首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
用细胞内记录和细胞内注射方法标记71个吻侧孤束核味觉神经元。它们分布于耳蜗背核尾极尾侧400μm至吻侧500μm两平面之间的孤束核内.标记神经元经三维重组后,根据细胞体积、胞体面积、树突节段平均长度、膨体密度、树突棘密度和初级树突数量等六种形态学特征,进行统计学(ANOVA)定量分析,将标记细胞分为A、B、C、D、E、F六类,每类细胞至少有一种形态学特征与其它五种有显著的不同(P<0.05)。A类(n=22)细胞胞体最小,占标记细胞总量的31%;B类(n=16)具有最密的树突膨体和较小的胞体,占23%;C类(n=9)细胞的树突最长而树突棘最少,也可称为寡树突棘神经元,占13%;D类(n=7)具有最多的初级树突分支,占9%;E类(n=9)具有最多的树突棘而膨体却最少;占13%;F类(n=8)细胞的胞体最大,而数量则最少,占11%。此结果提示除胞体的形态大小可作为细胞形态学分类的依据外,树突棘和膨体也是吻侧孤束核细胞分类的重要依据。  相似文献   

2.
细胞内记录脊髓背角神经元之后,将玻璃微电极中的biocytin用去极化方波电流导入。切片经ABC法孵育,DAB呈色。标记细胞呈Golgi样,胞体直径从数μm到数+μm不等,形态各异;树突树完整,光滑或有棘;轴空有时可以显示,如出现串珠样轴突终末及侧枝则提示细胞标记完整。上述结果表明,在在体细胞内记录与细胞内标记相结合中,biocytin能够完整地显示所记录细胞的形态。特别是在用于标记中、小细胞有其独到之处。  相似文献   

3.
本文用荧光金逆行追踪技术对大鼠下行抑制系统的中脑导水管周围灰质、中缝背核、中缝大核和巨细胞网状核a部向孤束核的投射进行了研究.将荧光金分别注入到孤束核的吻段、中段和尾段后,上述核团内出现的逆行标记神经元分布如下:(1)在冠状切面上,中脑导水管周围灰质内的荧光金标记细胞群集存在;在吻尾方向上呈柱状分布.三个实验组中,除吻段注射组的标记细胞数量少于其它2组外.在分布上完全一致。腹外侧区的标记细胞数量最多,但从尾侧到吻侧逐渐减少;背内侧区的标记细胞数量较少,以中、吻段较多;背外侧区的标记细胞出现于中脑导水管周围灰质的中、尾段,尾段最多,吻段内未见标记细胞.所有实验动物的中脑导水管周围灰质的内侧区均未出现标记细胞.(2)中缝背核内的标记细胞,多数位于其吻段的背侧都与收侧部的移行部,并且以注射区在孤束核的吻段者标记细胞较多;中缝背核的中尾段标记细胞量少,且散在于背外侧部,以注射区在孤束核的中段者标记细胞较多.(3)中缝大核内的标记细胞以核的尾段较多,吻段较少;巨细胞同状核a部内的标记细胞在吻尾方向上分布均匀。此两核团内的标记细胞数量以注射区在孤束核的中、尾段者较多。(4)上述脑区内标记细胞的数量均为注射区的同侧多于对侧。本研  相似文献   

4.
本文用荧光金塑行追踪技术对大鼠下行抑制系统的中脑导水管周围灰质,中缝背核,中缝大核和巨细胞网状核α部向孤束核的投射进行了研究。将荧光金分别注入到孤束核的吻段,中段和尾段后,上述核团内出现的逆行标记神经元分析布下;(1)在冠状切面上,中脑导水和周围灰质内的荧光标记细胞群集存在;吻尾方向上呈柱状分布,三个实验组中,除吻段注射组的标记细胞数量少于其它2组外,在分布上完全一致,腹外侧区的标记细胞数量最多,  相似文献   

5.
细胞内记录脊髓背角神经元之后,将玻璃微电极中的Biocytin用去极化方波电流导入,切片经ABC法孵育,DAB呈色。标记细胞呈Golgi样,胞直径从数μm到数+μm不等,形态各异;树突树完整,光滑或有棘;轴突有时可以显示,如出现串珠样轴突末及侧枝则提示细胞标完整,上述结果表明,在在体细胞内记录与细胞内标记相结合中,biocytin能够完整地显示所记录细胞的形态,特别是在用于标记中、小细胞有其独到之  相似文献   

