitive in vivo imaging studies. Also, rapid progression of the disease in the transgenic models limits their usefulness for neurotransplantation. We therefore generated a rat model transgenic of HD, which carries a truncated huntingtin cDNA fragment with 51 CAG repeats under control of the native rat huntingtin promoter. This is the first transgenic rat model of a neurodegenerative disorder of the brain. These rats exhibit adult-onset neurological phenotypes with reduced anxiety, cognitive impairments, and slowly progressive motor dysfunction as well as typical histopathological alterations in the form of neuronal nuclear inclusions in the brain. As in HD patients, in vivo imaging demonstrates striatal shrinkage in magnetic resonance images and a reduced brain glucose metabolism in high-resolution fluor-deoxy-glucose positron emission tomography studies. This model allows longitudinal in vivo imaging studies and is therefore ideally suited for the evaluation of novel therapeutic approaches such as neurotransplantation.  相似文献   

14.
Neurovascular pathways and Alzheimer amyloid beta-peptide   总被引:1,自引:0,他引:1  
According to the prevailing amyloid cascade hypothesis, the onset and progression of a chronic neurodegenerative condition in Alzheimer disease (AD) is initiated by the amyloid beta-peptide (Abeta) accumulation in brain and consequent neuronal toxicity. Recent emphasis on co-morbidity of AD and cerebrovascular disease and the recognition that cerebrovascular dysregulation is an important feature of AD, has shed new light on neurovascular dysfunction as a possible contributor to cognitive decline and Alzheimer neurodegeneration. In the same time, this association has raised a question as to whether there is a causal relationship between cerebrovascular dysregulation and Abeta-initiated pathology, and whether influencing targets in the neurovasculature may prevent different forms of Abeta brain accumulation and/or lower pre-existing accumulates in a later stage of the disease. Pathogenic cascades which operate to dissociate normal transport exchanges between central and peripheral pools of Abeta, and decreased vascular competence leading to brain hypoperfusion and impaired Abeta clearance are discussed. We suggest that there is a link between neurovascular dysfunction and elevated brain Abeta which provides a new scenario for therapeutic interventions to control Alzheimer mental deterioration.  相似文献   

15.
Pericytes are cells in the blood–brain barrier (BBB) that degenerate in Alzheimer's disease (AD), a neurodegenerative disorder characterized by early neurovascular dysfunction, elevation of amyloid β‐peptide (Aβ), tau pathology and neuronal loss, leading to progressive cognitive decline and dementia. Pericytes are uniquely positioned within the neurovascular unit between endothelial cells of brain capillaries, astrocytes and neurons. Recent studies have shown that pericytes regulate key neurovascular functions including BBB formation and maintenance, vascular stability and angioarchitecture, regulation of capillary blood flow, and clearance of toxic cellular by‐products necessary for normal functioning of the central nervous system (CNS). Here, we review the concept of the neurovascular unit and neurovascular functions of CNS pericytes. Next, we discuss vascular contributions to AD and review new roles of pericytes in the pathogenesis of AD such as vascular‐mediated Aβ‐independent neurodegeneration, regulation of Aβ clearance and contributions to tau pathology, neuronal loss and cognitive decline. We conclude that future studies should focus on molecular mechanisms and pathways underlying aberrant signal transduction between pericytes and its neighboring cells within the neurovascular unit, that is, endothelial cells, astrocytes and neurons, which could represent potential therapeutic targets to control pericyte degeneration in AD and the resulting secondary vascular and neuronal degeneration.  相似文献   

16.
Huntington's disease (HD) is a fatal neurodegenerative disorder. Despite a tremendous effort to develop therapeutic tools in several HD models, there is no effective cure at present. Acidosis has been observed previously in cellular and in in vivo models as well as in the brains of HD patients. Here we challenged HD models with amiloride (Ami) derivative benzamil (Ben), a chemical agent used to rescue acid-sensing ion channel (ASIC)-dependent acidotoxicity, to examine whether chronic acidosis is an important part of the HD pathomechanism and whether these drugs could be used as novel therapeutic agents. Ben markedly reduced the huntingtin-polyglutamine (htt-polyQ) aggregation in an inducible cellular system, and the therapeutic value of Ben was successfully recapitulated in the R6/2 animal model of HD. To reveal the mechanism of action, Ben was found to be able to alleviate the inhibition of the ubiquitin-proteasome system (UPS) activity, resulting in enhanced degradation of soluble htt-polyQ specifically in its pathological range. More importantly, we were able to demonstrate that blocking the expression of a specific isoform of ASIC (asic1a), one of the many molecular targets of Ben, led to an enhancement of UPS activity and this blockade also decreased htt-polyQ aggregation in the striatum of R6/2 mice. In conclusion, we believe that chemical compounds that target ASIC1a or pharmacological alleviation of UPS inhibition would be an effective and promising approach to combat HD and other polyQ-related disorders.  相似文献   

17.
18.
Various lines of evidence demonstrate the involvement of mitochondrial dysfunction in the pathogenesis of Huntington's disease (HD). However, the precise role of mitochondria in the neurodegenerative cascade leading to HD is still unclear. Mitochondrial DNA (mtDNA) haplogroups-specific polymorphisms were previously related to several neurodegenerative diseases. The length of CAG repeat seems to be related to the clinical features of HD, such as age of onset and progression of motor impairment. The basis for the impaired cognitive functions and for the mood changes is less clear. Aim of this study was to determine whether mtDNA polymorphism(s) play the role of "modifier gene(s)" in this disease. In this work we have genotyped predefined European mtDNA haplogroups in 51 patients with HD and 181 matched controls. The frequency of the haplogroups and haplogroup clusters did not differ between the two groups, and no correlation with gender, age of onset and disease status was observed. No significant difference was observed between different haplogroups and haplogroup clusters in the cognitive or motor progression of the disease. Our study does not support any association between mtDNA haplogroups and HD.  相似文献   

19.
Recent research has significantly advanced our understanding of the molecular mechanisms of neurodegenerative diseases, including Alzheimer's disease (AD) and motor neuron disease. Here we emphasize the use of genetically engineered mouse models that are instrumental for understanding why AD is a neuronal disease, and for validating attractive therapeutic targets. In motor neuron diseases, Cu/Zn superoxide dismutase and survival motor neuron mouse models are useful in testing disease mechanisms and therapeutic strategies for amyotrophic lateral sclerosis (ALS) and spinal motor atrophy, respectively, but the mechanisms that account for selective motor neuron loss remain uncertain. We anticipate that, in the future, therapies based on understanding disease mechanisms will be identified and tested in mouse model systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号