首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mammalian neocortex, neurons containing tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, constitute an enigmatic and ill-defined group of aspiny non-pyramidal cells. In the human neocortex, these neurons are mostly found in layers V-VI, the same layers in which another conspicuous group of nitrergic non-pyramidal cells are found - those containing nitric oxide synthase (nNOS) and that can be labeled by nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. The main aim of the present study was to determine the extent to which neurons and fibers containing TH, NADPHd or nNOS co-localize in the human temporal cortex, using immunocytochemistry and NADPHd histochemistry. Furthermore, we have quantified the degree to which axons immunoreactive (ir) for TH contact the somata of neurons by co-labeling with the neuron-specific nuclear protein NeuN. As a result, we show that the population of TH-ir neurons can be subdivided into two main neurochemical groups: those expressing nNOS (26%) and those that do not (74%). There was no co-localization of TH with nNOS in the prominent horizontally oriented plexus of fibers in layer I and we did not observe any double bouquet cells, chandelier cells or basket cells that contained TH. Finally, we observed that only 6% of the TH-ir axonal boutons examined (n = 1724) could be seen to contact neuronal somata. Thus, most TH-ir axons must form synapses with dendrites. In conjunction with data from previous studies, these results suggest that TH is found in different neurochemically defined subpopulations of non-pyramidal neurons in layers V-VI of the human temporal cortex. Consequently, it appears that a partial overlap of the catecholaminergic and nitrergic systems is probably due to the intrinsic cortical TH-nNOS-ir neurons.  相似文献   

2.
The role of basal forebrain-derived cholinergic afferents in the development of neocortex was studied in postnatal rats. Newborn rat pups received intraventricular injections of 192 IgG-saporin. Following survival periods ranging from 2 days to 6 months, the brains were processed to document the cholinergic lesion and to examine morphological consequences. Immunocytochemistry for choline acetyltransferase (ChAT) and in situ hybridization for ChAT mRNA demonstrate a loss of approximately 75% of the cholinergic neurons in the medial septum and nucleus of the diagonal band of Broca in the basal forebrain. In situ hybridization for glutamic acid decarboxylase mRNA reveals no loss of basal forebrain GABAergic neurons. Acetylcholinesterase histochemistry demonstrates a marked reduction of the cholinergic axons in neocortex. Cholinergic axons are reduced throughout the cortical layers; this reduction is more marked in medial than in lateral cortical areas. The thickness of neocortex is reduced by approximately 10%. Retrograde labeling of layer V cortico-collicular pyramidal cells reveals a reduction in cell body size and also a reduction in numbers of branches of apical dendrites. Spine densities on apical dendrites are reduced by approximately 20-25% in 192 IgG- saporin-treated cases; no change was detected in number of spines on basal dendrites. These results indicate a developmental or maintenance role for cholinergic afferents to cerebral cortical neurons.   相似文献   

3.
We studied the involvement of deep cortical layer neurons in processing callosal information in the rat. We observed with electron microscopy that both parvalbumin (PV)-labeled profiles and unlabeled dendritic spines of deep cortical layer neurons receive synapses from the contralateral hemisphere. Stimulation of callosal fibers elicited monosynaptic excitatory postsynaptic currents in both layer VI pyramidal neurons and gamma-aminobutyric acidergic (GABAergic) interneurons immunopositive for the vesicular GABA transporter and PV. Pyramidal cells had intrinsic electrophysiological properties and synaptic responses with slow kinetics and a robust N-metyhl-D-aspartate (NMDA) component. In contrast, GABAergic interneurons had intrinsic membrane properties and synaptic responses with faster kinetics and a less pronounced NMDA component. Consistent with these results, the temporal integration of callosal input was effective over a significantly longer time window in pyramidal neurons compared with GABAergic interneurons. Interestingly, callosal stimulation did not evoke feedforward inhibition in all GABAergic interneurons and in the majority of pyramidal neurons tested. Furthermore, retrogradely labeled layer VI pyramidal neurons of the contralateral cortex responded monosynaptically to callosal stimulation, suggesting interconnectivity between callosally projecting neurons. The data show that pyramidal neurons and GABAergic interneurons of deep cortical layers receive interhemispheric information directly and have properties supporting their distinct roles.  相似文献   

