首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Background: Hepatitis C virus (HCV) is a major public health problem with 170 million chronically infected people throughout the world. Currently, the only treatment available consists of a combination of pegylated interferon (INF-a) and ribavirin, but only half of the patients treated show a sufficient antiviral response. Thus there is a great need for the development of new treatments for HCV infections. RNA interference (RNAi) represents a new promising approach to develop effective antiviral drugs and has been extremely effective against HCV gene expression in short-term cell culture. Our aim was to determine the effect of RNAi directed against the NS5B-HCV region on HCV expression in a human hepatoma cell line that expresses HCV-subgenomic replicon (Huh7 HCV replicon cells). Methods: We transfected Huh7 HCV replicon cells with different concentrations of RNAi (100-200 nM) targeting the NS5B region of the viral genome. 2-6 days post-transfection HCV-RNA was quantified by semiquantitative and real-time RT-PCR, and HCV NS5B protein levels were assayed by western blot. Cell viability was also quantified by MTT assay. Results: Our results indicate that the NS5B-siRNAs used in this study can specifically inhibit HCV-RNA replication and protein expression (more than 90%) compared to control cells. Conclusions: Synthetic siRNA against NS5B-HCV inhibited HCV replication and viral proteins levels and thereby becomes a powerful strategy to combat hepatitis C virus.  相似文献   

2.
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects >270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both a messenger RNA and replication template, making it an attractive target for the study of RNA interference. Double-stranded small interfering RNA (siRNA) molecules designed to target the HCV genome were introduced through electroporation into a human hepatoma cell line (Huh-7) that contained an HCV subgenomic replicon. Two siRNAs dramatically reduced virus-specific protein expression and RNA synthesis to levels that were 90% less than those seen in cells treated with negative control siRNAs. These same siRNAs protected naive Huh-7 cells from challenge with HCV replicon RNA. Treatment of cells with synthetic siRNA was effective >72 h, but the duration of RNA interference could be extended beyond 3 weeks through stable expression of complementary strands of the interfering RNA by using a bicistronic expression vector. These results suggest that a gene-therapeutic approach with siRNA could ultimately be used to treat HCV.  相似文献   

3.
The mechanisms by which alcohol exacerbates liver injury in patients with hepatitis C are unknown. We used the hepatitis C virus (HCV) subgenomic replicon cell system to evaluate the effect of ethanol on HCV replication and viral protein synthesis. Our results demonstrate that alcohol stimulates HCV replicon expression at both HCV-RNA and protein levels. Furthermore, we observed that ethanol treatment showed an additive effect in cyclooxygenase-2 (COX-2) protein expression and activity already induced by HCV viral proteins, and in turn increased HCV viral expression. Our results suggest that COX-2 activity is involved in ethanol-induced HCV-RNA and NS5A protein expression, because acetylsalicylic acid (ASA), a COX-1/2 inhibitor, blocked this induction and downregulated COX-2 protein expression and activity. Therefore, we suggest that ethanol increases HCV replication expression, at least in part, by upregulating a key cellular regulator of oxidative stress pathway known as COX-2 or its products.  相似文献   

4.
Background and Aim:  We have reported previously that synthetic small interfering RNA (siRNA) and DNA-based siRNA expression vectors efficiently and specifically suppress hepatitis C virus (HCV) replication in vitro . In this study, we investigated the effects of the siRNA targeting HCV-RNA in vivo .
Methods:  We constructed recombinant retrovirus and adenovirus expressing short hairpin RNA (shRNA), and transfected into replicon-expressing cells in vitro and transgenic mice in vivo .
Results:  Retroviral transduction of Huh7 cells to express shRNA and subsequent transfection of an HCV replicon into the cells showed that the cells had acquired resistance to HCV replication. Infection of cells expressing the HCV replicon with an adenovirus expressing shRNA resulted in efficient vector delivery and expression of shRNA, leading to suppression of the replicon in the cells by ∼10−3. Intravenous delivery of the adenovirus expressing shRNA into transgenic mice that can be induced to express HCV structural proteins by the Cre/ lox P switching system resulted in specific suppression of virus protein synthesis in the liver.
Conclusion:  Taken together, our results support the feasibility of utilizing gene targeting therapy based on siRNA and/or shRNA expression to counteract HCV replication, which might prove valuable in the treatment of hepatitis C.  相似文献   