6.
荧光逆行追踪结合离体固定脑片细胞内染色技术   总被引:1,自引:1,他引:0  
本文介绍一种简便易行并可在光、电镜下研究单个神经元形态和神经元回路的方法。此法主要包括荧光逆行标记、固定脑片细胞内电泳LuciferYellow和DAB光转化三个步骤。它主要具有以下优点;(1)利用送行追踪确定神经元投射部位;(2)进一步细胞内注射可充分显示神经元的树突构筑,尤其是远端树突和树突棘;(3)经DAB转化的神经元形象能长久保存,克服了荧光易褪色的缺点,可供详细观察和分析;(4)转化后的细胞,因已经过良好固定,结构保存较好;故可在电镜下进一步观察研究;(5)结合免疫荧光,通过Confocal显微镜可更清晰地观察LuciferYellow标记的细胞与其它神经纤维的联系;(6)此外还可用于病理检查的标本,研究人体脑组织神经元的形态特征。为此,此方法不失为一种研究单个神经元形态(尤其是树突构筑)和神经元回路的良好方法。  相似文献   

7.
树突棘,室旁核,催产素,脱水,免疫组化,大鼠下丘脑内催产素大细胞神经分泌细胞与水盐代谢的调节有关,并伴有细胞形态的改变如细胞体积的增大及细胞膜与细胞膜间接触的增加和多突触的形成等。本文用免疫组化法发现在脱水状态下室旁核的催产素免疫阳性神经元上树突棘样结构有所增加。光镜观察并计算室旁核前大细胞亚核、内侧大细胞亚核及后大细胞亚核中含树突棘样结构的催产素神经元百分数变化,显示正常大鼠室旁核神经元树突棘样结构多位于树突干上,少数在胞体上。前大细胞亚核含树突棘样结构的细胞百分数为21.27%,内侧大细胞亚核为30.22%,后大细胞亚核为20.22%。轻度脱水大鼠室旁核含树突棘样结构细胞百分数显著增加(前大细胞亚核:28.65%,P<0.05;内侧大细胞亚核:35.53%,P>0.05;后大细胞亚核:34.78%,P<0.01)。细胞上树突棘样结构数也增加,其体积略为增大。重度脱水大鼠室旁核中树突棘样结构细胞百分数增加较小,仅后大细胞亚核内有显著变化(27.13%,P<0.05)。不同程度脱水组之间无显著变化。结果说明脱水可引起神经元膜结构的改变。树突棘样结构数变化是否与新突触的形成有直接关系?尚待进一步证实。  相似文献   

8.
为研究来自孤束核的内脏传导信息在臂旁核水平是否接受中央杏仁核的反馈调节及其递质性质,以及孤束核—臂旁核—中央杏仁核传导通路中,在臂旁核水平是否接受GABA的调节,本文将HRP注入中央杏仁核进行顺、逆行标记,同时将兴奋性氨基酸毒素海人酸注入孤束核进行损毁,观实其顺行溃变终末,取外侧臂旁核超薄切片后结合抗GABA的免疫电镜染色,观察发现有下列几种标记;(1)顺行溃变终末,所有的都与臂旁核神经元形成非对称性突触;(2)HRP标记终末有两类:第一类和臂旁核神经元形成对称性突触,占HRP标记终末总数的80%以上,第二类与臂旁核神经元形成非对称性突触,另外有大量的HRP标记的胞体和树突;(3)胶体金标记的GABA阳性终末,皆与突触后结构形成对称性突触;(4)GABA/HRP双标记终末,具有GABA免疫阳性终末和第一类HRP标记终末的共同特征。上述几种标记在臂旁核内有以下几种关系:(1)溃变终末和GABA阳性终末与同一个HRP标记或非标记的突形成轴-树突触;(2)溃变终末和第一类HRP标记终末共同终止于同一非标记讨突;(3)溃变终末与HRP标记树突或胞位形成非对称性突触;(4)GABA/HRP双标记终末与非标记树突或胞体?  相似文献   

9.
Parvalburnin是细胞内一种钙结合蛋白。同时又可作为中枢神经系统内与GABA共存的神经元亚群的特异标记物,主要标记篮状及苔烛细胞。用PAP方谈染色可见大鼠Parvalbumin免疫阳性神经终末在运动皮层锥体神经元胞体周围形成包篮现象,但因该方法的局限性.较难明确二者的关系。为进一步了解Parvalbumin阳性终未在锥体神经元脑体、树突与轴突整体上的分布状况以及运幼皮层内不同传出神经元是否均接受同样的支配,本实验利用FastBlue送行标记、固定脑片细胞内注入LueiferYellow结合免疫荧光、Confocal显微镜观察,研究运动皮层内皮质丘脑(束旁核)、皮质效状体及皮质脊髓三种投射神经元与Parvalbumin阳性终末的关系。通过1.μ连续扫描图像的分析及立体对观察,Parvalbumin阳性终末清晰可见,与LuciferYellow标记的锥体细胞的关系也容易辨别.在三种投射神经元胞体上均可见Parvalbumin阳性终末包绕,形成明显包篮现象,但三种神经元上的终末数未见明显区别·阳性终未还分布于近端树突上,距胞体越远越稀疏:但在距脑体50μm以上的顶树突、30μm以上的基树突及其二、三级分枝的远端树突上仍偶有终末分布.此外,三种神经元轴突起始段上也有少量终末接触,但未形成明显的cartridge现象.这一结果揭示,Parvalb  相似文献   