4.
In spite of accumulating evidence on the potent neuromodulatory, neuroprotective, trophic and memory-enhancing effects of the neuropeptide substance P (SP) in the cerebral cortex, the excitatory or inhibitory nature of the cortical SP innervation remains unclear and the postsynaptic targets of SP fibers are not defined. To obtain further insight into these issues, we have examined SP-containing axons and their postsynaptic targets in the prefrontal cortex of adult monkeys with single- and double label immunocytochemistry combined with light and correlated electron microscopy. SP fibers in the primate prefrontal cortex, unlike those in the rat cortex, preferentially innervate cortical layers I, II and upper layer III. Our results demonstrate for the first time that all SP-immunoreactive boutons in all cortical layers contain GABA. Of the entire sample of SP boutons, 53% synapse on dendritic shafts, 39% on dendritic spines and 8% on cell bodies. Another new finding is that synapse-forming SP boutons, in addition to their known innervation of pyramidal cells, form pericellular baskets around interneurons in layers II and upper III, a subpopulation of which contains calbindin D28k. Finally, the study also revealed that SP boutons frequently participate in 'synaptic triads' with spines which receive another (asymmetric, putatively excitatory amino acid-utilizing) synapse. Our findings indicate that SP/GABA axons in the primate prefrontal cortex modulate excitatory amino acid- mediated neurotransmission and control feed-forward disinhibitory GABAergic circuits in supragranular cortical layers.   相似文献   

5.
Pyramidal neurons in layers V and VI of cat primary auditory cortex (AI) were intracellularly injected with biocytin after functional characterization according to a position relative to an anteroposterior sequence of best-frequency responses. A sample of 19 completely filled neurons was analyzed, and a preliminary classification was made on the basis of dendritic morphology and axon collateral distribution. Layer V cells could be divided into two types. Cells in the upper part of layer V and projecting toward the diencephalon had a large cell body and an apical dendrite with extensive branches in layer I. These cells had few recurrent axon collaterals, and no terminal axonal bushes were formed in the vicinity of the dendritic field. Long horizontal collaterals with many boutons, however, extended in various directions parallel to the cortical surface. By contrast, cells in the lower part of layer V and sending an axon into the putamen, or without an obvious subcortical axon, had a medium soma and an apical dendrite with few branches in layer I. These cells had a dense bush of recurrent collaterals extending into layers II and III and surrounding the dendritic field, but few or no horizontal collaterals. Layer VI injected neurons were more heterogeneous. All had a thin ascending dendrite with oblique branches both ending in layer III. Axon collateral distributions varied from cell to cell. Relatively small cells with an apical dendrite that branched frequently in layers III and IV had a dense network of recurrent collaterals in the dendritic field, but virtually no horizontal collaterals. This type projected toward the diencephalon. Cells with relatively long horizontal collaterals and a weak recurrent system confined to layers V and VI had a unique arborization pattern of basal dendrites. This type may have projected to the claustrum or other cortical areas. One cell with dendritic branches restricted to layer VI had horizontal collaterals predominantly in layer VI. This cell projected into the corpus callosum. The apparent close correlation between extrinsic projections of infragranular neurons and their dendritic morphology and intracortical collateral distributions suggests that differentially projecting cells may engage different elements of intracortical circuitry in AI.  相似文献   

6.
The present study bears on afferents that terminate in layer VI of the posteromedial barrel field in the rat. Their origin was determined by the retrograde transport of cholera toxin, and their axonal arborizations were revealed by targeting injections of biotinylated dextran amine in regions that contained retrogradely labeled neurons. Afferents to lamina VI arise from the thalamus (the ventral posteromedial, the posterior group and the intralaminar nuclei), the claustrum and the infragranular layers of other somatomotor regions of the neocortex (the motor, second somatosensory and perirhinal cortices). Among these afferent systems, corticocortical axons, particularly those issuing from the motor cortex, give rise to the most profuse projections in layer VI, whereas thalamic and claustral afferents form sparse terminal fields. Because corticothalamic cells represent approximately 50% of the neuronal population in lamina VI and 73% of their dendritic processes are deployed locally, it seems likely that afferents arising from the infragranular layers of the motor cortex may directly influence the firing of these neurons. These anatomical data suggest that the role of corticothalamic pathways should be studied from the viewpoint that sensory perception is an active process which operates under the guidance of motor activities.   相似文献   