5.
BACKGROUND & AIMS: Persistent infection with hepatitis C virus (HCV) leads to chronic hepatitis and hepatocellular carcinoma (HCC). RNA interference (RNAi) may act as a host antiviral response against viral RNA. METHODS: The effects of RNAi on both the replicative intermediates and the internal ribosome entry site (IRES) of HCV were studied by using HCV-related short interfering RNA (siRNA) detection assay. The mechanism that permits HCV to escape RNAi was studied by using RNAi assay materials. RESULTS: These studies demonstrate that the Dicer, an RNase enzyme that generates short siRNA, can target and digest both the IRES and the replicative intermediate of HCV into siRNA of approximately 22 nucleotides. Further studies also show that Dicer can inhibit the replication of the HCV subgenomic replicon. However, the HCV core protein inhibits this RNAi and rescues the replication of the HCV subgenomic replicon through a direct interaction with Dicer. CONCLUSIONS: RNAi is a limiting factor for HCV infection, and the core protein suppresses the RNA silencing-based antiviral response. This ability of the core protein to counteract the host defense may lead to a persistent viral infection and may contribute to the pathogenesis of HCV.  相似文献   

6.
Summary. To study the correlation between total Hepatitis C virus (HCV) Core antigen (Ag) and HCV-RNA, and to assess the proficiency of HCV Core Ag testing in monitoring and predicting virologic response during and after pegylated interferon (PEG-IFN) and ribavirin combination therapy.
A total of 307 samples from treated and untreated patients were used to assess the correlation between the total HCV Core Ag test and quantitative HCV-RNA assays (Superquant, and Quantiplex branched DNA 2.0 assay). Twenty-four patients received combination therapy for 48 weeks. Blood samples were collected at day 0, and week 2, 4, 12, 24, 48 and 72 for virologic evaluation.
A linear relation exists between total HCV Core Ag and HCV-RNA levels. At 3 months the positive predictive value (PPV) of response to therapy was 100% with either HCV Core Ag or HCV-RNA. For HCV Core Ag the negative predictive value (NPV) was 100% whereas for HCV-RNA the NPV was 80% ( P  > 0.05). At month 1, the PPV was 95% and 100% when determined by HCV Core Ag and HCV-RNA, respectively. The NPV value was 100% for HCV Core Ag and 33% for HCV-RNA ( P  = 0.005).
HCV Core Ag quantification could be useful in clinical practice to predict a sustained virological response early during therapy (4 weeks), reaching an optimal performance at month 3. The determination of total HCV Core Ag levels in serum, constitutes an accurate and reliable alternative to HCV-RNA for monitoring and predicting treatment outcome in patients receiving PEG-IFN/Ribavirin combination therapy.  相似文献   

7.
Hepatitis C virus (HCV) subgenomic replicon has been reported to replicate efficiently and continuously in human hepatoma Huh-7 cells. To extend the previous results to other isolated HCV clones, we constructed another HCV replicon from HC-J4, one of chimpanzee-infectious HCV clones. An HCV replicon derived from HC-J4 (RpJ4) consists of HCV-5' untranslated region, neomycin phosphotransferase gene, the encephalomyocarditis virus internal ribosomal entry site, HCV nonstructural region, NS3 to NS5B, and HCV-3' untranslated region. The adaptive mutations known to be required for HCV-Con1 replicon were introduced in RpJ4 replicon, aa.(amino acids number according to HC-J4) 2197 serine to proline, deletion of serine at aa.2201, and aa.2204 serine to isoleucine (RpJ4-S2197P, RpJ4-S22001del, and RpJ4-S2204I). RpJ4/ISDR mutant and RpJ4-S2201del/ISDR mutant were also constructed by introducing six amino acid mutations into the interferon sensitivity determining region (ISDR). After transfection into Huh-7 cells and G418 selection, RpJ4 and RpJ4/ISDR mutants did not produce any colony. In contrast, G418-resistant cells were transduced efficiently by RpJ4-S2197P, RpJ4-S2204I, RpJ4-S2201del and RpJ4-S2201del/ISDR mutant, with the RpJ4-S2201del/ISDR mutant being most efficient. Hence the HCV replicon derived from HC-J4 can replicate efficiently following the introduction of adaptive mutations into the upstream region of ISDR. Moreover, additional introduction of mutations into ISDR further enhanced its replication. These findings demonstrate that the genetic structure of the NS5A domain is critical in HCV replications.  相似文献   

