首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Caffeine has been known to trigger seizures, however, the precise mechanism about the proconvulsive effect of caffeine remains unclear. Glutamate transporters play an important role to maintain the homeostasis of glutamate concentration in the brain tissue. Especially, dysfunction of excitatory amino acid transporter type 3 (EAAT3) can lead to seizures. We investigated the effects of caffeine on the activity of EAAT3 and the involvement of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K). Rat EAAT3 was expressed in Xenopus oocytes by injecting EAAT3 mRNA. l-Glutamate (30 μM)-induced inward currents were recorded via the two-electrode voltage clamp method. Caffeine decreased EAAT3 activity in a dose-dependent manner. Caffeine (30 μM for 3 min) significantly reduced Vmax, but did not alter Km value of EAAT3 for glutamate. When preincubated oocytes with phorbol-12-myristate-13-acetate (PMA, a PKC activator) were exposed to caffeine, PMA-induced increase in EAAT3 activity was abolished. Two PKC inhibitors (chelerythrine and staurosporine) significantly reduced basal EAAT3 activity. Whereas, there were no significant differences among the PKC inhibitors, caffeine, and PKC inhibitors + caffeine groups. In similarly fashion, wortmannin (a PI3K inhibitor) significantly decreased EAAT3 activity, however no statistical differences were observed among the wortmannin, caffeine, and wortmannin + caffeine groups. Our results demonstrate that caffeine attenuates EAAT3 activity and this reducing effect of caffeine seems to be mediated by PKC and PI3K.  相似文献   

2.
Nicotine, the main ingredient of tobacco, elicits seizures in animal models and cigarette smoking is regarded as a behavioral risk factor associated with epilepsy or seizures. In the hippocampus, the origin of nicotine-induced seizures, most glutamate uptake could be performed primarily by excitatory amino acid transporter type 3 (EAAT3). An association between temporal lobe epilepsy and EAAT3 downregulation has been reported. Therefore, we hypothesized that nicotine may elicit seizures through the attenuation of EAAT3 activity. We investigated chronic nicotine exposure (72 h) cause reduction of the activity of EAAT3 in a Xenopus oocyte expression system using a two-electrode voltage clamp. The roles of protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K) were also determined. Nicotine (0.001–1 μM) resulted in a time- and dose-dependent decrease in EAAT3 activity with maximal inhibition at nicotine concentrations of 0.03 μM or higher and at an exposure time of 72 h. Vmax on the glutamate response was significantly reduced in the nicotine group (0.03 μM for 72 h), but the Km value of EAAT3 for glutamate was not altered. When nicotine-exposed oocytes (0.03 μM for 72 h) were pretreated with phorbol-12-myristate-13-acetate (PMA, a PKC activator), the nicotine-induced reduction in EAAT3 activity was abolished. PKC inhibitors (staurosporine, chelerythrine, and calphostin C) significantly reduced basal EAAT3 activity, but there were no significant differences among the PKC inhibitors, nicotine, and PKC inhibitors + nicotine groups. Similar response patterns were observed among PI3K inhibitors (wortmannin and LY294002), nicotine, and PI3K inhibitors + nicotine. In conclusion, this study suggests that nicotine decreases EAAT3 activity, and that this inhibition seems to be dependent on PKC and PI3K. Our results may provide an additional mechanism for nicotine-induced seizure.  相似文献   

