首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reuse of dialyzers is widely practiced, especially in the United States. Despite this, the effects of reuse on the efficacy of removal of solutes and more recently proteins such as beta 2-microglobulin (beta 2M) are the subject of much debate. There is considerable evidence to suggest that reuse after cleansing and sterilizing with formalin, with or without bleach, maintains dialyzer performance. In this study, we have examined peroxyacetic acid use as the cleansing and sterilizing agent using Renatron machines. We analyzed reuse in 24 patients using polysulfone membranes in a hemodiafiltration (HDF) unit over a 2-year period. The mean maximum number of uses achieved was 20.1 +/- 0.5. Several factors considered clinically to influence the number of reuses achievable (hemoglobin, white blood cell, and platelet levels, erythrocyte sedimentation rate [ESR], and fibrinogen and total protein levels) were found not to influence the maximum number of uses obtainable. We then assessed prospectively the performance of 26 polysulfone dialyzers after peroxyacetic acid reprocessing up to 20 times, particularly with regard to their ability to remove beta 2M. We report that this combination of polysulfone membranes reprocessed with peroxyacetic acid used for HDF up to 20 times exhibits a maintained high level removal of compounds beyond a molecular weight (MW) of 12,000. Any secondary membrane formation that occurs appears not to influence the subsequent removal of beta 2M. Thus, we would recommend the use of peroxyacetic acid for reprocessing dialyzers in a safe and efficacious manner.  相似文献   

2.
To further define the relationship between dialyzer reuse and the removal of beta 2-microglobulin (beta 2M) during dialysis, 26 patients who received hemodialysis were studied. Thirteen patients were dialyzed with conventional cuprophane dialyzers, and thirteen patients were dialyzed with high-flux polysulfone dialyzers. Patients in each group were dialyzed with only new dialyzers during the primary-use phase of the study, and reprocessed dialyzers during the reuse phase. Dialyzers were used six times during the reuse phase. Serum beta 2M levels were measured both predialysis and postdialysis, and adjusted for fluid loss. Dialysis with conventional cuprophane new dialyzers during the primary-use phase of the study resulted in a 3.3% increase in serum beta 2M levels, and a 2.4% increase in serum beta 2M levels during the reuse phase. The difference in the change of the concentration of beta 2M between primary-use and reuse phases was not statistically significant. Dialysis with high-flux polysulfone new dialyzers during the primary-use phase was associated with a decrease of 59.5% in the mean postdialysis concentration of serum beta 2M compared with the predialysis level. A corresponding decrease of 62.6% in serum beta 2M levels was observed after dialysis with high-flux polysulfone reprocessed dialyzers during the reuse phase. These data show no evidence of an adverse effect on the clearance of beta 2M during dialysis from the reuse of dialyzers up to six times. The results confirm previous studies that have reported that high-flux dialysis with polysulfone dialyzers removes substantial amounts of beta 2M, and dialysis with conventional cuprophane dialyzers does not.  相似文献   

3.
Dialyzer reuse has been employed throughout the history of hemodialysis, but the practice remains controversial. Many studies have found changes in the beta(2)-microglobulin clearance for reused dialyzers, but it is difficult to draw quantitative conclusions from the clinical data. The objective of this study was to quantitatively compare the effects of bleach and peracetic acid cleaning on the clearance and surface charge characteristics of Fresenius F80B polysulfone dialyzers (Fresenius Medical Care, Lexington, MA, USA). Clearance experiments were performed using urea, vitamin B(12), and polydisperse dextrans, with data obtained before and after exposure to human plasma in an in vitro dialysis circuit. Dialyzers cleaned with peracetic acid had significantly lower clearance of the larger dextrans due to the presence of residual protein on or within the membrane. Bleach was able to remove this protein deposit, restoring the clearance characteristics, but there was a significant increase in the net negative charge of the membrane due to chemical reaction with the bleach. In addition, longer time exposure to bleach altered the membrane transport characteristics, increasing the solute clearance. These results provide important insights into the effects of bleach and peracetic acid on the properties of the F80B dialyzers.  相似文献   

