首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are several different technical approaches to the isolation of hematopoietic stem cells (HSCs) with long-term repopulating ability, but these have problems in terms of yield, complexity, or cell viability. Simpler strategies for HSC isolation are needed. We have enriched primitive hematopoietic progenitors from murine bone marrow of mice from different genetic backgrounds by lineage depletion followed by selection of cells with high aldehyde dehydrogenase activity using the Aldefluor reagent (BD Biosciences, Oxford, U.K.). Lin- ALDH(bright) cells comprised 26.8 +/- 1.0% of the total Lin- population of C57BL6 mice, and 23.5 +/- 1.0% of the Lin- population of BALB/c mice expressed certain cell-surface markers typical of primitive hematopoietic progenitors. In vitro hematopoietic progenitor function was substantially higher in the Lin- ALDH(bright) population compared with the Lin- ALDH(low) cells. These cells have higher telomerase activity and the lowest percentage of cells in S phase. These data strongly suggest that progenitor enrichment from Lin- cells on the basis of ALDH is a valid method whose simplicity of application makes it advantageous over conventional separations.  相似文献   

2.
The tubules of the kidney display a remarkable capacity for self-renewal on damage. Whether this regeneration is mediated by dedifferentiating surviving cells or, as recently suggested, by stem cells has not been unequivocally settled. Herein, we demonstrate that aldehyde dehydrogenase (ALDH) activity may be used for isolation of cells with progenitor characteristics from adult human renal cortical tissue. Gene expression profiling of the isolated ALDH(high) and ALDH(low) cell fractions followed by immunohistochemical interrogation of renal tissues enabled us to delineate a tentative progenitor cell population scattered through the proximal tubules (PTs). These cells expressed CD24 and CD133, previously described markers for renal progenitors of Bowman's capsule. Furthermore, we show that the PT cells, and the glomerular progenitors, are positive for KRT7, KRT19, BCL2, and vimentin. In addition, tubular epithelium regenerating on acute tubular necrosis displayed long stretches of CD133(+)/VIM(+) cells, further substantiating that these cells may represent a progenitor cell population. Furthermore, a potential association of these progenitor cells with papillary renal cell carcinoma was discovered. Taken together, our data demonstrate the presence of a previously unappreciated subset of the PT cells that may be endowed with a more robust phenotype, allowing increased resistance to acute renal injury, enabling rapid repopulation of the tubules.  相似文献   

3.
CD44分子是一种广泛分布的细胞表面跨膜糖蛋白,在许多方面发挥着重要的生理和病理作用,其中之一就是CD44分子参与血细胞的生成,在血细胞分化成熟的过程中发挥着关键性作用。CD44与一些特异的抗体结合后能够逆转急性髓系白血病幼稚细胞的分化阻滞,从而逆转其恶性细胞的表型,最终使肿瘤细胞的抗原性、功能和细胞生物学特征与正常分化的骨髓系细胞相一致。  相似文献   

4.
Summary: Hematopoietic stem cells (HSC) have the capacity to reconstitute ail the blood cells in the body HSC are rare, representing on average 0.0 5% of the mononuclear cells present in healthy human bone marrow. Due to their capacity for self–renewal and their pluripotent, long–term reconstituting potential. HSC are considered ideal for transplantation to reconstitute the hematopoietic system after treatment for various hematologic disorders or as a target for the delivery of therapeutic genes. Human HSC also have potential applications in restoring the immune system in autoimmune diseases and in the induction of tolerance for allogeneic solid organ transplantation. With the increased interest in human HSC for clinical applications, technology for the isolation of candidate HSC and knowledge of human hematopoiesis have been growing rapidly. In this article, we discuss the functional characterization of a human CD34+ Thy-1+ HSC population which is essentially free of residual disease, our efforts to generate alternate monoclonal antibodies for the isolation of clinically useful stem or progenitor cell populations, and the identification of a novel lymphoid progenitor as part of an exploration towards defining progenitors with potential application as adjuncts to HSC–based cellular therapy.  相似文献   