8.
《Annals of hepatology》2013,12(3):373-379
Introduction. Detection of hepatitis C virus (HCV) has been reported in extrahepatic sites such as peripheral blood mononuclear cells and platelets. Quantitation of HCV-RNA in platelets from patients under antiviral therapy has not been reported.Material and methods. HCV-RNA levels in paired serum and platelet samples of 17 chronically HCV-infected patients were determined at baseline, week 12, end-of-treatment, and 24 weeks after completion of treatment with pegylated interferon plus ribavirin. Quantitation of HCVRNA load was performed using COBAS® TaqMan® HCV Test v 2.0 (lower limit of detection, 25 IU/mL). The cohort predominantly consisted of female (59%) with a mean age of 50.7 ± 10.0 years.Results. Measurements of HCV-RNA in relation to different timepoints of therapy revealed baseline viral load was most frequently detected in higher levels in serum than in platelets (5.6 × 104 lU/mL vs. 379.0 lU/mL; p = 0.0002), a trend also demonstrated in most samples throughout the study. HCV-RNA was also found at low levels (< 25.0-314.0 UI/mL) persistently in platelets of three patients who have lost detectable HCV-RNA in serum during antiviral therapy, resulting in virological relapse.Conclusion. HCV-RNA levels are most frequently detected in higher levels in serum than in platelets, independent of timepoint of antiviral therapy. Further studies with an increase in size of the samples are needed to better evaluate whether or not patients who presented HCV-RNA at low levels in platelets after having lost detectable HCV-RNA in serum during antiviral therapy are at increased risk of relapse of HCV infection during follow-up evaluation.  相似文献   

9.
Summary.  Fluvastatin showed anti-hepatitis C virus (HCV) activity in vitro , through the inhibition of geranylgeranylation of cellular proteins, and a synergistic effect with interferon (IFN)-α. Nevertheless statins up-regulate low-density lipoprotein (LDL) receptor, required for HCV cell entry, and the closely related scavenger receptors SRBI and CD36; moreover they reduce class II major histocompatibility complex expression on antigen presenting cell, modulating T-cell activation. In vivo LDL levels have been identified as prognostic indicator of sustained viral response to IFN in patients with HCV infection, suggesting that lipid-lowering agents might conversely favour HCV entry into the hepatocytes and translate into higher viral replication. We evaluated the effect of fluvastatin on HCV-RNA levels, CD36 expression and T-cell homeostasis in HCV-RNA positive patients. HCV-RNA was measured at baseline and after 4 weeks in 42 HCV/HIV-1 co-infected patients, randomized to receive either fluvastatin 80 mg qd or no treatment. CD36 expression and markers of T-cell activation were evaluated by means of flow cytometry. Plasma interleukin (IL)-10, IFN-γ and IL-7 were measured by ELISA. Serum cholesterol and LDL decreased significantly in the treatment group ( P  = 0.0001 and 0.01, respectively). Surprisingly a significant increase of HCV-RNA levels was seen after 4 weeks of fluvastatin ( P =  0.03). The percentages of naive/activated/apoptotic cells and CD36 expression remained unchanged. Fluvastatin did not inhibit HCV-RNA replication in vivo ; conversely we observed a significant increase of HCV-RNA levels. CD36 expression on monocytes were not up-regulated by statins as previously reported in vitro . The correlation between HCV infectivity, oxidized-LDL receptor and statins in HCV infection need further evaluation.  相似文献   

10.
The chronicity of hepatitis C virus (HCV) infection raises the question of how HCV is able to persist in hepatic cells. We show that human primary hepatocytes and human hepatic cell lines (Huh7 and HepG2) spontaneously produce interferon (IFN)-alpha that is inhibited in the HCV replicon cells (Huh.8 and FCA-1). Silencing IFN-alpha gene expression by IFN-alpha small interfering RNA (siRNA) in the HCV replicon cells resulted in increased HCV replicon expression. The activation of IFN-alpha expression by interferon regulatory factor (IRF-7) led to the inhibition of HCV replicon expression, whereas the anti-IFN-alpha receptor antibody could partially block IRF-7-mediated HCV replicon inhibition. In addition, the blockade of IFN-alpha receptor by anti-IFN-alpha receptor antibody on the replicon cells increased HCV replicon expression. Among the HCV nonstructural (NS) proteins tested, NS5A is the most potent inhibitor of IFN-alpha expression by the hepatic cells. Investigation of the mechanism of HCV action on IFN-alpha showed that IRF-7-induced IFN-alpha promoter activation was inhibited in the HCV replicon cells. Furthermore, IRF-7 expression was restricted in the HCV replicon cells. In conclusion, we provide direct evidence that HCV undermines the intracellular innate immunity of the target cells, which may account for HCV persistence in hepatic cells.  相似文献   