4.
beta 2-Microglobulin (beta 2M) forms synovial and bony amyloid deposits in long-term hemodialysis patients. To define the kinetics of beta 2M during hemodialysis and the effects of dialyzer reprocessing, we measured serum beta 2M, plasma C3a, and neutrophil counts immediately predialysis; 15, 90, and 180 minutes after beginning dialysis; and 15 minutes postdialysis in ten chronic hemodialysis patients. The studies were performed during first and third uses of cuprammonium rayon and polysulfone dialyzers processed by rinsing with water, then bleach, in an automated system (Seratronics DRS 4) and then packed in 1.5% formaldehyde. Mean serum beta 2M (corrected for ultrafiltration) decreased by 16.6% +/- 18.1% with new cuprammonium dialyzers and 57.1% +/- 12.8% with new polysulfone dialyzers. Dialyzer reprocessing had no significant effect on this decline. Predialysis serum beta 2M decreased by 30.4% +/- 15.5% 1 month after switching from cuprammonium to polysulfone dialyzers; these levels remained stable after 3 months of dialysis with polysulfone. Complement activation and neutropenia during dialysis were significantly more marked with cuprammonium, but were not affected by reprocessing of either dialyzer. In vitro adsorption of 124I-beta 2M to polysulfone fibers was greater than to cuprammonium; adsorption was not influenced by dialyzer reprocessing.  相似文献   

5.
The peracetic acid-based sterilant Renalin is increasingly being used for reprocessing hemodialyzers. In order to evaluate the effects of reprocessing on beta 2-microglobulin (beta 2M) kinetics and complement activation in chronic hemodialysis patients, we compared 4 dialyzer membranes on 1st, 2nd and 4th use of the membrane. Dialysis with new cuprammonium rayon dialyzers (0.8 m2) for 4 h resulted in a nonsignificant increase in serum beta 2M concentrations of 10.7% (corrected for changes in extracellular volume) and significant generation of the complement component C3a des Arg. On reuse, minimal changes in serum beta 2M levels were noted and complement activation was absent. Dialysis with new cellulose acetate (CA, 1.5 m2), polyacrylonitrile (AN69 HF, 1.6 m2) or polymethylmethacrylate (PMMA, 1.6 m2) membranes resulted in significant decreases in serum beta 2M levels (19.5, 31.7 and 50.8%, respectively). Reprocessing had negligible effects on the removal of beta 2M by CA and AN69, but by the 4th use halved the effectiveness of PMMA. Reprocessing reduced the significant generation of C3a des Arg observed with new CA and PMMA membranes. We conclude that, except for PMMA, Renalin reprocessing has minor effects on the ability of the membranes to remove beta 2M and improves the biocompatibility of all membranes studied.  相似文献   

6.
The effects of bleach reprocessing on the performance of high-flux dialyzers have not been comprehensively characterized. We compared the effects of automated bleach/formaldehyde reprocessing on solute and hydraulic permeability for cellulose triacetate (CT190) and polysulfone (F80B) dialyzers using an in vitro model. Dialyzers were studied after initial blood exposure (R0) and after 1 (R1), 5 (R5), 10 (R10), and 15 (R15) reuse cycles. Ultrafiltration coefficient (K(uf)), serial clearances, and/or sieving coefficients (SCs) of urea, creatinine, vancomycin, inulin, myoglobin, and albumin were determined. Urea, creatinine, and vancomycin clearances and SCs did not significantly differ from R0 to R15 with either dialyzer. Inulin clearances and SC also did not significantly change from R0 to R15 for the CT190. However, these same values for the F80B significantly increased (P < 0.05). The inulin clearance and SC values for the CT190 dialyzer were significantly higher than those for the F80B at all stages except R15. Myoglobin clearances significantly increased over 15 reuses for both dialyzers (P < 0.01). However, CT190 myoglobin clearances were significantly higher at all stages (R0 = 37.7 +/- 9.7; R15 = 52.5 +/- 8.8 mL/min) than the F80B (R0 = negligible; R15 = 41.3 +/- 16.5 mL/min; P < 0.01). Albumin pre- and postdialysis SCs significantly increased for both dialyzers (P < 0.01). K(uf) for R0 and R15 were 52.3 +/- 3.3 and 52.6 +/- 7.6 mL/h/mm Hg for CT190 (P = not significant) and 48.8 +/- 4.4 and 87.3 +/- 7.0 mL/h/mm Hg for F80B (P < 0.0001). We conclude that bleach reprocessing significantly increases larger solute and hydraulic permeability of high-flux cellulosic and polysulfone dialyzers. This effect is more pronounced for the polysulfone membrane. Until 10 reuses or greater, the removal of solutes greater than 1,500 d is significantly compromised with the polysulfone dialyzer used in this study.  相似文献   