5.
CUB-domain-containing protein 1 (CDCP1) is a novel transmembrane molecule that is expressed in metastatic colon and breast tumors as well as on the surface of hematopoietic stem cells. In this study, we used multiparameter flow cytometry and antibodies against CDCP1 to analyze the expression of CDCP1 on defined hematopoietic cell subsets of different sources. In addition, CDCP1 expression on leukemic blasts and on cells with nonhematopoietic stem/progenitor cell phenotypes was determined. Here we demonstrate that a subset of bone marrow (BM), cord blood (CB), and mobilized peripheral blood (PB) CD34+ cells expressed this marker and that CDCP1 was detected on CD34(+)CD38- BM stem/progenitor cells but not on mature PB cells. Analysis of leukemic blasts from patients with acute lymphoblastic leukemia, acute myeloid leukemia, and chronic myeloid leukemia in blast crisis revealed that CDCP1 is predominantly expressed on CD34(+)CD133+ myeloid leukemic blasts. However, CDCP1 was not strictly correlated with CD34 and/or CD133 expression, suggesting that CDCP1 is a novel marker for leukemia diagnosis. Stimulation of CD34+ BM cells with CDCP1-reactive monoclonal antibody CUB1 resulted in an increased (approximately twofold) formation of erythroid colony-forming units, indicating that CDCP1 plays an important role in early hematopoiesis. Finally, we show that CDCP1 is also expressed on cells phenotypically identical to mesenchymal stem/progenitor cells (MSCs) and neural progenitor cells (NPCs). In conclusion, CDCP1 is not only a novel marker for immature hematopoietic progenitor cell subsets but also unique in its property to recognize cells with phenotypes reminiscent of MSC and NPC.  相似文献   

6.
The occurrence of acute bilineage leukemia is thought to be the malignant transformation of a myeloid or lymphoid leukemic progenitor with the potential to differentiate into the other lineages; however, the mechanisms of this lineage switch are not well understood. Here, we report on the extremely rare case of adult Philadelphia chromosome-positive acute bilineage leukemia, which is characterized by T-cell acute lymphoblastic leukemia and acute myelomonocytic leukemia. Chromosome analysis showed 46,XY,del(7)(p11.2),t(9;22)(q34;q11.2) in all metaphases and a minor BCR/ABL chimeric gene was detected in these leukemic cells by PT-PCR. When the CD5+ and CD5- cells were sorted, a fusion gene of BCR/ABL and the same clonally rearranged band of a T-cell receptor (TCR) gene were detected in both populations. Nucleotide sequencing of the TCR-gamma gene revealed the clonal rearrangement of the V8-JGT2 complex in both populations. Overexpression of PU.1, which plays a fundamental role in myelomonocyte development, was found in the sorted CD34+CD7+ and CD5-, but not CD5+ cells. These results suggest that leukemic progenitor cells in the T-lineage with the del(7) and t(9;22) have the potential to differentiate into myeloid lineage, and that enforced PU.1 expression may contribute in part of this phenomenon.  相似文献   

7.
目的通过比较乙醛脱氢酶(ALDH)与CD34、CD133及粒单核细胞集落形成单位(CFU—GM)在脐带血中含量的差异.探讨ALDH作为脐带血造血干/祖细胞(HSPC)检测指标的有用性。方法采集新鲜脐带血标本28份,用荧光底物法标记ALDH,流式细胞仪检测脐带血中低侧向角高表达ALDH活性(SSC^loALDH^br)细胞、CD34^+和CD133^+含量,并进行CFU—GM的培养。结果脐带血SSC^loALDH^br细胞表达率在ALDH反应后直接上机检测组(ALDH组)及在ALDH反应后进一步标记抗体再检测组(ALDH+抗体组)分别为(O.32±0.16)%和(0.30±0.17)%,两组相比差异无统计学意义(P〉0.05)。脐带血CD34^+表达率在抗体组和ALDH+抗体组分别为(0.40±0.26)%和(0.36±0.19)%,两组比较差异无统计学意义(P〉0.05);脐带血CD133^+表达率在抗体组和ALDH+抗体组分别为(0.18±0.16)%和(0.17±0.10)%,两组比较差异无统计学意义(P〉0.05)。脐带血SSC^loALDH^br细胞表达率和CD34^+表达率、CD133^+表达率及CFU—GM产率均呈正相关(r分别为0.87、0.69和0.54.P均〈0.01)。结论ALDH反应后进一步标记抗体不影响脐带血SSC^loALDH^br细胞的检测结果,ALDH反应亦不影响进一步标记抗体的检测结果:脐带血SSC^loALDH^br细胞表达率和CD34^+表达率、CD133^+表达率及CFU—GM产率均呈正相关:ALDH活性检测可以作为检测脐带血HSPC的一个有用指标。  相似文献   

