首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
心肌保护的目的在于应对心肌缺血/再灌注损伤,减少梗死面积及不良后果。经过30多年的发展,缺血预适应的概念已经发展成为“缺血性适应”,这包含了许多相关的内源性心肌保护策略,直接应用于心脏的缺血预适应或后适应、远距离应用的远程缺血预适应或后适应等。许多心肌保护的方法在减少缺血性心脏病患者的梗塞面积和改善临床结果方面显示出不俗的效果。   相似文献   

2.
Prompt myocardial reperfusion reduces infarct size in patients experiencing coronary occlusion. However, its clinical value is limited because reperfusion also causes ischemic myocardial reperfusion injury (IMRI). Considerable research to reduce IMRI has been conducted. Three interventions appear to be promising: 1) myocardial conditioning, which consists of repetitive occlusions of coronary or other arteries prior to or at the time of myocardial reperfusion; 2) the administration of cyclosporine A; and 3) the administration of adenosine. A plan for the testing of these interventions in patients with acute myocardial infarction is described.  相似文献   

3.
Evaluation of: Munk K, Andersen NH, Schmidt MR et al. Remote ischemic conditioning in myocardial infarct patients treated with primary angioplasty: impact on left ventricular function assessed by comprehensive echocardiography and gated SPECT. Circ. Cardiovasc. Imaging 3(6), 656–662 (2010).

The translation of ischemic preconditioning to a viable therapy that benefits patients has been slow. This has been largely due to the difficultly in preempting when ischemia will occur. Recent advances in the field have demonstrated that cardioprotection from brief episodes of ischemia is possible when applied immediately after reperfusion (ischemic postconditioning) or remotely in another tissue during myocardial ischemia, prior to reperfusion (remote ischemic conditioning). This has facilitated the therapeutic application to patients presenting with acute myocardial infarction. In this article, we will discuss the results of a recent study published by Munk et al., concerning the application of remote ischemic conditioning during primary percutaneous coronary intervention to salvage myocardial function following ST-elevation myocardial infarction.  相似文献   

4.
Coronary artery disease (CAD) is the leading cause of death and disability worldwide, and early and successful restoration of myocardial reperfusion following an ischemic event is the most effective strategy to reduce final infarct size and improve clinical outcome. This process can, however, induce further myocardial damage, namely acute myocardial ischemia-reperfusion injury (IRI) and worsen clinical outcome. Therefore, novel therapeutic strategies are required to protect the myocardium against IRI in patients with CAD. In this regard, the endogenous cardioprotective phenomenon of "ischemic conditioning," in which the heart is put into a protected state by subjecting it to one or more brief nonlethal episodes of ischemia and reperfusion, has the potential to attenuate myocardial injury during acute IRI. Intriguingly, the heart can be protected in this manner by applying the "ischemic conditioning" stimulus to an organ or tissue remote from the heart (termed remote ischemic conditioning or RIC). Furthermore, the discovery that RIC can be noninvasively applied using a blood pressure cuff on the upper arm to induce brief episodes of nonlethal ischemia and reperfusion in the forearm has greatly facilitated the translation of RIC into the clinical arena. Several recently published proof-of-concept clinical studies have reported encouraging results with RIC, and large multicenter randomized clinical trials are now underway to investigate whether this simple noninvasive and virtually cost-free intervention has the potential to improve clinical outcomes in patients with CAD. In this review article, we provide an update of recently published and ongoing clinical trials in the field of RIC.  相似文献   

5.
The translation of ischemic preconditioning to a viable therapy that benefits patients has been slow. This has been largely due to the difficultly in preempting when ischemia will occur. Recent advances in the field have demonstrated that cardioprotection from brief episodes of ischemia is possible when applied immediately after reperfusion (ischemic postconditioning) or remotely in another tissue during myocardial ischemia, prior to reperfusion (remote ischemic conditioning). This has facilitated the therapeutic application to patients presenting with acute myocardial infarction. In this article, we will discuss the results of a recent study published by Munk et al., concerning the application of remote ischemic conditioning during primary percutaneous coronary intervention to salvage myocardial function following ST-elevation myocardial infarction.  相似文献   