10.
本文用切断一侧结状神经节近侧端的迷走神经和HRP注入伏核逆行追踪相结合的方法,在电镜水平对孤束核向伏核投射的神经元是否接受迷走神经初级传入纤维终末进行了研究。在孤束核内可见下列突触关系:(1)溃变轴突终末与HRP逆标树突形成轴-树突触;(2)无标记正常轴突终末与HRP逆标胞体或树突分别形成轴-体或轴-树突触;(3)HRP顺标轴突终末与无标记树突形成轴-树突触;(4)溃变轴突终末与无标记树突形成轴-树突触。由上述结果可知:孤束核向伏核投射的神经元接受迷走神经的初级传入终末;伏核神经元的下行终末与孤束核内的神经元之间有突触联系。  相似文献   

11.
1. In recordings made from 3,120 single neurons, a secondary cortical taste area was found in the caudolateral part of the orbitofrontal cortex of the cynomolgus macaque monkey, Macaca fascicularis. The area is part of the dysgranular field of the orbitofrontal cortex and is situated anterior to the primary cortical taste areas in the frontal opercular and adjoining insular cortices. 2. The responses of 49 single neurons with gustatory responses in the caudolateral orbitofrontal taste cortex were analyzed using the taste stimuli glucose, NaCl, HCl, quinine HCl, water, and blackcurrant juice. 3. A breadth-of-tuning coefficient was calculated for each neuron. This is a metric that can range from 0.0 for a neuron that responds specifically to only one of the four basic taste stimuli to 1.0 for one that responds equally to all four stimuli. The mean coefficient for 49 cells in the caudolateral orbitofrontal cortex was 0.39. This tuning is much sharper than that of neurons in the nucleus of the solitary tract of the monkey, and sharper than that of neurons in the primary frontal opercular and insular taste cortices. 4. A cluster analysis showed that at least seven different groups of neurons were present. For each of the taste stimuli glucose, blackcurrant juice, NaCl, and water, there was one group of neurons that responded much more to that tastant than to the other tastants. The other groups of neurons responded to two or more of these tastants, such as glucose and blackcurrant juice. In this particular region neurons were not found with large responses to HCl or quinine HCl, although such neurons could be present in other parts of the orbitofrontal cortex. 5. On the basis of this and other evidence it is concluded that in the caudolateral orbitofrontal cortex there is a secondary cortical taste area in which the tuning of neurons has become finer than in early areas of taste processing, in which foods, water, and NaCl are strongly represented and where motivation dependence first becomes manifest in the taste system.  相似文献   

12.
There is little known about the prenatal development of the rostral nucleus of the solitary tract (rNST) neurons in rodents or the factors that influence circuit formation. With morphological and electrophysiological techniques in vitro, we investigated differences in the biophysical properties of rNST neurons in pre- and postnatal rats from embryonic day 14 (E14) through postnatal day 20. Developmental changes in passive membrane and action potential (AP) properties and the emergence and maturation of ion channels important in neuron function were characterized. Morphological maturation of rNST neurons parallels changes in passive membrane properties. Mean soma size, dendritic branch points, neurite endings, and neurite length all increase prenatally. whereas neuron resting membrane potential, input resistance, and time constant decrease. Dendritic spines, on the other hand, develop after birth. AP discharge patterns alter in pre- and postnatal stages. At E14, neurons generated a single TTX-sensitive, voltage-gated Na(+) AP when depolarized; a higher discharge rate appeared at older stages. AP amplitude, half-width, and rise and fall times all change during development. Responses to current injection revealed a number of voltage-gated conductances in embryonic rNST, including a hyperpolarization-activated inward current and a low-threshold Ca(2+) current that initiated Ca(2+) spikes. A hyperpolarization-activated, transient outward potassium current was also present in the developing neurons. Although the properties of these channels change during development, they are present before synapses form and therefore, can contribute to initial establishment of neural circuits, as well as to the changing electrophysiological properties in developing rNST neurons.  相似文献   