8.
Mesenchymal stromal cells (MSCs) support hematopoiesis and are cytogenetically and functionally abnormal in myelodysplastic syndrome (MDS), implying a possible pathophysiologic role in MDS and potential utility as a diagnostic or risk-stratifying tool. We have analyzed putative MSC markers and their relationship to CD34+ hematopoietic stem/progenitor cells (HSPCs) within intact human bone marrow in paraffin-embedded bone marrow core biopsies of benign, MDS and leukemic (AML) marrows using tissue microarrays to facilitate scanning, image analysis and quantitation. We found that CD271+, ALP+ MSCs formed an extensive branching perivascular, periosteal and parenchymal network. Nestin was brightly positive in capillary/arteriolar endothelium and occasional subendothelial cells, whereas CD146 was most brightly expressed in SMA+ vascular smooth muscle/pericytes. CD271+ MSCs were distinct by double immunofluorescence from CD163+ macrophages and were in close contact with but distinct from brightly nestin+ and from brightly CD146+ vascular elements. Double immunofluorescence revealed an intimate spatial relationship between CD34+ HSPCs and CD271+ MSCs; remarkably, 86% of CD34+ HSPCs were in direct contact with CD271+ MSCs across benign, MDS and AML marrows, predominantly in a perivascular distribution. Expression of the intercrine chemokine CXCL12 was strong in the vasculature in both benign and neoplastic marrow, but was also present in extravascular parenchymal cells, particularly in MDS specimens. We identified these parenchymal cells as MSCs by ALP/CXCL12 and CD271/CXCL12 double immunofluorescence. The area covered by CXCL12+ ALP+ MSCs was significantly greater in MDS compared with benign and AML marrow (P=0.021, Kruskal-Wallis test). The preservation of direct CD271+ MSC/CD34+ HSPC contact across benign and neoplastic marrow suggests a physiologically important role for the CD271+ MSC/CD34+ HSPC relationship and possible abnormal exposure of CD34+ HSPCs to increased MSC CXCL12 expression in MDS.  相似文献   

9.
Stem cells have now been described in a variety of tissues, even in those where the cells' turn over rate is slow, such as the brain and the resting mammary gland. There is also accumulating evidence that tumors are derived from and are maintained by a rare population of dysregulated stem cells. However, discrepancies in the markers used and reported have slowed down the functional characterization of these somatic stem cells. To circumvent this challenging issue, universal stem cell markers with properties common to all stem cell types must be discovered and exploited. In line with this idea, the measurement of aldehyde dehydrogenase isoform 1 (ALDH1) activity shows promising potential as a universal marker for the identification and isolation of stem cells from multiple sources. Herein, we review the available data reporting utilization of ALDH1 activity as a means to identify and isolate stem cells and cancer stem cells, with a special focus on the mammary gland and breast cancer.  相似文献   

10.
The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.  相似文献   

11.
Acute myeloid leukemia (AML) with normal cytogenetics represents approximately 40% to 50% of de novo AML. This heterogeneous AML subgroup constitutes the single largest cytogenetic group with an intermediate prognosis. Previous studies have suggested that the Fms-like tyrosine kinase-3 internal tandem duplication (FLT3/ITD) mutation-positive de novo AML may represent a distinctive subgroup of AML. We analyzed the clinical and pathologic features of 15 cases of de novo AML with normal cytogenetics and with the FLT3/ITD mutation. In comparison with patients with AML without the FLT3/ITD mutation, patients with FLT3/ITD+ AML are relatively younger, more often have marked peripheral leukocytosis with a higher number of circulating blasts at initial examination, more often have minimal differentiation morphologic features, more frequently have abnormal CD7 coexpression, and have poorer outcome. Close association of aberrant CD7 expression and FLT3/ITD mutation in the myeloblasts of FLT3/ITD+ AML suggests that FLT3/ITD- mediated leukemic transformation occurs in the more early stage of myeloid progenitor cells.  相似文献   