6.
The broad definition of "conditioning" is the application of a series of alternating intervals of brief ischemia (hypoxia) and reperfusion (reoxygenation) applied in the setting of prolonged ischemia causing myocardial infarction. While the conditioning stimulus is applied before the major (index) ischemic event in ischemic preconditioning, it is applied during the event in perconditioning, and applied after the event (reperfusion) in postconditioning. Studies on perconditioning have only recently demonstrated a reduction in infarct size by remote ischemia applied during transport of heart attack victims to the hospital before percutaneous coronary interventions (PCIs). The "conditioning" paradigm has been extended to include remote perconditioning and remote postconditioning. However, the biology of perconditioning is virtually unknown. Postconditioning has enjoyed enthusiastic attention from scientists that have done much to demonstrate that the model of triggers, mediators, and effectors used in preconditioning may also apply to postconditioning, with the addition and important contribution of physiological mechanisms resulting in cardioprotection, including gradual normalization of tissue pH, reduction in generation of reactive oxygen species, and avoidance of hypercontracture. This same schema has not been confirmed in perconditioning. However, the unknowns in both conditioning paradigms far outweigh the knowns. Why postconditioning does not exert cardioprotection in experimental models of comorbidities and aging, yet reduces postischemic injury and contractile dysfunction in older patients with multiple comorbidities is a conundrum for which no answers are forthcoming. The optimal algorithm is unknown, as is the interrelationship between the many molecular, cellular, and physiological pathways that purportedly "mediate" or "trigger" the conditioning responses. Whether there are common pathways engaged in all 3 forms of conditioning, and what nuances separate one form of conditioning from another are unanswered questions. Yet, the translational potential of per- and postconditioning will drive further experimental work and clinical trials, which will ask unprecedented cooperation and information sharing between basic and clinician scientists, and creative developments from industry.  相似文献   

7.
The present study has been designed to pharmacologically investigate the role of mast cell degranulation in ischemic preconditioning-induced reversal of global ischemia- and reperfusion-induced cerebral injury in mice. Bilateral carotid artery occlusion of 17 min followed by reperfusion for 24 h was employed in present study to produce ischemia- and reperfusion-induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using Morris water-maze test. Rota-rod test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired memory and motor coordination. Three preceding episodes of bilateral carotid artery occlusion for 1 min and reperfusion of 1 min (ischemic preconditioning) prevented markedly ischemia–reperfusion-induced cerebral injury measured in terms of infarct size, loss of memory and motor coordination. Sodium cromoglycate (10 mg/kg, i.p.), a mast cell stabilizer attenuated the neuroprotective effect of ischemic preconditioning. It is concluded that neuroprotective effect of ischemic preconditioning may be due to the degranulation of mast cells.  相似文献   

8.
Mild hypothermia (32°C-34°C) exerts a potent cardioprotection in animal models of myocardial infarction. Recently, it has been proposed that this beneficial effect is related to survival signaling. We, therefore, hypothesized that the well-known cardioprotective pathways dependent on adenosine and/or opioid receptors could be the trigger of hypothermia-induced salvage. Open-chest rabbits were accordingly exposed to 30 minutes of coronary artery occlusion (CAO) under normothermic (NT) or hypothermic ([HT] 32°C) conditions. In the latter, hypothermia was induced by total liquid ventilation with temperature-controlled perfluorocarbons in order to effect ultrafast cooling and to accurately control cardiac temperature. After 4 hours of reperfusion, infarct and no-reflow zone sizes were assessed and quantified as a percentage of the risk zone. In animals experiencing HT ischemia, the infarct size was dramatically reduced as compared to NT animals (9% ± 3% vs 55% ± 2% of the risk zone, respectively). Importantly, administration of opioid and adenosine receptor antagonists (naloxone [6 mg/kg iv] and 8-(p-sulfophenyl) theophylline [20 mg/kg iv], respectively) did not alter the infarct size or affect the cardioprotective effect of hypothermia. Doses of these 2 antagonists were appropriately chosen since they blunted infarct size reduction induced by selective opioid or adenosine receptor stimulation with morphine (0.3 mg/kg iv) or N (6)-cyclopentyladenosine ([CPA] 100 μg/kg iv), respectively. Therefore, the cardioprotective effect of mild hypothermia is not triggered by either opioid or adenosine receptor activation, suggesting the involvement of other cardioprotective pathways.  相似文献   