3.
Estrogen, a neuroactive sex hormone in the brain, enhances neuronal excitability and increases seizures. Glutamate transporters help in limiting the excitatory neurotransmission by uptaking glutamate from the synapses. We investigated the effects of 17β-estradiol on the activity of a glutamate transporter, excitatory amino acid transporter 3 (EAAT3), in Xenopus oocytes. EAAT3 was expressed in Xenopus oocytes by injection of rat EAAT3 mRNA. l-Glutamate (30 μM)-induced membrane currents mediated by EAAT3 were measured using the two-electrode voltage clamp technique. 17β-Estradiol reduced EAAT3 activity in a concentration- and time-dependent manner. 17β-Estradiol (10nM for 72h) significantly decreased V(max) but had no effect on K(m) of EAAT3 for glutamate. When 17β-estradiol treated oocytes were incubated with phorbol-12-myrisate-13-acetate, a protein kinase C (PKC) activator, 17β-estradiol-induced decrease in EAAT3 activity was abolished. Furthermore, in pretreatment of oocytes with chelerythrine or staurosporine, two PKC inhibitors, EAAT3 activity was significantly decreased. However, there was no statistical difference among the 17β-estradiol, PKC inhibitor, or 17β-estradiol plus PKC inhibitor groups. Likewise, wortmannin, a phosphatidylinositol 3-kinase (PI3K) inhibitor, significantly reduced basal EAAT3 activity, but the activity did not differ among the 17β-estradiol, wortmannin, or 17β-estradiol plus wortmannin groups. Estradiol receptor inhibitor, fulvestrant, did not change the reduced EAAT3 activity by 17β-estradiol. Our results suggest that 17β-estradiol decreases EAAT3 activity. PKC and PI3K seem to be involved in this effect, possibly not via estradiol receptors.  相似文献   

4.
4-vinylcyclohexene diepoxide (VCD) is an ovotoxicant that specifically destroys primordial and small primary follicles in the ovaries of mice and rats. In contrast, 7,12-dimethylbenz[a]anthracene (DMBA) is ovotoxic to all ovarian follicle classes. This study investigated phosphatidylinositol-3 kinase signaling involvement in VCD- and DMBA-induced ovotoxicity. Postnatal day (PND) 4 Fischer 344 (F344) rat whole ovaries were cultured for 2-12 days in vehicle control, VCD (30 μM), or DMBA (1 μM), ± PI3 kinase inhibitor LY294002 (20 μM) or its inactive analog LY303511 (20 μM). Following culture, ovaries were histologically evaluated, and healthy follicles were classified and counted. PI3 kinase inhibition had no effect on primordial follicle number, but reduced (P < 0.05) small primary and larger follicles beginning on day 4. VCD caused primordial and small primary follicle loss (P < 0.05) beginning on day 6. With PI3 kinase inhibition, VCD did not affect primordial follicles (P > 0.05) at any time, but did cause loss (P < 0.05) of small primary follicles. DMBA exposure caused primordial and small primary follicle loss (P < 0.05) on day 6. Further, DMBA-induced primordial and small primary follicle loss was greater with PI3 kinase inhibition (< 0.05) than with DMBA alone. These results support that (1) PI3 kinase mediates primordial to small primary follicle recruitment, (2) VCD, but not DMBA, enhances ovotoxicity by increasing primordial to small primary follicle recruitment, and (3) in addition to xenobiotic-induced ovotoxicity, VCD is also a useful model chemical with which to elucidate signaling mechanisms involved in primordial follicle recruitment.  相似文献   

5.
The authors investigated the effects of propofol on EAAT3 (excitatory amino acid transporter 3) activity under oxidative stress induced by tert-butyl hydroperoxide (t-BHP), and the mediation of these effects by protein kinase C (PKC). Rat EAAT3 was expressed in Xenopus oocytes and L-glutamate (30 microM)-induced membrane currents were measured using the two-electrode voltage clamp technique. Exposure of these oocytes to t-BHP (1-20 mM) for 10 min dose-dependently decreased EAAT3 activity, and t-BHP (5 mM) significantly decreased the Vmax, but not the Km of EAAT3 for glutamate, and propofol (1-100 microM) dose-dependently reversed this t-BHP-attenuated EAAT3 activity. Phorbol-12-myristate-13-acetate (a PKC activator), also abolished this t-BHP-induced reduction in EAAT3 activity, whereas staurosporine (a PKC inhibitor), significantly decreased EAAT3 activity. However, as compared with staurosporine or t-BHP alone, t-BHP and staurosporine in combination did not further reduce EAAT3 activity. A similar pattern was observed for chelerythrine (also a PKC inhibitor). In oocytes pretreated with combinations of t-BHP and PMA (or staurosporine), propofol failed to change EAAT3 activity. Our results suggest that propofol restores oxidative stress-reduced EAAT3 activity and that these effects of propofol may be PKC-mediated.  相似文献   