11.
Abstract After adoption of the anti-hepatitis C virus (C100-3) test, the incidences of definite and suspected cases of post-transfusional hepatitis (PTH) were 3.3% (7/209) and 7.2% (15/209), respectively. Four patients with definite PTH and seven patients with suspected PTH became positive for hepatitis C virus (HCV)-related antibodies or HCV-RNA after transfusion. These cases that became positive for anti-HCV or HCV-RNA showed a peak of alanine aminotransferase (ALT) more than 4 weeks after operation. Only rare cases that showed ALT peaks within 4 weeks after operation became positive for HCV-related antibodies or HCV-RNA. The peak ALT levels in cases showing positive conversion tended to be higher than those in cases showing no conversion. Judging from these results, cases of suspected PTH include those of transient liver disease attributable to surgery as well as clear cases of HCV infection. Thus new diagnostic criteria are required including data on HCV antibodies or HCV-RNA.  相似文献   

12.
Identification of hepatitis C virus (HCV)-RNA in blood serum is crucial for hepatitis C diagnosis and for appropriate treatment. Detection of HCV-RNA in blood serum is used for therapy monitoring of patients with hepatitis C. Despite HCV-RNA elimination from blood serum during treatment in some patients, HCV viremia appears again after the completion of therapy. The aim of this study was to assess HCV-RNA in peripheral blood mononuclear cells (PBMCs) of hepatitis C patients in relation to HCV-RNA and antibodies to HCV in the serum. The study involved 71 patients undergoing anti-viral therapy (interferon and ribavirin). RNA isolated from serum and PBMCs was examined for the presence of HCV-RNA by an RT-PCR technique using specific oligonucleotide primers or by commercially available kits. In order to show the possible presence of HCV sequences in PBMCs, molecular DNA probes were constructed with a PCR amplicon and biotin-labelled by nick translation, and FISH and extended chromatin fibers in situ hybridization (ECFs-FISH) techniques were used. A 24-month follow-up study revealed that 34 out of 59 patients (58%) eliminated HCV-RNA from their sera. In the serum negative group, HCV-RNA was detected in PBMCs of 2 patients. The presence of HCV-RNA in PBMCs was confirmed by the FISH technique. In the ECFs-FISH procedure, no signal was found in all examined patients. Our data suggest that PBMCs infected with HCV can serve as a virus reservoir. HCV-RNA serum negative patients who have HCV-RNA in their leukocytes after completion of anti-viral therapy would be at great risk of hepatitis C recurrence. These HCV-RNA serum negative but PBMCs positive patients would be a potential source of HCV spread.  相似文献   

13.
14.
BACKGROUND/AIMS: RNA interference has considerable therapeutic potential, particularly for anti-viral therapy. We previously reported that hepatitis C virus (HCV)-directed small interfering RNA (siRNA; siE) efficiently inhibits HCV replication, using HCV replicon cells. To employ the siRNA as a therapeutic strategy, we attempted in vivo silencing of intrahepatic HCV gene expression by siE using a novel cationic liposome. METHODS: The liposomes consisted of conjugated lactose residues, based on the speculation that lactose residues would effectively deliver siRNA to the liver via a liver specific receptor. The lactosylated cationic liposome 5 (CL-LA5) that contained the most lactose residues introduced the most siRNA into a human hepatoma cell line, which then inhibited replication of HCV replicons. RESULTS: In mice, the siRNA/CL-LA5 complexes accumulated primarily in the liver and were widespread throughout the hepatic parenchymal cells. Moreover, siE/CL-LA5 specifically and dose-dependently suppressed intrahepatic HCV expression in transgenic mice without an interferon response. CONCLUSIONS: The present results indicate that the CL-LA5 we developed is a good vehicle to lead siRNA to the liver. Hence, CL-LA5 will be helpful for siRNA therapy targeting liver diseases, especially hepatitis C.  相似文献   