9.
We have reported that ischemic preconditioning may limit infarct size by increasing 5'-nucleotidase activity. The present study tested whether alpha 1-adrenoceptor stimulation in ischemic preconditioning mediates the infarct size-limiting effect through augmentation of 5'-nucleotidase activity. The coronary artery was occluded four times for 5 min separated by 5 min of reperfusion (ischemic preconditioning) in 82 dogs. Then the coronary artery was occluded for 90 min followed by 6 h of reperfusion. Infarct size normalized by risk area was smaller after ischemic preconditioning than in the control group (40.6 +/- 2.3 vs 6.7 +/- 2.0%, P < 0.001), even though no difference existed in endomyocardial collateral flow during ischemia (8.7 +/- 1.0 vs 8.9 +/- 1.0 ml/100 g per min). Ectosolic and cytosolic 5'-nucleotidase activity was increased after ischemic preconditioning. However, prazosin blunted the infarct size-limiting effect of ischemic preconditioning (infarct size: 42.8 +/- 3.7%). Intermittent alpha 1-adrenoceptor stimulation by methoxamine mimicked the increase in 5'-nucleotidase activity and the infarct size-limiting effect, which were abolished by alpha, beta,-methyleneadenosine 5'-diphosphate. Identical results were obtained in the conscious model (n = 20). Therefore, we conclude that increases in ectosolic 5'-nucleotidase activity due to alpha 1-adrenoceptor activation may contribute to the infarct size-limiting effect of ischemic preconditioning.  相似文献   

10.
A(1) adenosine receptor (AR) antagonists are effective diuretic agents that may be useful for treating fluid retention disorders including congestive heart failure. However, antagonism of A(1)ARs is potentially a concern when using these agents in patients with ischemic heart disease. To address this concern, the present study was designed to compare the actions of the A(1)AR antagonists CPX (1,3-dipropyl-8-cyclopentylxanthine), BG 9719 (1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]xanthine), and BG 9928 (1,3-dipropyl-8-[1-(4-propionate)-bicyclo-[2,2,2]octyl]xanthine) on acute myocardial ischemia/reperfusion injury and ischemic preconditioning (IPC) in an in vivo dog model of infarction. Barbital-anesthetized dogs were subjected to 60 min of left anterior descending coronary artery occlusion followed by 3 h of reperfusion, after which infarct size was assessed by staining with triphenyltetrazolium chloride. IPC was elicited by four 5-min occlusion/5-min reperfusion cycles produced 10 min before the 60-min occlusion. Multiple-cycle IPC produced a robust reduction ( approximately 65%) in infarct size; this effect of IPC on infarct size was not abrogated in dogs pretreated with any of the three AR antagonists. Surprisingly, in the absence of IPC, pretreatment with CPX or BG 9928 before occlusion or immediately before reperfusion resulted in significant reductions ( approximately 40-50%) in myocardial infarct size. However, treatment with an equivalent dose of BG 9719 had no similar effect. We conclude that the A(1)AR antagonists BG 9719, BG 9928, and CPX do not exacerbate cardiac injury and do not interfere with IPC induced by multiple ischemia/reperfusion cycles. We discuss the possibility that the cardioprotective actions of CPX and BG 9928 may be related to antagonism of A(2B)ARs.  相似文献   