7.
Gonadal hormones are known to broadly influence cortical information processing. Findings from this study in rats suggest that for androgens, this influence may include stimulation of underlying corticocortical connections. First, immunoreactivity for intracellular androgen receptors, while present in all regions and layers examined, was found to be particularly abundant in sensory and motor regions, and within these, within their major pyramidal cell layers, i.e. layers II/III and V/VI. Double labeling immunocytochemical studies for androgen receptors and for neuron-specific markers then confirmed that the majority of receptor-bearing cortical cells were pyramidal neurons. Finally, combined analyses of cortical receptor immunoreactivity and retrograde labeling produced by tracer injections made in specific subcortical (caudate, nucleus accumbens, superior colliculus, thalamus) areas yielded only isolated examples of receptor/tracer overlap. However, injections made within the cortex itself (sensory, motor, associational areas) retrogradely labeled cortical cells some 50% or more - especially within injected hemispheres, were receptor-immunoreactive. Thus, the regional, laminar, and cellular distributions of immunoreactivity in the rat cerebrum largely identify pyramidal neurons with connectional signatures aligning intracellular androgen receptors with the local, associational, and to a lesser degree, callosal circuits that interlink territories of the cortical mantle and play key roles in cortical information processing.  相似文献   

8.
During development, a cerebral cortex appears in the wall of the telencephalic vesicle in reptiles and mammals. It arises from a cell-dense cortical plate, which develops within a primordial preplate. The neurons of the preplate are essential for cortical development; they regulate the neuronal migration of the cortical plate neurons and form the first axonal connections. In the reptilian cortex and in the hippocampus of the mammalian cerebral cortex, most ingrowing afferent axons run above the cortical plate, in the zone where the receptive tufts of apical dendrites of the cortical pyramidal neurons branch extensively. In the mammalian neocortex, however, axons enter mainly from below the cortical plate where they do not encounter the apical tufts of these pyramidal neurons. In this paper, we discuss the idea that this difference in cortical development has relieved a functional constraint in the expansion of the cortex during evolution. We hypothesize that the entrance of axons below the cell-dense cortical plate, together with the inside-out migration of cortical neurons, ensures that the neocortex remains an "open" system, able to differentiate into new (sub)layers and more cortical areas.  相似文献   

9.
Neocortical circuits share anatomical and physiological similarities among different species and cortical areas. Because of this, a 'canonical' cortical microcircuit could form the functional unit of the neocortex and perform the same basic computation on different types of inputs. However, variations in pyramidal cell structure between different primate cortical areas exist, indicating that different cortical areas could be built out of different neuronal cell types. In the present study, we have investigated the dendritic architecture of 90 layer II/III pyramidal neurons located in different cortical regions along a rostrocaudal axis in the mouse neocortex, using, for the first time, a blind multidimensional analysis of over 150 morphological variables, rather than evaluating along single morphological parameters. These cortical regions included the secondary motor cortex (M2), the secondary somatosensory cortex (S2), and the lateral secondary visual cortex and association temporal cortex (V2L/TeA). Confirming earlier primate studies, we find that basal dendritic morphologies are characteristically different between different cortical regions. In addition, we demonstrate that these differences are not related to the physical location of the neuron and cannot be easily explained assuming rostrocaudal gradients within the cortex. Our data suggest that each cortical region is built with specific neuronal components.  相似文献   

10.
Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in "top-down" interactions in the cerebral cortex. A large population of thalamocortical cells, the "matrix" (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.  相似文献   

11.
Chandelier cells represent a unique type of cortical GABAergic interneuron whose axon terminals (Ch-terminals) form synapses exclusively with the axon initial segments of pyramidal cells. In this study, we have used immunocytochemistry for the high-affinity plasma membrane transporter-1 (GAT-1) to analyze the distribution and density of Ch-terminals in various cytoarchitectonic and functional areas of the human neocortex. The lowest density of GAT-1-immuoreactive (-ir) Ch-terminals was detected in the primary and secondary visual (areas 17 and 18) and in the somatosensory areas (areas 3b and 1). In contrast, an intermediate density was observed in the motor area 4 and the associative frontolateral areas 45 and 46, whereas the associative frontolateral areas 9 and 10, frontal orbitary areas 11, 12, 13, 14, and 47, associative temporal areas 20, 21, 22, and 38, and cingulate areas 24 and 32 displayed the highest density of GAT-1-ir Ch-terminals. Despite these differences, the laminar distribution of GAT-1-ir Ch-terminals was similar in most cortical areas. Hence, the highest density of this transporter was observed in layer II, followed by layers III, V, VI, and IV. In most cortical areas, the density of GAT-1-ir Ch-terminals was positively correlated with the neuronal density, although a negative correlation was detected in layer III across all cortical areas. These results indicate that there are substantial differences in the distribution and density of GAT-1-ir Ch-terminals between areas and layers of the human neocortex. These differences might be related to the different functional attributes of the cortical regions examined.  相似文献   