6.
Tefluthrin is a synthetic pyrethroid and involved in acute neurotoxic effects. How this compound affects ion currents in endocrine or neuroendocrine cells remains unclear. Its effects on membrane ion currents in pituitary tumor (GH3) cells and in hypothalamic (GT1-7) neurons were investigated. Application of Tef (10 μM) increased the amplitude of voltage-gated Na+ current (INa), along with a slowing in current inactivation and deactivation in GH3 cells. The current–voltage relationship of INa was shifted to more negative potentials in the presence of this compound. Tef increased INa with an EC50 value of 3.2 ± 0.8 μM. It also increased the amplitude of persistent INa. Tef reduced the amplitude of L-type Ca2+ current. This agent slightly inhibited K+ outward current; however, it had no effect on the activity of large-conductance Ca2+-activated K+ channels. Under cell-attached voltage-clamp recordings, Tef (10 μM) increased amplitude and frequency of spontaneous action currents, along with appearance of oscillatory inward currents. Tef-induced inward currents were suppressed after further application of tetrodotoxin, riluzole or ranolazine. In GT1-7 cells, Tef also increased the amplitude and frequency of action currents. Taken together, the effects of Tef and its structural related pyrethroids on ion currents can contribute to the underlying mechanisms through which they affect endocrine or neuroendocrine function in vivo.  相似文献   

7.
We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of 14C-PhIP (2 μM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 ± 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of 14C-PhIP from maternal to fetal circulation (FM ratio 0.90 ± 0.08 at 6 h, p < 0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75 ± 0.10, p = 0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of 14C-PhIP (R = − 0.81, p < 0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: − 0.11, p = 0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of 14C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells.  相似文献   

8.
9.
We investigated the effects of the intravenous anesthetics, thiopental, etomidate and ketamine, on the activity of one type of glutamate transporters, EAAT3 (excitatory amino acid transporter type 3). Rat EAAT3 was expressed in Xenopus oocytes by injection of its mRNA. Using two-electrode voltage clamp, membrane currents were recorded after the application of L-glutamate (30 microM) in the presence or absence of various concentrations of the anesthetics. Thiopental (0.3-30 microM) and ketamine (3-1000 microM) did not affect EAAT3 activity. Etomidate decreased EAAT3 activity in a concentration-dependent manner (0.10-10 microM). Etomidate at 1 microM significantly decreased the Vmax, but not the Km of EAAT3 for glutamate. Chelerythrine, a protein kinase C (PKC) inhibitor, significantly decreased EAAT3 activity, however, there were no statistical differences among the chelerythrine, etomidate or chelerythrine plus etomidate groups. Likewise, the combination of staurosporine, another PKC inhibitor, and etomidate did not decrease the responses further compared with staurosporine or etomidate alone. Phorbol-12-myrisate-13-acetate, a PKC activator, abolished etomidate-induced decrease in EAAT3 activity. Since our results showed that thiopental and ketamine did not affect EAAT3 activity significantly, EAAT3 may not be a target for their anesthetic effects. Our results also suggest that etomidate, possibly via PKC, decreased EAAT3 activity at clinically relevant concentrations.  相似文献   

10.
The inhibitory effects and types of inhibition of asiaticoside and madecassoside on human CYPs were studied in vitro using recombinant human CYPs. The median inhibitory concentrations (IC50) of asiaticoside and madecassoside were determined for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4. Asiaticoside inhibited CYP2C19 (IC50 = 412.68 ± 15.44 μM) and CYP3A4 (IC50 = 343.35 ± 29.35 μM). Madecassoside also inhibited CYP2C19 (IC50 = 539.04 ± 14.18 μM) and CYP3A4 (IC50 = 453.32 ± 39.33 μM). Asiaticoside and madecassoside had no effect on the activities of CYP1A2, CYP2C9 and CYP2D6 and CYP2E1. Assessment of mechanism-based inhibition and the type of inhibition were performed for asiaticoside and madecassoside with CYP2C19 and CYP3A4. These results suggested that madecassoside is a mechanism-based inhibitor of CYP2C19 and CYP3A4. Assessment of mechanism-based inhibition by asiaticoside was limited by its low solubility. Asiaticoside exhibited non-competitive inhibition of CYP2C19 (Ki = 385.24 ± 8.75 μM) and CYP3A4 (Ki = 535.93 ± 18.99 μM). Madecassoside also showed non-competitive inhibition of CYP2C19 (Ki = 109.62 ± 6.14 μM) and CYP3A4 (Ki = 456.84 ± 16.43 μM). These results suggest that asiaticoside and madecassoside could cause drug-drug interactions via inhibition of CYP2C19 and CYP3A4. An in vivo study is needed to examine this further.  相似文献   