12.
The hemoglobin-haptoglobin (Hb-Hp) scavenger receptor CD163 is a monocyte/macrophage-restricted surface antigen, whose expression is strongly up-regulated by glucocorticoids. We have previously shown that CD163 is expressed by acute myeloid leukemia (AML) cells of monocytic lineage. Herein, we expand this finding by demonstrating constitutive and glucocorticoid-enhanced CD163 expression on French-American-British M4/M5 AML cells, and leukemic blasts of other AML subtypes and normal hematopoietic progenitor cells do not express CD163. We provide evidence that the functional characteristics of CD163 are preserved on malignant cells by showing the capability of types M4/M5 blast cells to internalize Hb-Hp by a CD163-mediated mechanism. Together, our results identify CD163 as a potential target for therapeutic intervention. It is important that CD163 does not appear to be released from leukemic blasts under noninflammatory conditions, thus reducing the probability of off-target side-effects as a result of competitive binding of potential therapeutic ligands to nonmembrane-bound CD163.  相似文献   

13.
Acute myeloid leukaemia (AML) is a neoplasm originating in early haematopoietic progenitor cells. Each AML clone contains a subpopulation of leukaemic stem cells (LSCs). LSCs have the capacity to repopulate AML in NOD/SCID mice and regrow leukaemia in patients after remission period. LSCs are characterized by CD34+CD38-Lin-CD33+/-CD123+ immunophenotype. The currently available data show that LSCs play a pivotal role in drug resistance. Many studies and clinical trials are being conducted to eradicate LSCs using different forms of target therapy.  相似文献   

14.
AC133+ cells may provide an alternative to CD34+ cells as a target for cell expansion and gene therapy protocols. We examined the differences in proliferative potential between cord blood selected for AC133 or CD34 in serum-free, stroma cell-free culture for up to 30 weeks. Because most hemopoietic stem cells reside within the G0/G1 phase of the cell cycle, we combined enrichment according to AC133 or CD34 expression with G0 position in the cell cycle to identify populations enriched for putative stem cells. Our results show that AC133+ G0 cells demonstrated a long-term culture-initiating cell incidence of 1 in 4.2 cells, had a colony-forming cell incidence of 1 in 2.8 cells, were capable of producing 660 million-fold expansion of nucleated cells and 120 million-fold expansion of colony-forming units-granulocyte-macrophage over a period of 30 weeks, and were consistently superior to CD34+ G0 cells according to these parameters. Furthermore, we have shown that AC133+CD34- cells have the ability to generate CD34+ cells in culture, which suggests that at least some AC133+ cells are ancestral to CD34+ cells. We conclude that AC133 isolation provides a better means of selection for primitive hemopoietic cells than CD34 and that, in combination with isolation according to G0 phase of the cell cycle, AC133 isolation identifies a highly enriched population of putative stem cells.  相似文献   

15.
Accumulating evidence has indicated the importance of cancer stem cells in carcinogenesis. The goal of the present study was to determine the effect of low-dose cisplatin on enriched liver cancer stem cells (LCSCs). Human hepatoblastoma HepG2 cells were treated with concentrations of cisplatin ranging from 1 to 5 μg/mL. Cell survival and proliferation were evaluated using a tetrazolium dye (MTT) assay. LCSCs were identified using specific markers, namely aldehyde dehydrogenase-1 (ALDH1) and CD133. The percentage of ALDH1+ or CD133+ cells was examined by flow cytometric analysis. The expression of ALDH1 and/or CD133 in HepG2 cells was determined by immunocytochemical analysis. Low-dose cisplatin treatment significantly decreased cell survival in HepG2 cells after 24 or 72 h. However, the percentage of LCSCs in the surviving cells was greatly increased. The percentage of ALDH1+ or CD133+ cells was increased in a time- and dose-dependent manner after treatment with 1-4 μg/mL cisplatin, whereas 5 μg/mL cisplatin exposure slightly reduced the number of positive cells. These findings indicate that low-dose cisplatin treatment may efficiently enrich the LCSC population in HepG2 cells.  相似文献   

16.
Isolation of an adult mouse lung mesenchymal progenitor cell population   总被引:6,自引:0,他引:6  
Contained within the adult lung are differentiated mesenchymal cell types (cartilage, smooth muscle, and myofibrobasts) that provide structural support for airways and vessels. Alterations in the number and phenotype of these cells figure prominently in the pathogenesis of a variety of lung diseases. While these cells are thought to arise locally, progenitors have yet to be purified. In previous work, we developed a method for isolating progenitors from lung tissue: this technique takes advantage of the unique ability of cell populations enriched for somatic stem and progenitor activity to efflux the vital dye Hoechst 33342, a feature that permits isolation by flow cytometry-based procedures. Using this method, we determined that a rare population of mesenchymal progenitors resides within the CD45- CD31- Hoechst low fraction of the adult murine lung. Similar to other mesenchymal progenitors, these cells express Sca-1, CD106, and CD44; can be serially passaged; and can differentiate to smooth muscle, cartilage, bone, and fat. Overall, these findings demonstrate that a phenotypically distinct mesenchymal progenitor resides within the adult murine lung, and provide a scheme for their isolation and study.  相似文献   