12.
Alterations in neuronal morphology occur in primate cerebral cortex during normal aging, vary depending on the neuronal type, region and cortical layer, and have been related to memory and cognitive impairment. We analyzed how such changes affect a specific subpopulation of cortical neurons forming long corticocortical projections from the superior temporal cortex to prefrontal area 46. These neurons were identified by retrograde transport in young and old macaque monkeys. Dendritic arbors of retrogradely labeled neurons were visualized in brain slices by intracellular injection of Lucifer Yellow, and reconstructed three-dimensionally using computer-assisted morphometry. Total dendritic length, numbers of segments, numbers of spines, and spine density were analyzed in layer III pyramidal neurons forming the projection considered. Sholl analysis was used to determine potential age-related changes in dendritic complexity. We observed statistically significant age-related decreases in spine numbers and density on both apical and basal dendritic arbors in these projection neurons. On apical dendrites, changes in spine numbers occurred mainly on the proximal dendrites but spine density decreased uniformly among the different branch orders. On basal dendrites, spine numbers and density decreased preferentially on distal branches. Regressive dendritic changes were observed only in one particular portion of the apical dendrites, with the general dendritic morphology and extent otherwise unaffected by aging. In view of the fact that there is no neuronal loss in neocortex and hippocampus in old macaque monkeys, it is possible that the memory and cognitive decline known to occur in these animals is related to rather subtle changes in the morphological and molecular integrity of neurons subserving identifiable neocortical association circuits that play a critical role in cognition.  相似文献   

13.
Subdural hematoma causes cortical damage including brain tissue disruption, often resulting in neuronal dysfunction and neurological impairment. The aim of the present study was to identify the relationship between cerebral compression and neuronal injury. In this report, we investigated time-dependent morphological alterations within layers II, III, and V pyramidal neurons in the cerebral cortex, using Golgi-Cox staining and immunohistochemistry for microtubule-associated protein 2 (MAP2) in a rat model of focal cortical compression. An acryl pole was used to experimentally induce chronic cerebral compression by continuous pressure on the cortical surface. Changes in cellular morphology were examined at five survival time periods: 12?h and 1, 2, 3, and 4 weeks. The Golgi-Cox method revealed time-dependent alterations in dendritic length of apical and basilar dendrites of pyramidal neurons. The number of dendritic branch segments and spines of basilar dendrites were decreased in cells in layers II, III, and V. Immunohistochemical staining for MAP2 revealed changes in the intracellular distribution of immunoreactive materials. A significant reduction in MAP2 immunostaining was found in nerve cell bodies and apical dendrites of ipsilateral cortical neurons. The number of MAP2-immunoreactive neurons was significantly decreased at 12?h compared with the contralateral cerebral cortex in the same animal. Dendritic changes in layers II, III, and V pyramidal neurons were accompanied by reductions in intracellular MAP2-immunoreactive materials. The present results suggest that cortical compression causes alteration of cellular morphology as a consequence of injury, and that these morphological changes may be related to reductions in MAP2-immunoreactive materials.  相似文献   