15.
Hepatitis C virus (HCV) is a main cause of chronic liver disease, which may lead to the development of liver cirrhosis and hepatocellular carcinoma. Therapeutic options are still limited in a significant proportion of patients. Small interfering RNAs (siRNAs) are an efficient tool to inhibit gene expression by RNA interference. As HCV RNA replicates in the cytoplasm of liver cells without integration into the genome, RNA-directed antiviral strategies are likely to successfully block its replication cycle. In this study, a panel of siRNAs was used to target various important regions of the HCV genome [5' untranslated region (UTR), NS3, NS4A, NS4B, NS5B, 3' UTR]. Convergent opposing human H1 and U6 polymerase III promoters were used to generate siRNAs. Target genes in sense and antisense orientation were attached to a luciferase reporter system to test the inhibitory efficiency of both siRNA strands. Our data revealed effective RNA interference against the HCV(+)-strand, the HCV(-)-strand or both strands simultaneously up to 65%. Subsequently, active siRNAs were tested in HCV subgenomic replicon cells and suppression of HCV RNA and NS5B protein levels up to 75% was confirmed. Interestingly, siRNAs that were effective against the sense as well as the antisense strand revealed the greatest inhibitory effects on HCV subgenomic replicons. Additionally, combinations of siRNAs induced a greater inhibition of HCV subgenomic replication of up to 90% proving the potential of this combined antiviral approach.  相似文献   

16.
目的研究慢性丙型肝炎基因1型和非基因1型患者血清HCV—RNA水平和血清载脂蛋白B(ApoB)的关系。方法临床确诊为慢性丙型肝炎的53例患者,采用干扰素联合利巴韦林抗病毒治疗至少24周,Simmonds酶切分型方法进行HCV基因分型,荧光定量聚合酶链反应法(FQ—PCR)定量检测HCV—RNA,全自动生化分析仪检测血清载脂蛋白B,对不同基因型患者血清HCV-RNA水平和载脂蛋白B的关系进行研究分析。结果基因1型和非基因1型慢性丙型肝炎患者的血清HCV-RNA及载脂蛋白B水平差异无统计学意义(P〉0.05);基因1型患者血清载脂蛋白B水平与HCV—RNA载量无明显相关(P〉0.05);非基因1型患者血清载脂蛋白B水平随着HCV-RNA载量的降低呈升高趋势(P〈0.05)。结论不同基因型HCV对干扰素产生不同的应答反应,感染HCV基因1型的患者对干扰素治疗应答率显著低于基因2型和3型。不同基因型HCV感染者血清载脂蛋白B无显著差异,血清ApoB水平在非基因1型患者与干扰素抗HCV应答密切相关。  相似文献   

17.
目的构建含增强型绿色荧光蛋白(EGFP)报告基因的HCV复制子表达载体,并实现其在细胞中的复制表达。方法用分子生物学基因克隆技术对HCV 2a型复制子的基因进行改造,用EGFP基因替代HCV基因组中的包膜基因(E1和E2)体外构建重组单顺反子HCV亚基因组复制子真核表达质粒pcDNA-JFH1-EGFP,经限制性内切酶酶切分析和测序鉴定;脂质体介导转染人肝癌细胞系Huh-7细胞,用荧光显微镜观察EGFP表达,采用半定量RT-PCR方法检测重组复制子的HCV RNA负链,采用Western blot检测HCV NS3蛋白的复制表达,并观察IFN-α对重组质粒表达的HCV RNA复制的抑制作用。结果构建的4个重组质粒酶切分析与预期相符,HCV亚基因复制子表达载体中未发生EGFP和HCV编码区读码框架改变,转染重组载体Huh-7细胞检测到HCV负链及EGFP和HCV NS3蛋白表达。转染后48h,1 000IU/ml和2 000IU/ml IFN-α处理的细胞HCV RNA表达水平分别为未处理组的20.0%和7.6%。结论含EGFP报告基因的单顺反子HCV亚基因组复制子表达载体pcDNA-JFH1-EGFP构建成功,在Huh-7细胞中能有效复制表达,为进一步研究HCV提供了实验平台。  相似文献   