11.
Monocrotaline (MCT) is a kind of toxic retronecine-type pyrrolizidine alkaloids (PAs) from plants of Crotalaria, which can be bio-activated by cytochrome P450 (CYP) enzymes in liver and then induce hepatotoxicity. Since CYPs are localized in the endoplasmic reticulum, the influx of MCT to the liver is the key step for its hepatotoxicity. The objective of the present study was to investigate the role of organic cation transporter 1 (OCT1), a transporter mainly expressed in liver, in the uptake of MCT and in hepatotoxicity induced by MCT. The results revealed that MCT markedly inhibited the uptake of 1-methyl-4-phenylpyridinium (MPP+), an OCT1 substrate, in Madin–Darby canine kidney (MDCK) cells stably expressing human OCT1 (MDCK-hOCT1) with the IC50 of 5.52 ± 0.56 μM. The uptake of MCT was significantly higher in MDCK-hOCT1 cells than in MDCK-mock cells, and MCT uptake in MDCK-hOCT1 cells followed Michaelis–Menten kinetics with the Km and Vmax values of 25.0 ± 6.7 μM and 266 ± 64 pmol/mg protein/min, respectively. Moreover, the OCT1 inhibitors, such as quinidine, d-tetrahydropalmatine (d-THP), obviously inhibited the uptake of MCT in MDCK-hOCT1 cells and isolated rat primary hepatocytes, and attenuated the viability reduction and LDH release of the primary cultured rat hepatocytes caused by MCT. In conclusion, OCT1 mediates the hepatic uptake of MCT and may play an important role in MCT induced-hepatotoxicity.  相似文献   

12.
We expressed rat Nav1.6 sodium channels in combination with the rat β1 and β2 auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 μM), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were ~ 9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 μM), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 μM), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin ~ 15-fold and that tefluthrin was ~ 10-fold more potent than deltamethrin as a use-dependent modifier of Nav1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Nav1.2 sodium channel coexpressed with the rat β1 and β2 subunits in oocytes showed that the Nav1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Nav1.2 isoform. These results implicate sodium channels containing the Nav1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.  相似文献   

13.
14.
The in vitro cardiac and vascular pharmacology of Malo maxima, a newly described jellyfish suspected of causing Irukandji syndrome in the Broome region of Western Australia, was investigated in rat tissues. In left atria, M. maxima crude venom extract (CVE; 1-100 μg/mL) caused concentration-dependent inotropic responses which were unaffected by atropine (1 μM), but significantly attenuated by tetrodotoxin (TTX; 0.1 μM), propranolol (1 μM), Mg2+ (6 mM) or calcitonin gene-related peptide antagonist (CGRP8-37; 1 μM). CVE caused no change in right atrial rate until 100 μg/mL, which elicited bradycardia. This was unaffected by atropine, TTX, propranolol or CGRP8-37. In the presence of Mg2+, CVE 30-100 μg/mL caused tachycardia. In small mesenteric arteries CVE caused concentration-dependent contractions (pEC50 1.03 ± 0.07 μg/mL) that were unaffected by prazosin (0.3 μM), ω-conotoxin GVIA (0.1 μM) or Mg2+ (6 mM). There was a 2-fold increase in sensitivity in the presence of CGRP8-37 (3 μM). TTX (0.1 μM), box jellyfish Chironex fleckeri antivenom (92.6 U/mL) and benextramine (3 μM) decreased sensitivity by 2.6, 1.9 and 2.1-fold, respectively. CVE-induced maximum contractions were attenuated by C. fleckeri antivenom (−22%) or benextramine (−49%). M. maxima CVE appears to activate the sympathetic, but not parasympathetic, nervous system and to stimulate sensory nerve CGRP release in left atria and resistance arteries. These effects are consistent with the catecholamine excess thought to cause Irukandji syndrome, with additional actions of CGRP release.  相似文献   