13.
Gustatory responses of single neurons in the insula of the macaque monkey   总被引:8,自引:0,他引:8  
1. In recordings made from 2,925 single neurons, a region of primary taste cortex was localized to the rostral and dorsal part of the insula of the cynomolgus macaque monkey, Macaca fascicularis. The area is part of the dysgranular field of the insula and is bordered laterally by the frontal opercular taste cortex. 2. The responses of 65 single neurons with gustatory responses were analyzed in awake macaques with the use of the taste stimuli glucose, NaCl, HCl, quinine HCl (QHCl), water, and black currant juice. 3. Intensity-response functions showed that the lowest concentration in the dynamic part of the range conformed well to human thresholds for the basic taste stimuli. 4. A breadth-of-tuning coefficient was calculated for each neuron. This is a metric that can range from 0.0 for a neuron that responds specifically to only one of the four basic taste stimuli to 1.0 for one that responds equally to all four stimuli. The mean coefficient for 65 cells in the taste insula was 0.56. This tuning is sharper than that of neurons in the nucleus of the solitary tract of the monkey, and similar to that of neurons in the primary frontal opercular taste cortex. 5. A cluster analysis showed that at least six different groups of neurons were present. For each of the taste stimuli, glucose, NaCl, HCl, QHCl, water, and black currant juice, there was one group of neurons that responded much more to that tastant than to the other tastants. Other subgroups of these neurons responded to two or more of these tastants, such as glucose and black currant juice, or NaCl and QHCl. 6. On the basis of this and other evidence, it is concluded that the primary insular taste cortex, in common with the primary frontal opercular taste cortex, represents a stage of information processing in the taste system of the primate at which the tuning of neurons has become sharper than that of neurons in the nucleus of the solitary tract, and is moving toward the fineness achieved in the secondary taste cortex in the caudolateral orbitofrontal taste cortex, where motivation-dependence first becomes manifest in the taste system.  相似文献   

14.
目的 观察大鼠三叉神经本体觉中枢通路上第三级核团内Paralbumin样阳性轴突终末与丘脑投射神经元之间是否存在突触联系。方法 用HRP逆行追踪和包埋前免疫电镜相结合的双重标记法。将WGA-HRP注入丘脑腹后内侧核逆行标记投射神经元。结果 WGA-HRP注入丘脑腹后内侧核(VPM)后,WGA-HRP标记神经元主要分布在感觉主核背内侧部(Vpdm)、三叉上核尾外侧部(Vsup-CL)以及三叉神经运动核腹侧区(AVM)和上橄榄核背侧区(ADO)。电镜下可见PV样阳性神经元的轴突终末与WGA-HRP标记的胞体或者树突形成突触联系。另外PV阴性神经元的轴突终末也与WGA-HRP标记的胞体或树突形成突触联系,这些胞体或树突偶尔为PV阳性。结论 在三叉神经本体感觉信息从第三级神经元向丘脑腹后内侧核(VPM)传递的过程中,PV样阳性神经元可能通过突触传递机制而发挥作用。  相似文献   

15.
猫十二指肠的植物神经支配   总被引:1,自引:0,他引:1  
佟晓杰  于频 《解剖学杂志》1990,13(2):100-103
用HRP逆行标记法研究猫十二指肠的植物神经支配。十二指肠的交感节后神经元位于腹腔神经节、肠系膜前神经节和双侧T_6-L_2交感干神经节。前二者和后者数量之比是18:1.腹腔神经节和肠系膜前神经节内的标记细胞有局部定位分布的特点,即多集中在节的右后半部。交感干神经节的标记细胞较集中分布于 T_8-T_(13),并以右侧占优势(占59.45%)。十二指肠的副交感节前神经元位于双侧的迷走神经背核,平闩上下各1mm范围内较为集中。  相似文献   

16.
本研究分别用逆行和顺行追踪相结合及逆行追踪与免疫组织化学反应相结合的双标记技术对中缝大核下行投射纤维和5 HT 样阳性终末在三叉神经脊束核尾侧亚核内的分布及其与向丘脑投射神经元之间的突触联系进行了观察。将HRP注入丘脑腹后内侧核,证明HRP逆标神经元主要见于三叉神经脊束核尾侧亚核的Ⅰ、Ⅲ层;将顺行标记物PHA L 注入中缝大核,证明PHA L顺标纤维和终末也主要见于尾侧亚核的Ⅰ层,Ⅱ层内仅有少量PHA L 顺标终末;免疫组织化学反应的结果显示5 HT 样阳性终末也主要存在于尾侧亚核的Ⅰ和Ⅱ层,其它部位仅散在分布。在电镜下观察到:(1)三叉神经脊束核尾侧亚核Ⅰ层的HRP逆标神经元的胞体和树突分别与PHA L顺标终末形成轴 体突触和轴 树突触,其中大部分为对称性突触,非对称性突触较少;(2)尾侧亚核Ⅰ层HRP逆标神经元的胞体和树突也分别与5 HT 样阳性终末形成轴 体突触和轴 树突触,这些突触联系也以对称性突触为主。本研究的结果表明:中缝大核的下行投射纤维主要终止于三叉神经脊束核尾侧亚核Ⅰ层,对此层内向丘脑投射的神经元可能主要发挥抑制作用,而5 HT 是中缝大核下行投射纤维的主要神经活性物质。  相似文献   