7.
Peracetic acid is used extensively for reprocessing hemodialyzers, despite several indications that reprocessing alters the dialyzer transport characteristics. The objective of this study was to obtain quantitative data for the effects of peracetic acid reprocessing on the clearance and sieving coefficients of urea, vitamin B12, and polydisperse dextrans using Fresenius F80A polysulfone dialyzers. Reprocessing restored the urea and vitamin B12 clearance to close to their original values. However, the reprocessed dialyzers had substantially lower clearance of the larger molecular weight dextrans, which was attributed to reductions in the effective pore size caused by residual plasma proteins within the membrane. Storage in peracetic acid provided some additional removal of residual proteins, although the clearance and sieving coefficients of the larger dextrans remained well below their original values. Peracetic acid caused no degradation of the membrane polymer, in sharp contrast to results obtained with bleach reprocessing.  相似文献   

8.
The first apparatus for hemodialysis in animals, made painstakingly by Abel et al. in their laboratory at the beginning of 20th century, was cleaned with acid-pepsin to digest blood, disinfected with thymol, and reused for up to 30 experiments for as long as 8 months. The obvious incentive was saving time. In the early years of hemodialysis in patients, dialyzers and lines were assembled and sterilized immediately before dialysis. Various methods of dry and moist heat sterilization and miscellaneous chemical agents were employed for disinfection. Significant time was required to assemble the dialyzers, so there was an incentive to reuse previously assembled dialyzers to save time, especially for home hemodialysis. Bleach to clean and formaldehyde to disinfect the membranes and lines was used for this purpose. Preassembled dialyzers, commercially introduced in the 1950s, were the most expensive components of hemodialysis systems, therefore reprocessing of these dialyzers was the most effective way to save money. Refrigeration of coil dialyzers with blood, introduced in the mid-1960s, was associated with frequent febrile reactions and was soon abandoned. Preassembled coil and plate dialyzers permitted almost complete return of blood after dialysis and led to the introduction of chemical disinfection for dialyzer reprocessing. A variety of disinfectants have been used. Formaldehyde was the most common disinfectant until the end of the 1970s. Sodium hypochlorite was used to clean the majority of dialyzers and to sterilize dialyzers with polyacrylonitrile membranes. In the early 1980s, peracetic acid and glutaraldehyde started to compete with formaldehyde. By the 1990s, formaldehyde had become less popular than peracetic acid. In the mid-1990s, disinfection and membrane cleaning with acetic acid and heat was introduced. Manual reprocessing was replaced by early reuse machines in the mid-1970s and a more sophisticated second generation of automated hemodialyzer reprocessing machines followed in the late 1970s. Recently disinfection of dialyzers with moist heat has resumed. Saving both time for the patient and money for the provider were the main motivations for designing a new machine for daily home hemodialysis. The machine, developed in the 1990s, cleans and moist-heat disinfects the dialyzer and lines in situ so they do not need to be changed for a month. In contrast, the reuse of dialyzers in home hemodialysis patients treated with other hemodialysis machines has become less popular and is almost extinct.  相似文献   

