首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythrocytic stages of the malaria parasite Plasmodium falciparum express four related papain-family cysteine proteases, termed falcipains. Falcipain-2 and falcipain-3 are food vacuole hemoglobinases, but determination of the specific roles of these and other falcipains has been incomplete. To better characterize biological roles, we attempted disruption of each falcipain gene in the same strain (3D7) of P. falciparum. Disruption of falcipain-1, falcipain-2, and falcipain-2' was achieved. In each case knockouts multiplied at the same rate as wild-type parasites. The morphologies of erythrocytic falcipain-1 and falcipain-2' knockout parasites were indistinguishable from those of wild-type parasites. In contrast, consistent with previous results, falcipain-2 knockout trophozoites developed swollen, hemoglobin-filled food vacuoles, indicative of a block in hemoglobin hydrolysis and were, compared to wild-type parasites, twice as sensitive to cysteine protease inhibitors and over 1000 times more sensitive to an aspartic protease inhibitor. The falcipain-3 gene could not be disrupted, but replacement with a tagged functional copy was readily achieved, strongly suggesting that falcipain-3 is essential to erythrocytic parasites. Our data suggest key roles for falcipain-2 and falcipain-3 in the development of erythrocytic malaria parasites and a complex interplay between P. falciparum cysteine and aspartic proteases.  相似文献   

2.
There is an urgent need for new anti-malarial drugs to combat the resurgence of resistance to current therapies. To exploit the A/T richness of malaria DNA as a potential target for anti-malarial drugs we tested an A/T-specific DNA synthesis inhibitor, adozelesin, for activity against Plasmodium falciparum in vitro and Plasmodium chabaudi adami in mice. Adozelesin is a DNA alkylating agent that exhibits specificity for the motif A/T, A/T and A. In P. falciparum 3D7 cultures, adozelesin acts as a powerful inhibitor of parasite growth (IC(50) of 70 pM) and is equally potent at killing the drug-resistant strains FCR3 and 7G8. Using a real-time PCR assay, we show that treatment with adozelesin in vitro results in damage of P. falciparum genomic DNA. In synchronized cultures, adozelesin exhibits a concentration-dependent effect on parasitemia and on the development of parasites through the asexual cycle. In asynchronous cultures, parasites arrest at all stages of the asexual cycle suggesting that adozelesin exerts other anti-parasitic effects in addition to inhibiting DNA replication. These anti-parasite effects are irreversible since cultures exposed to adozelesin for more than 6h fail to recover upon removal of the drug. Furthermore, adozelesin is very effective at suppressing malaria infection in vivo; growth of P. c. adami DK in mice was highly impaired by a single injection of adozelesin (25 microg/kg) at 4 days post-infection. These results demonstrate that adozelesin irreversibly blocks parasite growth in vitro and suppresses parasite infection in vivo, suggesting that A/T-specific DNA damaging agents represent a new class of compounds with potential as anti-malarials.  相似文献   

3.
To find a new anti-malarial medicine derived from natural resources, we examined the leaves of 13 common Japanese plants in vitro. Among them, a leaf-extract of Hydrangea macrophylla, a common Japanese flower, inhibited the parasitic growth of Plasmodium falciparum. The IC50 of Hydrangea macrophylla leaf extract to Plasmodium falciparum was 0.18 microg/ml. The IC50 to NIH 3T3-3 cells, from a normal mouse cell line, was 7.2 microg/ml. Thus, selective toxicity was 40. For the in vivo test, we inoculated Plasmodium berghei, a rodent malaria parasite, to ddY mice and administered the leaf-extract of Hydrangea macrophylla (3.6 mg/0.2 ml) orally 3 times a day for 3 days. Malaria parasites did not appear in the blood of in the treated mice, but they did appear in the control group on day 3 or 4 after inoculation with the parasites. When leaf extract was administered to 5 mice 2 times a day for 3 days, malaria parasites did not appear in 4 of the mice but did appear in 1 mouse. In addition, the leaf-extract was administered orally 3 times a day for 3 days to Plasmodium berghei infected mice with a parasitemia of 2.7%. In the latter group, malaria parasites disappeared on day 3 after initiating the treatment, but they appeared again after day 5 or 6. Although we could not cure the mice entirely, we confirmed that the Hydrangea macrophylla leaf extract did contain an anti-malarial substance that can be administered orally.  相似文献   