17.
应用 NADPH-d组织化学方法观察了大鼠第三脑室一氧化氮合酶阳性触液神经元的分布及其形态 ,并结合免疫组织化学技术研究了一氧化氮合酶与催产素在第三脑室触液神经元内的共存。结果显示 :在视前区至室间核后大细胞亚核平面的第三脑室室壁均有一氧化氮合酶阳性触液神经元分布 ,呈自前向后 ,由腹侧部渐向背侧部过渡迁移的特征。一氧化氮合酶阳性触液神经元绝大部分为大细胞型标记神经元 ,胞体呈卵圆形、梭形、多角形与倒置梨形。它们位于脑室管膜内、室管膜下 ,或距室管膜有一定距离处 ,但有突起伸至第三脑室。第三脑室催产素免疫阳性触液神经元的形态及分布与一氧化氮合酶阳性触液神经元基本相似 ,两者高度共存。催产素 /一氧化氮合酶双标神经元 ,约占阳性细胞总数的 90 .9%。上述三种阳性触液神经元与邻近核团关系密切 ,尤其与室旁核之间有很多的阳性纤维互相交错。本研究结果表明 ,第三脑室有大量的一氧化氮合酶与催产素免疫阳性神经元分布 ,并且高度共存 ,从而建立了催产素的下丘脑 -脑脊液 -垂体神经体液调节环路的结构基础 ,对生殖与性行为起着重要的调控作用  相似文献   

18.
管振龙 《解剖学报》1998,29(2):130-134,I004
为了研究神经激可能的升压途径,用免疫荧光组织化学方法结合荧光金逆行追踪技术 下丘脑内神经激肽B受体阳性神经元向孤束核的投射。  相似文献   

19.
1. Single-neuron activity in the primary gustatory cortex of the alert cynomolgus monkey (Macaca fascicularis) was analyzed in response to a range of taste stimuli. Tastants included the four prototypical stimuli (glucose, NaCl, HCl, and quinine), fruit juice, and 12 amino acids selected for their chemical characteristics, nutritional significance, and biological importance, as well as for the availability of human psychophysical data on their perceived qualities. 2. Taste-evoked responses could be recorded from a cortical area that measured 3.5 mm in its anteroposterior extent, 2.0 mm mediolaterally, and 6.0 mm dorsoventrally. Gustatory cells constituted 4.8% of the 1,129 neurons tested. Nongustatory cells gave responses associated with mouth movements (11.1%), somatosensory stimulation (3.8%), approach or anticipation of the taste stimulus (2.2%), and tongue extension (0.4%). 3. The most effective taste stimuli were those with qualities that humans describe as salty or sweet: NaCl, monosodium glutamate, glucose, proline, glycine, and fruit juice. The least effective tastants were those rated bitter or insipid: tyrosine, tryptophan, phenylalanine, and leucine. Accordingly, 79% of the gustatory neurons responded best to glucose (46%) or NaCl (33%) among the basic stimuli; only 19% responded best to quinine (13%) or HCl (6%). One cell (2%) responded exclusively to fruit juice. 4. Cortical gustatory neurons showed a moderate breadth of sensitivity, with a mean breadth of tuning coefficient of 0.71 across 54 cells. There was no evidence of chemotopic organization in the taste cortex. 5. The taste quality of each stimulus was inferred from the relative similarity of the profiles they evoked. The clearest distinction among stimuli was between those that humans characterize as sweet versus those with other qualities. Several amino acids that have dominant sweet (glycine and proline), salty (arginine and monosodium glutamate), sour (tryptophan), or bitter (phenylalanine) components to humans evoked activity profiles that were associated with those of the appropriate prototypical stimuli. Others (cysteine and lysine) were not closely related to any single prototype. 6. Conclusions based on the responses of cortical cells in the monkey are in close agreement with those that derive from human psychophysical studies of L-amino acids, reinforcing the value of this neural model for human taste perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号