9.
Dialysis with high-flux membranes is widely used, in part, because they are thought to increase the removal of middle molecules when compared with low-flux membranes. Dialyzer reprocessing; however, is thought to alter middle molecule clearance. Renalin, a mixture of germicidal agents, has widespread use in dialyzer reprocessing. We determined the effect of Renalin reprocessing on the water permeability of three different dialyzers of Fresenius (F80A and 200A) and Gambro (17R) manufacture using the dead-end filtration method. Two hundred and seventeen, predominantly used but some new, dialyzers were evaluated. Water permeability of the used, but not the new, dialyzers fell abruptly and dramatically with reprocessing. The permeability fell almost 70% in the F80A dialyzer after three reprocessing procedures with similar, but somewhat slower declines, seen in the other two dialyzers. We conclude that there is a decline in water permeability seen in Renalin reprocessed dialyzers. This factor and the associated change in solute clearance and ultrafiltration characteristics should be considered in assessing the effectiveness of dialyzer reprocessing.  相似文献   

10.
RenNew-D (Alcide), a novel demand-release sporocidal agent, was employed instead of formaldehyde in the reprocessing for reuse of cuprophan hollow fiber dialyzers (Gambro) and the performance of these dialyzers was evaluated over 40 consecutive dialyses in six patients on maintenance hemodialysis. When RenNew-D was part of automated reprocessing performed with 4.3% bleach as specified by the manufacturer (Lixivitron), dialyzer survival was prolonged (16.7 +/- 7.2 uses) and hemodialysis neutropenia was unchanged with reuse. When RenNew-D was part of manual reprocessing conducted in the absence of bleach, marked improvement in dialyzer biocompatibility was observed but with a decreased survival (4.8 +/- 3.0). The majority of dialyzer failures were due to a fall in fiber bundle volume below a 85% set limit. Small solute clearances were maintained with both types of reprocessing. Dialyses were well tolerated throughout. Our data suggest that RenNew-D is a safe and efficacious product which can serve as a valuable alternative to formaldehyde for the purpose of dialyzer reuse.  相似文献   

11.
The effects of different dialyzer processing methods and of reuse on complement activation and dialyzer-related symptoms were studied in 96 maintenance hemodialysis patients. New dialyzers were either unprocessed (Group 1) or machine-washed with bleach and stored in formaldehyde (Group 2). Reused dialyzers were manually cleansed using the combination of bleach and formaldehyde (Group 3), or machine-washed in formaldehyde (Group 4) or peracetic acid (Group 5). Prewashed new dialyzers (Group 2) were associated with greater complement activation during dialysis when compared with unprocessed, new dialyzers (Group 1) (p less than 0.05). Reused, unbleached but formaldehyde-treated or peracetic acid-treated dialyzers (Groups 4 and 5) were associated with reduced complement activation (p less than 0.05). Complement activation was not reduced when bleach was used for reprocessing (Group 3). The percentage of patients without symptoms during dialysis was significantly greater with reused dialyzers than with new dialyzers (Groups 3 through 5 versus Groups 1 and 2; 39 versus 25%; p = 0.035). The severity of total symptoms correlated significantly (p = 0.0004) with complement activation. Our results suggest that total symptoms during dialysis are correlated with the degree of complement activation. However, trends in the data pertaining to chest pain suggest that factors other than complement activation may be important in the pathogenesis of some dialyzer-related symptoms.  相似文献   

12.
Abstract: Numerous articles have been published on the multiple use of dialyzers and on the effect of different reprocessing chemicals and techniques on the dialyzer biocompatibility and performance. The results often appear contradictory, especially those comparing standard biocompatibility parameters. Despite this confusion, a discerning review of the published works allows certain limited conclusions to be drawn. Reprocessing of used hemodialyzers changes the biocompatibility profile of a dialyzer as defined by the parameters complement activation. leukopenia, and cytokine release. The effect of reprocessing depends on the chemicals and reprocessing technique applied and also on the type of membrane polymer being subjected to the reprocessing procedure. Reports of pyrogenic reactions indicate that the flux of the membrane also influences how suitable it is for safe reuse. An increased risk of allergic and pyrogenic reactions appears to be associated with dialyzer reuse. Furthermore, there has been a lack of investigations into the immunologic effect of the layer of adsorbed and chemically altered proteins that remains on the inner surface of reprocessed dialyzers. We conclude that the clinical benefit of dialyzer reuse cannot be generally accepted from a biocompatibility point of view.  相似文献   