4.
Malaria proteases are attractive anti-malarial targets because of their roles in parasite development and infection. Falcipain-2 (FP-2), a food vacuole cysteine protease in Plasmodium falciparum, is involved in hemoglobin degradation and cleavage of cytoskeletal elements. To understand the route of trafficking and identify the signals involved in trafficking to food vacuole, we have generated transgenic parasites expressing green fluorescent protein (GFP) fusion proteins comprising of N-terminal regions of falcipain-2 fused to GFP. Using falcipain2-GFP chimeras and anti-falcipain-2 antibody, we show that falcipain-2 is trafficked through a classical vesicle mediated secretory pathway involving endoplasmic reticulum and Golgi-like apparatus. Photobleaching and confocal microscopy techniques reveal that falcipain-2 is carried to the food vacuole in the form of cytostomal vesicles. We identify an N-terminal sequence (1-120aa) of falcipain-2, sufficient for its transport to the food vacuole. Analysis of sequences of few other food vacuole targeted proteins suggests a common mechanism for protein trafficking to food vacuole of malaria parasite.  相似文献   

5.
The effect of normal human peripheral blood polymorphonuclear leucocytes on in vitro multiplication of Plasmodium falciparum malaria parasites was investigated. It was shown that normal neutrophils were able to phagocytose parasitized erythrocytes and free parasites and thus inhibit in vitro multiplication of the parasite. Stimulation of the neutrophils by phorbol myristate acetate, a potent stimulus of leucocyte oxidative metabolism, resulted in enhanced inhibition of parasite growth. Superoxide dismutase, scavenger of superoxide anion, catalase, inhibitor of hydrogen peroxide, and sodium azide, inhibitor of myeloperoxidase, did not abrogate the inhibitory ability of the neutrophils. The results indicate that polymorphonuclear leucocytes play an important role in the defence against P. falciparum malaria.  相似文献   

6.
Enzymes involved in sexual differentiation and fertilization of the human malaria parasite Plasmodium falciparum represent potential targets for transmission blocking strategies. Parasite proteases are putatively involved in several steps during fertilization, but the types of proteases, their targets and modes of action remain hitherto unknown. We investigated the involvement of proteases in gametogenesis via exflagellation and immunofluorescence assays, using a variety of commercially available as well as newly designed protease inhibitors. The assays revealed a blockade of microgamete formation by the cysteine/serine protease inhibitors TLCK and TPCK. The serine protease inhibitor PMSF, the falcipain-targeting inhibitor RV112D, and the aspartic protease inhibitor EPNP also significantly decreased formation of microgametes. The metalloprotease inhibitor 1,10-phenanthroline, on the other hand, inhibited exflagellation by interfering with microgamete motility. Furthermore, EPNP reduced the activation of male and female gametocytes. Our data point to a major involvement of serine proteases and a non-thermolysin-like zinc metalloprotease in microgametocyte exflagellation.  相似文献   

7.
Cysteine proteases perform critical roles in the life cycles of malaria parasites. In Plasmodium falciparum, treatment of cysteine protease inhibitors inhibits hemoglobin hydrolysis and blocks the parasite development in vitro and in vivo, suggesting that plasmodial cysteine proteases may be interesting targets for new chemotherapeutics. To determine whether sequence diversity may limit chemotherapy against Plasmodium vivax, we analyzed sequence variations in the genes encoding three cysteine proteases, vivapain-1, -2 and -3, in 22 wild isolates of P. vivax. The sequences were highly conserved among wild isolates. A small number of substitutions leading to amino acid changes were found, while they did not modify essential residues for the function or structure of the enzymes. The substrate specificities and sensitivities to synthetic cysteine protease inhibitors of vivapain-2 and -3 from wild isolates were also very similar. These results support the suggestion that cysteine proteases of P. vivax are promising antimalarial chemotherapeutic targets.  相似文献   

8.
A major obstacle in the global effort to control malaria is the paucity of anti-malarial drugs. This is compounded by the continuing emergence and spread of resistance to old and new anti-malarial drugs in the malarial parasites. Here we describe the anti-malarial effect of phosphorothioate antisense (AS) oligodeoxynucleotides (ODNs) targeting the aldolase enzyme of Plasmodium falciparum, using the asexual blood stages of the parasite grown in vitro. The blood stages of P. falciparum depend almost entirely on the energy produced by their own glycolysis. Aldolase, the fourth enzyme of the glycolytic pathway, is highly upregulated during the malarial 48-h life cycle. We found that the mRNA of this enzyme can be inhibited, in a sequence specific manner, using AS-ODN to the splice sites on the pre-mRNA of malarial aldolase. At the enzyme level, both specific AS-ODNs for the splice sites, as well as for the translation initiation site on mature mRNA, can inhibit aldolase enzyme activity within the trophozoites of P. falciparum. Furthermore, this downregulation of the malarial aldolase results in a reduction in the production of ATP within the parasite. Finally, the treatment reduces parasitemia. In summary, AS-ODNs targeting the aldolase gene of P. falciparum can interfere with the blood-stage life cycle of this parasite in vitro by inhibiting the expression of the enzyme aldolase which results in decreased malarial glycolysis and energy production. Thus, we conclude that blockade of the expression of malarial glycolytic enzymes using specific AS-ODNs has the potential of a new anti-malarial strategy.  相似文献   