14.
We developed a rat model of epidural plastic bead implantation to study the effect of physical compression on the cerebral cortex. Epidural implantation of a bead of appropriate size compressed the underlying sensorimotor cortex without apparent ischemia, since the capillary density of the cortex was increased. Although the thickness of all layers of the compressed cortex was significantly decreased, no apparent changes in the number of NADPH-diaphorase reactive neurons, reactive astrocytes, or microglial cells were observed, nor were apoptotic neurons observed. In fact, the densities of the neurons in most cortical layers apparently increased. To determine how epidural compression affects neuronal morphology, the dendritic arbors of layer III and V pyramidal neurons were evaluated using a fixed tissue intracellular dye injection technique. Neurons in both layers remained pyramidal in shape and their somatic sizes remained unaltered for at least a month after compression. On the other hand, their total dendritic length was significantly reduced beginning at 3 days post implantation. These analyses showed that apical dendrites were affected sooner than basal ones. The reduction of dendritic length was associated with a drop in the number of dendritic branches rather than dendritic trunks, suggesting the trimming of the peripheral part of the dendritic arbor. Detailed analysis showed that dendritic spines on all dendrites were reduced as early as 3 days following implantation. These results suggest that cortical neurons remodel their structures substantially within 3 days after being subjected to epidural compression.  相似文献   

15.
In the developing cerebral cortex, neuronal nitric oxide synthase (nNOS) is expressed abundantly, but temporarily. During the early postnatal stage, cortical neurons located in the multi-layered structure of the cortical plate start forming well-organized cortical circuits, but little is known about the molecular machinery for layer-specific circuit formation. To address the involvement of nitric oxide (NO), we utilized a new NO indicator (DAR-4M) and developed a protocol for the real-time imaging of NO produced in fresh cortical slices upon N-methyl-D-aspartic acid stimulation. At postnatal day 0 (P0), NO production was restricted to the deep layers (layers V and VI) of the somatosensory cortex where transient synapses are formed. At P10, the production of NO was expanded to layer IV where large numbers of thalamocortical axons form synapses. The pattern of NO production could correspond to active sites for synaptic formation. This study is the first clear demonstration of NO production in the postnatal mouse neocortex. The findings presented may reflect a function of NO in relation to the layer-specific development of neural circuits in the neocortex.  相似文献   

16.
17.
Cholinergic innervation of the cerebral neocortex arises fromthe basal forebrain and projects to all cortical regions. Acetylcholinesterase(AChE), the enzyme responsible for deactivating acetylcholine,is found within both cholinergic axons arising from the basalforebrain and a subgroup of pyramidal cells in layers III andV of the cerebral cortex. This pattern of staining varies withcortical location and may contribute uniquely to cortical microcircuitrywithin functionally distinct regions. To explore this issuefurther, we examined the pattern of AChE staining within auditory,auditory association, and putative language regions of whole,postmortem human brains. The density and distribution of acetylcholine-containing axonsand pyramidal cells vary systematically as a function of auditoryprocessing level. Within primary auditory regions AChE-containingaxons are dense and pyramidal cells are largely absent. Adjacentcortical regions show a decrease in the density of AChE-containingaxons and an increase in AChE-containing pyramidal cells. Theposterior auditory and language regions contain a relativelyhigh density of AChE-containing pyramidal cells and AChE-containingaxons. Although right and left posterior temporal regions arefunctionally asymmetrical, there is no apparent asymmetry inthe general pattern of AChE staining between homologous regionsof the two hemispheres. Thus, the pattern of AChE staining covarieswith processing level in the hierarchy of auditory corticalregions, but does not vary between the functionally distinctright and left posterior regions. An asymmetry in the size of layer III AChE-rich pyramidal cellswas present within a number of cortical regions. Large AChE-richpyramidal cells of layer III were consistently greater in sizein the left hemisphere as compared to the right. Asymmetry inlayer III pyramidal cell size was not restricted to language-associatedregions, and could potentially have a variety of etiologiesincluding structural, connectional, and activational differencesbetween the left and right hemisphere.  相似文献   