13.
Recently, the use of electrolyzed solutions has attracted considerable interest in Japan. This study investigates the efficiency of electrolyzed solutions as disinfecting agents (DA) in the reuse of dialyzers and compares their efficiency to that of other disinfectants currently in use. The following 3 methods were employed. First, the rinsing time and rebound release of reused dialyzers were measured and compared after electrolyzed solutions, electrolyzed strong acid aqueous solution (ESAAS) and electrolyzed strong basic aqueous solution (ESBAS), made from reverse osmosis (RO) water (ESAAS, ESBAS; Generating apparatuses: Super Oxseed alpha 1000, Amano Corporation, Yokohama, Japan), 2% Dialox-cj (Teijin Gambro Medical, Tokyo, Japan), and 3.8% formalin were used as DAs. This involved performing dialysis with 2 types of dialyzers: a cellulose acetate membrane (CAM) dialyzer and a polysulfone membrane (PSM) dialyzer. The dialyzers were cleaned and disinfected using the different DA and left for 48 h. Next, after performing dialysis the dialyzer membranes were cleaned with a saline solution (0.9% NaCl) and RO water and then cleaned with the various DA. These membranes were observed using a scanning electron microscope (SEM) to check for the presence of physical and biological contaminants. Finally, in vitro tests were performed to determine the level of dialyzer clearance when PSM dialyzers were reused after having been cleaned and disinfected with the electrolyzed solutions. The rinsing time results for both the CAM and PSM dialyzers showed the electrolyzed solutions (ESBAS and ESAAS) as being undetectable within 10 min. With regard to the rebound release, for both the CAM and PSM dialyzers, the electrolyzed solutions were undetectable at all checking times between 30 and 240 min. Observation by SEM showed that cleaning with both ESAAS and ESBAS left the fewest contaminants, and cleaning with 2% Dialox-cj left the highest level of contaminants in the CAM dialyzers. With regard to experiments concerning use in vitro, no major changes in the dialyzer clearance were noticed after 6 uses. In every experiment, the previous investigations showed the electrolyzed solutions to be superior to 3. 8% formalin and 2% Dialox-cj DA for the reuse of dialyzers.  相似文献   

14.
Castro R  Morgado T 《Nephron》2002,90(3):347-348
The HEMO study revealed that beta(2)-microglobulin clearance decreases over time with Renalin reuse in the high-flux group. It was suggested that the reuse of polysulfone or cellulose triacetate high-flux dialyzers with Renalin (without bleach) results in degradation of the high-flux capacity. At our haemodialysis unit (Vila Real, Portugal) we reused dialyzers until January 2000 (limited to 10 reuses), with an automatic machine Renatron (Renal Systems, Minntech. All of our 31 patients who started with postdilution haemodiafiltration on-line (HDFol) were always dialyzed with F-80 polysulfone (Fresenius). The reposition rate was 10 litres/session until 1998 and 20 litres/session thereafter. Reuse techniques were abandoned in our country in January 2000 following an EEC directive. Thereafter, we have decided to maintain HDFol with the same dialyzers without reuse. The mean beta(2)-microglobulin predialysis values did not decrease over time until reuse was terminated (1995 with low-flux haemodialysis: 25.4 +/- 6.4 microg/l; 1997: 24.7 +/- 6.6 microg/l; 1998: 29.2 +/- 8.9 microg/l; 1999: 33.7 +/- 4.7 microg/l) whereas beta(2)-microglobulin clearances were reasonable with HDFol (1998: 56.4 +/- 25.9 ml/min; 1999: 47.9 +/- 16.4 ml/min). After stopping reuse we have noticed that predialysis beta(2)-microglobulin values decreased (2000: 23.0 +/- 3.9 microg/l) in accordance with beta(2)-microglobulin clearance duplication (2000: 84.1 +/- 25.0 ml/min; p < 0.01). It is our opinion that the reuse of polysulfone dialyzers with Renalin should be abandoned in the field of high-flux haemodialysis. It causes deterioration in the beta(2)-microglobulin clearance and probably interferes with the high-flux haemodialysis benefits, namely the reduction of dialysis-related amyloidosis.  相似文献   