9.
The human malaria parasite Plasmodium falciparum causes the most deadly parasitic disease worldwide, necessitating the development of interventions that block infection. Yet, preclinical assays to measure inhibition of infection date from the 1980s and are based on microscopy. Here, we describe the development of a simple flow cytometric assay that can be used to quantitatively assess P. falciparum sporozoite infection in vitro in low and medium throughput. We demonstrate the utility of this assay for assessing both drug inhibition of infection and measuring efficacy of antibodies in blocking parasite infection. This methodology will aid in assessing functional antibody responses to vaccination and novel drugs that prevent mosquito-to-man transmission of malaria.  相似文献   

10.
During mosquito transmission, malaria ookinetes must cross a chitin-containing structure known as the peritrophic matrix (PM), which surrounds the infected blood meal in the mosquito midgut. In turn, ookinetes produce multiple chitinase activities presumably aimed at disrupting this physical barrier to allow ookinete invasion of the midgut epithelium. Plasmodium chitinase activities are demonstrated targets for human and avian malaria transmission blockade with the chitinase inhibitor allosamidin. Here, we identify and characterize the first chitinase gene of a rodent malaria parasite, Plasmodium berghei. We show that the gene, named PbCHT1, is a structural ortholog of PgCHT1 of the avian malaria parasite Plasmodium gallinaceum and a paralog of PfCHT1 of the human malaria parasite Plasmodium falciparum. Targeted disruption of PbCHT1 reduced parasite infectivity in Anopheles stephensi mosquitoes by up to 90%. Reductions in infectivity were also observed in ookinete feeds-an artificial situation where midgut invasion occurs before PM formation-suggesting that PbCHT1 plays a role other than PM disruption. PbCHT1 null mutants had no residual ookinete-derived chitinase activity in vitro, suggesting that P. berghei ookinetes express only one chitinase gene. Moreover, PbCHT1 activity appeared insensitive to allosamidin inhibition, an observation that raises questions about the use of allosamidin and components like it as potential malaria transmission-blocking drugs. Taken together, these findings suggest a fundamental divergence among rodent, avian, and human malaria parasite chitinases, with implications for the evolution of Plasmodium-mosquito interactions.  相似文献   

11.
The intraerythrocytic malaria parasite depends on the surrounding medium for a supply of phospholipid precursors. Efficient inhibition (IC50 7-90 microM) of Plasmodium falciparum growth in vitro was achieved using modified fatty acids. The fatty acid analogues most effective in suppressing P. falciparum growth in culture were also the most active inhibitors of acyl-CoA synthetase from the monkey parasite P. knowlesi.  相似文献   

12.
Killing of Plasmodium falciparum in vitro by nitric oxide derivatives.   总被引:26,自引:8,他引:18       下载免费PDF全文
We have investigated the in vitro susceptibility of the human malaria parasite Plasmodium falciparum to killing by nitric oxide and related molecules. A saturated solution of nitric oxide did not inhibit parasite growth, but two oxidation products of nitric oxide (nitrite and nitrate ions) were toxic to the parasite in millimolar concentrations. Nitrosothiol derivatives of cysteine and glutathione were found to be about a thousand times more active (50% growth inhibitory concentration, approximately 40 microM) than nitrite.  相似文献   

13.
Falcipains form a class of papain-like cysteine proteases found in Plasmodium falciparum. This group of proteases has been suggested to be promising targets for anti-malarial chemotherapy. Despite being the first falcipain to be identified, the physiological role(s) of falcipain 1 (fp1) remains a mystery. Its suggested functions include haemoglobin degradation, erythrocytic invasion and oocyst production. In this study, the procurement of the gene coding for fp1 and its soluble expression in a heterologous host, Escherichia coli, have enabled further enzyme characterization. The recombinant fp1 protease was found to be unlike falcipain 2 (fp2A) in being more active at neutral pH than at acidic pH against the Z-LR-AMC fluorogenic substrate, suggesting a probable localization in the cytosol and not in the food vacuole. Interestingly, a common cysteine specific inhibitor, E64, did not inhibit fp1 activity, indicating dissimilar biochemical characteristics of fp1 from the other falcipains. This may be explained by computational analysis of the primary structures of the falcipain isozymes, as well as that of papain. The analysis revealed that Tyr61 (papain numbering), which is correspondingly absent in fp1, might be an important residue involved in E64 substrate binding.  相似文献   