18.
BACKGROUND/AIMS: Small interfering RNAs (siRNAs) are an efficient tool to specifically inhibit gene expression by RNA interference. Since hepatitis C virus (HCV) replicates in the cytoplasm of liver cells without integration into the host genome, RNA-directed antiviral strategies are likely to successfully block the HCV replication cycle. Additional benefit might arise from inhibition of cellular cofactors of HCV replication, such as proteasome alpha-subunit 7 (PSMA7) or Hu antigen R (HuR). METHODS: In this study, we investigated direct and cofactor-mediated inhibition of HCV by a panel of DNA-based retroviral vectors expressing siRNAs against highly conserved HCV sequences or the putative HCV cofactors PSMA7 and HuR. Effects were determined in HCV IRES-mediated translation assays and subgenomic HCV replicon cells. RESULTS: PSMA7- and HuR-directed siRNAs successfully inhibited expression of the endogenous genes, and PSMA7 and HuR silencing significantly diminished HCV replicon RNA and NS5B protein levels. HCV-directed siRNAs substantially inhibited HCV IRES-mediated translation and subgenomic HCV replication. Combinations of PSMA7- and HuR-directed siRNAs with HCV-directed siRNAs revealed additive HCV RNA inhibitory effects in monocistronic replicon cells. CONCLUSIONS: A dual approach of direct- and cofactor-mediated inhibition of HCV replication might avoid selection of mutants and thereby become a powerful strategy against HCV.  相似文献   

19.

Background

Autophagy has been reported to play a pivotal role on the replication of various RNA viruses. In this study, we investigated the role of autophagy on hepatitis C virus (HCV) RNA replication and demonstrated anti-HCV effects of an autophagic proteolysis inhibitor, chloroquine.

Methods

Induction of autophagy was evaluated following the transfection of HCV replicon to Huh-7 cells. Next, we investigated the replication of HCV subgenomic replicon in response to treatment with lysosomal protease inhibitors or pharmacological autophagy inhibitor. The effect on HCV replication was analyzed after transfection with siRNA of ATG5, ATG7 and light-chain (LC)-3 to replicon cells. The antiviral effect of chloroquine and/or interferon-α (IFNα) was evaluated.

Results

The transfection of HCV replicon increased the number of autophagosomes to about twofold over untransfected cells. Pharmacological inhibition of autophagic proteolysis significantly suppressed expression level of HCV replicon. Silencing of autophagy-related genes by siRNA transfection significantly blunted the replication of HCV replicon. Treatment of replicon cells with chloroquine suppressed the replication of the HCV replicon in a dose-dependent manner. Furthermore, combination treatment of chloroquine to IFNα enhanced the antiviral effect of IFNα and prevented re-propagation of HCV replicon. Protein kinase R was activated in cells treated with IFNα but not with chloroquine. Incubation with chloroquine decreased degradation of long-lived protein leucine.

Conclusion

The results of this study suggest that the replication of HCV replicon utilizes machinery involving cellular autophagic proteolysis. The therapy targeted to autophagic proteolysis by using chloroquine may provide a new therapeutic option against chronic hepatitis C.  相似文献   

20.
BACKGROUND: Mutations in nonstructural (NS) hepatitis C virus (HCV) proteins enhance replication in HCV-1a/b replicons. The prevalence of such mutations and their clinical significance in vivo are unknown. METHODS: Parts of HCV NS3 and NS4B-NS5B genes that included 31 in vitro replication-enhancing sites were sequenced for 26 patients with chronic HCV genotype 1 infection. RESULTS: Five patients showed specific mutations within NS3 at sites enhancing replication in the replicon. Those mutations were associated with a slower decrease in HCV RNA concentration during interferon (IFN)- alpha -based therapy (P = .007). Neither specific nor other mutations within NS3 and NS4B-NS5B were associated with baseline HCV RNA concentrations. Within NS5A, fewer mutations in the major HCV strain (P = .001) and increased quasi-species complexity (P = .02) and diversity (P = .02) correlated with increasing baseline HCV RNA concentrations. In silico analyses of NS3 protein structures suggested that the majority of observed mutations did not lead to major conformational changes. CONCLUSIONS: Specific mutations leading to enhanced replication in the replicon system were detected in 5 of 26 patients in vivo and were not associated with baseline HCV RNA concentrations but were associated with a slower decrease in HCV RNA concentration during IFN- alpha -based therapy. Quasi-species heterogeneity of NS5A correlated with baseline HCV RNA concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号