15.
Effect of Reuse on Dialyzer Efficacy   总被引:3,自引:0,他引:3  
The effect of reuse on dialyzer efficacy was examined by measuring blood compartment volume and dialyzer mass transfer coefficient (maximum dialyzer clearance) as a function of dialyzer use number. The 102 polysulfone dialyzers tested (F60 and HF80, Fresenius) were reprocessed on Renatron machines using peroxyacetic acid as the dual cleansing and sterilizing agent. Each dialyzer was used an average of 14.4 +/- 5.7SD times and was tested once (twice for 13/102 dialyzers) during a routine dialysis session at an arbitrary use number (7.6 +/- 5.3; range 1 to 24). The parameters tested were found to decrease only marginally with reuse, corresponding to a blood compartment volume loss of approximately 1% (R = 0.04) over a 5-week/15-use period and a decrease in dialyzer mass transfer coefficient of approximately 3% (R = 0.07 and 0.06) over the same period for urea and creatinine, respectively. It was concluded that the loss in dialyzer efficacy is negligible over the average use period of almost 5 weeks per dialyzer.  相似文献   

16.
OBJECTIVES: To determine if reuse of hemodialyzers is associated with higher rates of hospitalization and their resulting costs among end-stage renal disease (ESRD) patients. METHODS: Noncurrent cohort study of hospitalization rates among 27,264 ESRD patients beginning hemodialysis in the United States in 1986 and 1987. RESULTS: Dialysis in free-standing facilities reprocessing dialyzers was associated with a greater rate of hospitalization than in facilities not reprocessing (relative rate (RR) = 1.08, 95% confidence interval (CI), 1.02-1.14). This higher rate of hospitalization was observed with dialyzer reuse using peracetic/acetic acids (RR = 1.11, CI 1. 04-1.18) and formaldehyde (RR = 1.07, CI 1.00-1.14), but not glutaraldehyde (p = 0.97). There was no difference among hospitalization rates in hospital-based facilities reprocessing dialyzers with any sterilant and those not reprocessing. Hospitalization for causes other than vascular access morbidity in free-standing facilities reusing dialyzers with formaldehyde was not different from hospitalization in facilities not reusing. However, reuse with peracetic/acetic acids was associated with higher rates of hospitalization than formaldehyde (RR = 1.08, CI 1.03-1.15). CONCLUSIONS: Dialysis in free-standing facilities reprocessing dialyzers with peracetic/acetic acids or formaldehyde was associated with greater hospitalization than dialysis without dialyzer reprocessing. This greater hospitalization accounts for a large increment in inpatient stays in the USA. These findings raise important concerns about potentially avoidable morbidity among hemodialysis patients. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

17.
Despite extensive clinical experience, the effects of different reuse procedures have not been fully evaluated. The available data suggest that the effect of reuse on dialyzer performance depends upon the type of chemicals employed, the membrane type, and the size of the solute whose removal is being assessed. The effect of reuse on urea clearance is essentially defined by the residual cell volume with a total cell volume of > 80% associated with a dialyzer clearance that is within 10% of its original value. The effect of reuse on large solute clearance can be dramatic, with the procedure resulting in substantial changes in the beta2-microglobulin clearance of different dialyzers. Of note is the limited data available regarding the effect of reuse procedures on dialyzers processed more than 20 times.  相似文献   