14.
Clinical histories with regard to falciparum malaria were collected from adults living in holo-, hyper-, and hypoendemic areas of Sudan and matched to serum samples which were assayed for antiparasitic activity in cultures of Plasmodium falciparum. The adult population of the endemic areas could be divided into three groups based on oral histories: those who never experience falciparum malaria; those with a childhood history of malaria, who experience only mild occasional malaria as adults; and those who suffer serious recurring malaria symptoms. In vitro parasite inhibition was greatest with sera from individuals with no clinical histories of malaria, and generally, more inhibition was noted in sera from holoendemic versus hyperendemic areas. Serum from hypoendemic urban Khartoum was not inhibitory. There was no relationship between serum indirect fluorescent antibody titers and parasite inhibition, but there was strong association between clinical immunity and intraerythrocytic parasite inhibition resulting in "crisis" forms. Purified immunoglobulin G was not strongly associated with crisis forms, which were consistently associated with fractions of immune serum remaining after immunoglobulin removal. Thus, it appears that clinical immunity to malaria in Sudan is based on nonantibody serum factors, possibly associated with cell-mediated immunity. Human leukocyte alpha-interferon had no inhibitory effects on cultured P. falciparum. Some umbilical cord sera were profoundly inhibitory, producing crisis forms, whereas others were not inhibitory, suggesting that factors that induce crisis forms may play a role in protecting neonates from falciparum malaria.  相似文献   

15.
The malaria parasite Plasmodium falciparum undergoes distinct morphologic changes during its 48-h life cycle inside human red blood cells. Parasite proteinases appear to play important roles at all stages of the erythrocytic cycle of human malaria. Proteases involved in erythrocyte rupture and invasion are possibly required to breakdown erythrocyte membrane skeleton. To identify such proteases, soluble cytosolic extract of isolated trophozoites/schizonts was incubated with erythrocyte membrane ghosts or spectrin-actin depleted inside-out vesicles, which were then analyzed by SDS-PAGE. In both cases, a new protein band of 155 kDa was detected. The N-terminal peptide sequencing established that the 155 kDa band represents truncated ankyrin. Immunoblot analysis using defined monoclonal antibodies confirmed that ankyrin was cleaved at the C-terminus. While the enzyme preferentially cleaved ankyrin, degradation of protein 4.1 was also observed at high concentrations of the enzyme. The optimal activity of the purified enzyme, using ankyrin as substrate, was observed at pH 7.0-7.5, and the activity was strongly inhibited by standard inhibitors of cysteine proteinases (cystatin, NEM, leupeptin, E-64 and MDL 28 170), but not by inhibitors of aspartic (pepstatin) or serine (PMSF, DFP) proteinases. Furthermore, we demonstrate that protease digestion of ankyrin substantially reduces its interaction with ankyrin-depleted membrane vesicles. Ektacytometric measurements showed a dramatic increase in the rate of fragmentation of ghosts after treatment with the protease. Although the role of ankyrin cleavage in vivo remains to be determined, based on our findings we postulate that the parasite-derived cysteine protease activity cleaves host ankyrin thus weakening the ankyrin-band 3 binding interactions and destabilizing the erythrocyte membrane skeleton, which, in turn, facilitates parasite release. Further characterization of the enzyme may lead to the development of novel antimalarial drugs.  相似文献   

16.
The serine repeat antigen (SERA) proteins of the malaria parasites Plasmodium spp. contain a putative enzyme domain similar to that of papain family cysteine proteases. In Plasmodium falciparum parasites, more than half of the SERA family proteins, including the most abundantly expressed form, SERA5, have a cysteine-to-serine substitution within the putative catalytic triad of the active site. Although SERA5 is required for blood-stage parasite survival, the occurrence of a noncanonical catalytic triad casts doubt on the importance of the enzyme domain in this function. We used phage display to identify a small (14-residue) disulfide-bonded cyclic peptide (SBP1) that targets the enzyme domain of SERA5. Biochemical characterization of the interaction shows that it is dependent on the conformation of both the peptide and protein. Addition of this peptide to parasite cultures compromised development of late-stage parasites compared to that of control parasites or those incubated with equivalent amounts of the carboxymethylated peptide. This effect was similar in two different strains of P. falciparum as well as in a transgenic strain where the gene encoding the related serine-type parasitophorous vacuole protein SERA4 was deleted. In compromised parasites, the SBP1 peptide crosses both the erythrocyte and parasitophorous vacuole membranes and accumulates within the parasitophorous vacuole. In addition, both SBP1 and SERA5 were identified in the parasite cytosol, indicating that the plasma membrane of the parasite was compromised as a result of SBP1 treatment. These data implicate an important role for SERA5 in the regulation of the intraerythrocytic development of late-stage parasites and as a target for drug development.  相似文献   