15.
The subject of the present study was the functional and pharmacological characterization of human 5-HT1A receptor regulation of ion channels in Xenopus oocytes. Activation of the heterologously expressed human 5-HT1A receptor induced two distinct currents in Xenopus oocytes, consisting of a smooth inward current (Ismooth) and an oscillatory calcium-activated chloride current, ICl(Ca). 5-HT1A receptor coupling to both ionic responses as well as to co-expressed inward rectifier potassium (GIRK) channels was pharmacologically characterized using 5-HT1A receptor agonists. The relative order of efficacy for activation of GIRK current was 5-HT ≈ F13714 ≈ L694,247 ≈ LY228,729 > flesinoxan ≈ (±)8-OH-DPAT. In contrast, flesinoxan and (±)8-OH-DPAT typically failed to activate ICl(Ca). The other ligands behaved as full or partial agonists, exhibiting an efficacy rank order of 5-HT ≈ L694,247 > F13714 ≈ LY228,729. The pharmacological profile of Ismooth activation was completely distinct: flesinoxan and F13714 were inactive and rather exhibited an inhibition of this current. Ismooth was activated by the other agonists with an efficacy order of L694,247 > 5-HT ≈ LY228,729 > (±)8-OH-DPAT. Moreover, activation of Ismooth was not affected by application of pertussis toxin or the non-hydrolyzable GDP-analogue, guanosine-5′-O-(2-thio)-diphosphate (GDPβS), suggesting a GTP binding protein-independent pathway. Together, these results suggest the existence of distinct and agonist-specific signalling states of this receptor.  相似文献   

16.
The potential of quercetin and its metabolite 3-O-methyl quercetin in inhibiting lipopolysaccharide (LPS)-mediated activation of macrophage U937 cells was investigated. Cells were pre-incubated for different periods with 100 ng/mL phorbol myristate acetate (PMA), and later with LPS and quercetin or 3-O-methyl quercetin (30 μM). Later, the supernatant of each cell culture was assessed for catalase activity, nitric oxide, and the production of tumour necrosis factor-α (TNF-α), interleukin 6 (IL-6), and interleukin 1 (IL-1). The results showed that when the cells were incubated with LPS, there were elevations in the levels of all the markers over the cells not incubated with LPS (P < 0.05). For the cells that were incubated with LPS, there were significant differences between the various cells when they were pre-incubated with PMA for various periods (P < 0.05). However, greatest production of the markers was attained when the cells were pre-treated with PMA for 48 h. Both quercetin and 3-O-methyl quercetin (at 30 mM) reduced the levels of all the markers with 3-O-methyl quercetin possessing more inhibitory potential (P < 0.05). This suggests that the flavonoids possessed significant immunomodulatory activities which depend on methylation especially at position 3.  相似文献   

17.
18.
A series of seven platinum(II) cyclobutane-1,1-dicarboxylato (cbdc) complexes {[Pt(cbdc)(Ln)2], 1-7}, derived from carboplatin by a substitution of two NH3 molecules for two 2,6,9-trisubstituted 6-benzylaminopurine-based N-donor ligands (Ln), was studied by the MTT assay for their in vitro cytotoxic activity against seven human cancer cell lines, i.e. lung carcinoma (A549), cervix epithelioid carcinoma (HeLa), osteosarcoma (HOS), malignant melanoma (G361), breast adenocarcinoma (MCF7), ovarian carcinoma (A2780) and its cisplatin-resistant analogue (A2780cis), and against two primary cultures of human hepatocytes (LH31 and LH32). The prepared complexes were cytotoxic against several cancer cells, in some cases even more than cisplatin. The best results were achieved for complexes 1 (IC50 = 17.4 ± 2.0 μM) and 2 (IC50 = 14.8 ± 2.1 μΜ) against HOS cells, 1 (IC50 = 15.1 ± 6.8 μM), 2 (IC50 = 13.6 ± 5.2 μM) and 6 (IC50 = 19.0 ± 6.6 μM) against MCF7, 6 (IC50 = 6.4 ± 0.1 μM) against A2780, and 1-6 (IC50 = 15.6 ± 4.0, 12.9 ± 3.7, 15.8 ± 3.8, 16.6 ± 5.5, 22.1 ± 2.5, and 5.6 ± 1.7 μM, respectively) against A2780cis. Viability of human hepatocytes was not declined by the tested complexes up to the concentration of 50 μM (for 1, 3-7) and 20 μM (for 2; caused by lower solubility of this complex).  相似文献   