18.
Although single dialyzer use and reuse by chemical reprocessing are both associated with some complications, there is no definitive advantage to either in this respect. Some complications occur mainly at the first use of a dialyzer: a new cellophane or cuprophane membrane may activate the complement system, or a noxious agent may be introduced to the dialyzer during production or generated during storage. These agents may not be completely removed during the routine rinsing procedure. The reuse of dialyzers is associated with environmental contamination, allergic reactions, residual chemical infusion (rebound release), inadequate concentration of disinfectants, and pyrogen reactions. Bleach used during reprocessing causes a progressive increase in dialyzer permeability to larger molecules, including albumin. Reprocessing methods without the use of bleach are associated with progressive decreases in membrane permeability, particularly to larger molecules. Most comparative studies have not shown differences in mortality between centers reusing and those not reusing dialyzers, however, the largest cluster of dialysis-related deaths occurred with single-use dialyzers due to the presence of perfluorohydrocarbon introduced during the manufacturing process and not completely removed during preparation of the dialyzers before the dialysis procedure. The cost savings associated with reuse is substantial, especially with more expensive, high-flux synthetic membrane dialyzers. With reuse, some dialysis centers can afford to utilize more efficient dialyzers that are more expensive; consequently they provide a higher dose of dialysis and reduce mortality. Some studies have shown minimally higher morbidity with chemical reuse, depending on the method. Waste disposal is definitely decreased with the reuse of dialyzers, thus environmental impacts are lessened, particularly if reprocessing is done by heat disinfection. It is safe to predict that dialyzer reuse in dialysis centers will continue because it also saves money for the providers. Saving both time for the patient and money for the provider were the main motivations to design a new machine for daily home hemodialysis. The machine, developed in the 1990s, cleans and heat disinfects the dialyzer and lines in situ so they do not need to be changed for a month. In contrast, reuse of dialyzers in home hemodialysis patients treated with other hemodialysis machines is becoming less popular and is almost extinct.  相似文献   

19.
It is generally accepted that careful monitoring of total cell volume and ultrafiltration rates will ensure adequate function of reprocessed dialyzers. During routine urea kinetic measurements we noted that the percent of patients with clearances less than 200 ml/min increased from 5% to 48% despite adherence to these validation tests. As these patients did not have evidence of recirculation in the vascular access, possible causes of dialyzer dysfunction were investigated. Injection of methylene blue into the dialysate port revealed non-uniform flow of dialysate in dialyzers from patients with markedly reduced clearances. In vitro studies of dialyzers subjected to sequential daily reprocessing, without patient exposure, demonstrated that in vitro clearances declined in one lot but not another. The initial clearances of 218 +/- 4 ml/min fell progressively to 112 +/- 18 (P less than 0.001) after 15 reuses. No effects of reprocessing were found in a different lot (230 +/- 2 vs. 226 +/- 4 ml/min). Soaking the dialyzers from the affected lot in either the disinfectant or dialysate solution caused a decline in the clearances which was less than that of serial reuse. Although the magnitude of the problem of dialyzer malfunction with reuse is unknown, careful attention to dialyzer function is warranted in patients treated with reprocessed dialyzers.  相似文献   

20.
Abstract: The growing practice of dialyzer reuse in recent years is mainly based on medical and economic considerations. However, adverse reactions such as immunohemolytic anemia due to anti-Nfrom antibody associated with dialyzer reuse have been reported. In this study, scanning electron microscopy and cytologic staining were used to evaluate the interaction between blood components and the reprocessed synthetic dialyzer membrane (polysulfone) after disinfectant (formaldehyde) treatment. The results showed that various blood components such as fibrin and blood cells still adhered to the dialyzer membrane after reprocessing. The study also demonstrated that the adhered denatured blood components could be detached by sonication andlor simulated hemodialysis and then gain access into the circulation. The re-entry of the denatured blood components to the patients exposed to reused dialyzers may result in an enhanced imrnunological response which may contribute to antibody formation (such as anti-Nfrom antibody) with a reused hemodialyzer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号