17.
Protective immunity against Plasmodium falciparum develops only after several years of repeated exposure to the malarial parasite. We therefore investigated the possibility that acute malaria was associated with malarial antigen-specific immunosuppression. Peripheral lymphocytes of West Africans with and without P. falciparum infections were tested for their in vitro proliferative responses to a preparation of P. falciparum antigen. There was no significant difference between the magnitude of the proliferative response of lymphocytes from infected as compared to normal Africans, although the responses from both African groups were significantly higher than responses from a group of European controls. Furthermore, no soluble inhibitor of antigen-specific proliferation was present in plasma of infected patients. These observations strongly suggest that if the sluggish development of protective immunity in malaria is based upon infection-related immunosuppression, this occurs without affecting the proliferative responsiveness of specific sensitized, circulating T cells. Preliminary observations also indicate that Europeans residing in Africa and taking malaria prophylaxis may acquire sensitized T cells without experiencing clinically apparent infections.  相似文献   

18.
This study assessed the antimalarial activity of dipyridamole, a well-known vasodilator and inhibitor of platelet aggregation. Dipyridamole was effective against all of the erythrocytic stages such as rings, trophozoites and schizonts, and induced ultrastructural changes during the transition from trophozoite to schizont in vitro. Merozoites were also inhibited from invading dipyridamole-treated erythrocytes. It seems that dipyridamole binds to the erythrocyte membrane blocking the receptors for the merozoite. The 50% inhibitory concentration (IC(50)) of dipyridamole against Plasmodium falciparum infection was 30 nM. The IC(50) of chloroquine decreased from 97.0 nM to 13.7 nM when combined with dipyridamole (0.1 nM). Therefore, we suggest that dipyridamole has antiplasmodial activity due to its ability to arrest parasite development and by inhibiting merozoite invasion of the erythrocytes. Chloroquine activity against P. falciparum is also enhanced by the addition of dipyridamole. Treatment with a combination of chloroquine and dipyridamole may lead to a more effective treatment for chloroquine-resistant strains of P. falciparum.  相似文献   

19.
There is great need to identify and characterize drug targets and chemotherapeutic strategies against malaria. Here we show that a vacuolar-network induced by the human malaria parasite Plasmodium falciparum, is a major import pathway for artemisinin, a leading, new anti-malarial that is known to be effective against drug resistant strains. We also show that artemisinin-treatment induces aberrant, budding of a vacuolar-network membrane protein and its antimalarial activity is additive with toxic sphingolipid analogues that block the network. The data suggest that artemisinin alters membrane protein export from the vacuolar-network and combinations with anti-network reagents have the potential to provide powerful new chemotherapy for drug resistant malaria.  相似文献   

20.
Geldanamycin (GA), an antibiotic of the ansamycin family and an inhibitor of heat shock protein 90 (Hsp90), was previously shown to inhibit the malarial parasite, Plasmodium falciparum. Here we report that cyclosporin A (CsA), an inhibitor of parasitic cyclophilin (Cyp) and protein phosphatase 2B (calcineurin, CN), acted synergistically with GA to inhibit the erythrocytic growth of the parasite. Parasitic calcineurin associated with Hsp90 in vivo, and GA inhibited the association, but CsA had no effect. In a number of CsA-resistant (CsA(R)) P. falciparum clones mutations were detected in functionally significant amino acid residues of the catalytic and regulatory subunits of calcineurin (CnA and CnB, respectively) and in two out of three parasitic cyclophilins, namely Cyp19A and Cyp19B. No mutation was detected in the third cyclophilin, Cyp24. Further analysis of the mutant CnA revealed that its protein phosphatase activity was highly CsA-resistant in vitro. Similarly, one of the mutant Cyp19A proteins was purified and found to be unable to inhibit parasitic CN in the presence of CsA. Together, these results underscore the importance of the proper assembly and function of CN in plasmodial biology and suggest that the inhibition of CN can be a potential mechanism behind the CsA-sensitivity of the malaria parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号