19.
The effect of HgCl2, methylmercury and mersalyl on the glutamine/amino acid (ASCT2) transporter reconstituted in liposomes has been studied. Mercuric compounds externally added to the proteoliposomes, inhibited the glutamine/glutamine antiport catalyzed by the reconstituted transporter. Similar effects were observed by pre-treating the proteoliposomes with the mercurials and then removing unreacted compounds before the transport assay. The inhibition was reversed by DTE, cysteine and N-acetyl-cysteine but not by S-carboxymethyl-cysteine. The data demonstrated that the inhibition was due to covalent reaction of mercuric compounds with Cys residue(s) of the transporter. The IC50 of the transporter for HgCl2, methylmercury and mersalyl, were 1.4 ± 0.10, 2.4 ± 0.16 or 3.1 ± 0.19 μM, respectively. Kinetic studies of the inhibition showed that the reagents behaved as non-competitive inhibitor. The presence of glutamine or Na+ during the incubation of the mercuric compounds with the proteoliposomes did not exerted any protective effect on the inhibition. None of the compounds was transported by the reconstituted transporter. A metal binding motif CXXC has been predicted as possible site of interaction of the mercuric compounds with the transporter on the basis of the homology structural model of ASCT2 obtained using the glutamate transporter homologue from Pyrococcus horikoshii as template.  相似文献   

20.
Inhibitors of microsomal prostaglandin (PG) E synthase-1 (mPGES-1) are being developed for the relief of pain. Redirection of the PGH2 substrate to other PG synthases, found both in vitro and in vivo, in mPGES-1 knockout mice, may influence their efficacy and safety. We characterized the contribution of mPGES-1 to PGH2 metabolism in lipopolysaccharide (LPS)-stimulated isolated human monocytes and whole blood by studying the synthesis of prostanoids [PGE2, thromboxane (TX)B2, PGF and 6-keto-PGF] and expression of cyclooxygenase (COX)-isozymes and down-stream synthases in the presence of pharmacological inhibition by the novel mPGES-1 inhibitor AF3442 [N-(9-ethyl-9H-carbazol-3-yl)-2-(trifluoromethyl)benzamide]. AF3442 caused a concentration-dependent inhibition of PGE2 in human recombinant mPGES-1 with an IC50 of 0.06 μM. In LPS-stimulated monocytes, AF3442 caused a concentration-dependent reduction of PGE2 biosynthesis with an IC50 of 0.41 μM. At 1 μM, AF3442 caused maximal selective inhibitory effect of PGE2 biosynthesis by 61 ± 3.3% (mean ± SEM, P < 0.01 versus DMSO vehicle) without significantly affecting other prostanoids (i.e. TXB2, PGF and 6-keto-PGF). In LPS-stimulated whole blood, AF3442 inhibited in a concentration-dependent fashion inducible PGE2 biosynthesis with an IC50 of 29 μM. A statistically significant inhibition of mPGES-1 activity was detected at 10 and 100 μM (38 ± 14%, P < 0.05, and 69 ± 5%, P < 0.01, respectively). Up to 100 μM, the other prostanoids were not significantly affected. In conclusion, AF3442 is a selective mPGES-1 inhibitor which reduced monocyte PGE2 generation also in the presence of plasma proteins. Pharmacological inhibition of mPGES-1 did not translate into redirection of PGH2 metabolism towards other terminal PG synthases in monocytes. The functional relevance of this observation deserves to be investigated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号