17.
Prominin-1 (alias CD133) has received considerable interest because of its expression by several stem and progenitor cells originating from various sources, including the neural and hematopoietic systems. As a cell surface marker, prominin-1 is now used for somatic stem cell isolation. Its expression in cancer stem cells has broadened its clinical value, as it might be useful to outline new prospects for more effective cancer therapies by targeting tumor-initiating cells. Cell biological studies of this molecule have demonstrated that it is specifically concentrated in various membrane structures that protrude from the planar areas of the plasmalemma. Prominin-1 binds to the plasma membrane cholesterol and is associated with a particular membrane microdomain in a cholesterol-dependent manner. Although its physiological function is not yet determined, it is becoming clear that this cell surface protein, as a unique marker of both plasma membrane protrusions and membrane microdomains, might reveal new aspects of the cell biology of rare stem and cancer stem cells. The aim of this review is to outline the recent discoveries regarding the dynamic reorganization of the plasma membrane of rare CD133+ hematopoietic progenitor cells during cell migration and division.  相似文献   

18.
Few studies on the long-term culture of postnatal mouse hepatic stem/progenitor cells have been reported. We successfully adapted a serum-free culture system that we employed previously to expand fetal mouse hepatic stem/progenitor cells and maintained them in culture over long periods. The expanded postnatal cells contained immature alpha-fetoprotein-positive cells along with hepatocytic and cholangiocytic lineage-committed cells. These cells expressed CD49f but not CD45, CD34, Thy-1, c-kit, CD31, or flk-1, and oncostatin M induced their differentiation. This heterogeneous population contained side population (SP) cells, which express the ATP-binding cassette transporter ABCG2, and sca-1+ cells. As mice aged, the frequency of SP and sca-1+ cells decreased along with the ability of cultured cells to expand. Approximately 20%-40% of the SP cells expressed sca-1, but only a few sca-1+ cells were also SP cells. Analysis of colonies derived from single SP or sca-1+ cells revealed that, although both cells had dual differentiation potential and self-renewal ability, SP cells formed colonies more efficiently and gave rise to SP and sca-1+ cells, whereas sca-1+ cells generated only sca-1+ progeny. Thus, SP cells are more characteristic of stem cells than are sca-1+ cells. In regenerating livers, ABCG2+ cells and sca-1+ cells were detected around or in the portal area (the putative hepatic stem cell niche). The expanded cells share many features of fetal hepatic stem/progenitor cells or oval cells and may be useful in determining the mechanisms whereby hepatic stem cells self-renew and differentiate.  相似文献   

19.
20.
The isolation of undifferentiated adult stem/progenitor cells remains a challenging task primarily due to the rare quantity of these cells in biological samples and the lack of unique markers. Herein, we report a relatively straightforward method for isolation of human mesenchymal stem cells (MSCs) based on their unusual resistance to osmotic lysis, which we term "osmotic selection" (OS). MSCs can remarkably withstand significant exposure to hypotonic conditions (> 30 min) with only a reversible impairment in cell proliferation and with no loss of stem cell potential after exposure. Comparison of MSCs to other circulating nonhematopoietic cells revealed a time regime, by which purification of these cells would be attainable without considerable cell loss. OS showed a 50-fold enrichment of fibroblast colony-forming units from umbilical cord blood samples when compared to commonly employed techniques. After upstream processing, isolated cells using OS were immunophenotyped to be CD14-, CD34-, CD45-, CD44+, CD105+, and CD106+, and displayed multipotent differentiation. Preliminary investigations to determine mechanisms responsible for osmolytic resistance revealed MSCs to have an ineffective volume of 59%, with the ability to double cell volume at infinite dilution. Disruption of filamentous actin polymerization by cytochalasin D sensitized MSCs to osmotic lysis, which suggests a cytoskeletal element involved in osmolytic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号