18.
Prenatal exposure to cocaine has the potential to modify normalbrain development and result in behavioral dysfunction. We useda new animal model in which cocaine was administered intravenouslyduring prenatal development in pregnant rabbits twice dailyat low dosages. Analysis of brain development focused on twoareas of the cerebral cortex, anterior cingulate and primaryvisual, in which dopamine afferents, a target of cocaine, aredifferentially distributed. All postnatal rabbits exposed tococaine prenatally exhibited normal features of cortical organization,including thickness, lamination patterns, and cytoarchitectonicdifferentiation. General axonal and astroglial organization,assessed by neurofilament-H and glial fibrillary acidic proteinimmunostaining, also was unchanged in the cocaine-exposed animals.Analysis of dendritic organization was done using antibodiesagainst microtubule-associated protein 2 (MAP2), which revealsmostly the larger apical shafts of cortical pyramidal cells.In the anterior cingulate cortex of adolescent rabbits exposedto cocaine in utero, there is a marked decrease in both dendriticbundling and typical long, straight MAP2-stained profiles. Innormal animals, the long, bundled dendrites are readily tracedin a single focal plane from layer III or V pyramidal cell somatato the pial surface in saline-treated animals. Instead, thedrug-exposed animals contained many more short segments of MAP2-staineddendrites that could be viewed coursing in and out of the planeof focus in the sections. Apical dendrites in mature visualcortex appeared normal in the cocaine-exposed rabbits. Examinationof MAP2 staining at various postnatal ages revealed that thedendritic changes expressed in the adolescent anterior cingulatecortex appeared less robust, but still evident at birth. ByP10–14, dendritic modifications were similar to the adultCounts of the number of MAP2-positive dendritic profiles crossingthe layer II–III interface reached a nadir of 50% in thecocaine-exposed animals, indicative of a change in the organizationof the apical dendrites compared to the control animals. Dendriticprofiles of anterior cingulate neurons, filled by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyaninepercholate (Dil), confirmed that in the cocaine offspring, thedendrites coursed in an irregular, wavy manner from deep tosuperficial layers, suggestive of dendrites that were longerthan normal, although cortical thickness was unchanged. Thealtered dendritic profiles also were seen in Golgi-impregnatedneurons. The data indicate that prenatal exposure to cocainecan lead to specific alterations of neuronal growth that arelong lasting. The lack of dendritic changes in visual cortexsuggests that the drug does not modify development of corticalregions uniformly. This study also provides a new focus on theanterior cingulate cortex as a site in which aberrant structure-functionrelationships following prenatal cocaine exposure should beexamined in both animal models and clinically.  相似文献   

19.
The present study investigates the effect of cholinergic basal forebrain lesions at birth on cortical connectivity in adulthood. We have previously shown that such neonatal lesions result in extensive cortical cholinergic deafferentation during early postnatal development, which is accompanied by abnormal morphogenesis of cortical cytoarchitecture (H?hmann at al., 1988). Here, we have used WGA-HRP to label anterogradely and retrogradely afferent and efferent projections of dorsal neocortex. Our results show an altered projection pattern from dorsal thalamus to layer IV of sensory-motor cortex following lesions among the cholinergic basal forebrain neurons (nBM), while corticothalamic projections from layer VI appear normal. In addition, corticofugal projections from layer V, labeled by striatal injection, appear to be expanded following the lesion. This indicates that cortical layers undergoing differentiation after the newborn nBM lesion present with long-term abnormalities in connectivity. The present results are compatible with the hypothesis that cholinergic afferents are instrumental in the regulation of cortical morphogenesis. Furthermore, our data show that ontogenetic disturbances can lead to structural abnormalities that persist long after the initial deficiency has abated. We discuss the significance of these results in relationship to human neurological disorders.  相似文献   

20.
Previous analyses of the spiny layer IV neurons have almost exclusively focused on spiny stellate cells. Here we provide detailed morphological data characterizing three subpopulations of spiny neurons in slices of adolescent rats: (i) spiny stellate cells (58%), (ii) star pyramidal cells (25%) and (iii) pyramidal cells (17%), which can be distinguished objectively by the preferential orientation of their dendritic stems. Spiny stellate cells lacked an apical dendrite and frequently confined their dendritic and axonal arbors to the respective column. Star pyramidal and pyramidal cells possessed an apical dendrite, which reached the supragranular layers. Their axonal arbors were similar, showing both a columnar component and transcolumnar branches with direct transbarrel projections. However, a small fraction of star pyramidal cells possessed few or even no transcolumnar branches. Electrophysiologically, all three types of neurons were either regular-spiking or intrinsically burst-spiking without a significant relation to the morphological subtypes. The basic synaptic properties of thalamic inputs were also independent of the type of target layer IV spiny neuron. All remained subthreshold and showed paired-pulse depression. In conclusion, the columnar axonal arborization of spiny stellate cells is supplemented by a significant oblique to horizontal projection pattern in pyramidal-like neurons. This offers a structural basis for either segregation or early context-dependent integration of tactile information, in a cell-type specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号