11.
The term "ischemic preconditioning (PC)" was first applied to canine myocardium subjected to brief episodes of ischemia and reperfusion that tolerated a more prolonged episode of ischemia better than myocardium not previously exposed to ischemia. Protective effect of myocardial ischemic PC was demonstrated in several animal species, resulting in the strongest endogenous form of protection against myocardial injury, jeopardized myocardium, infarct size, and arrhythmias other than early reperfusion. New onset angina before acute myocardial infarction, episodes of myocardial ischemia during coronary angioplasty or bypass surgery, and the "warm-up" phenomenon may represent clinical counterparts of the PC phenomenon in humans. Here, we have attempted to summarize pharmacological modulation, preclinical studies, and new clinical features of ischemic PC. To date, the pathophysiological basis of the "chemical PC" is still not well established, and "putting PC in a bottle" for clinical applications still remains a new pharmacological venture.  相似文献   

12.
Despite state-of-the-art reperfusion therapy, morbidity and mortality remain significant in patients with an acute myocardial infarction. Therefore, novel strategies to limit myocardial ischemia–reperfusion injury are urgently needed. Mineralocorticoid receptor (MR) antagonists are attractive candidates for this purpose, since several clinical trials in patients with heart failure have reported a survival benefit with MR antagonist treatment. MRs are expressed by several cells of the cardiovascular system, including cardiomyocytes, cardiac fibroblasts, vascular smooth muscle cells, and endothelial cells. Experiments in animal models of myocardial infarction have demonstrated that acute administration of MR antagonists, either before ischemia or immediately at the moment of coronary reperfusion, limits infarct size. This action appears to be independent of the presence of aldosterone and cortisol, which are the endogenous ligands for the MR. The cardioprotective effect is mediated by a nongenomic intracellular signaling pathway, including adenosine receptor stimulation, and activation of several components of the Reperfusion Injury Salvage Kinase (RISK) pathway. In addition to limiting infarct size, MR antagonists can improve scar healing when administered shortly after reperfusion and can reduce cardiac remodeling post myocardial infarction. Clinical trials are currently being performed studying whether early administration of MR antagonists can indeed improve prognosis in patients with an acute myocardial infarction, independent of the presence of heart failure.  相似文献   

13.
After three decades of intense research on cardioprotection, we still do not have an approved intervention for limiting infarct size in the patient with acute myocardial infarction (AMI) aside from reperfusion therapy. Yet approximately 25% of patients with AMI that are reperfused are still at risk for heart failure because of excessive muscle necrosis. This article will try to make the case that ischemic preconditioning (IPC), still the most potent anti-infarct intervention ever described, is ready for serious clinical testing now. Over the past 25 years, IPC's mechanism has been largely elucidated and targets a reperfusion injury. Ischemic preconditioning was never considered an intervention for AMI because of its need for pretreatment. However, knowledge of IPC's mechanism has revealed a large number of drugs and interventions that will activate IPC's signaling pathway at the time of reperfusion. Several small clinical trials suggest that they can be quite effective, but so far industry seems to have little interest in developing them. So, while basic scientists are in a continuous cycle of discovery and publication for new and novel cardioprotectants, there has been little effort devoted to translating these interventions into clinical practice. We believe that there are suitable IPC-based interventions that are ready for clinical testing today and the time has come for large-scale clinical trials.  相似文献   

14.
目的:探讨心肌声学造影技术评价不同频率快速心房起搏预适应减小缺血再灌注后心肌梗死范围的作用。方法:20条健康成年杂种犬随机分为三组:A组6条,为非缺血性快速心房起搏预适应组;B组7条,为缺血性快速心房起搏预适应组;C组7条,为对照组,A、B两组完成3个回合的快速起搏预适应后,与C组一道结扎阻断左前降支冠脉血流60min,随后灌注60min,在持续缺血和再灌注阶段行心肌声学造影检查(MCE),比较各组缺血再灌注后心肌梗死的面积以及心肌坏死我面积与危险区面积之比(NA/RA),并与氯化三苯四氮唑(TTC)心肌组织染色结果呈高度正相关,结论:缺血性和非缺血性快速心房起搏预应对犬心肌缺血再灌注损伤均有保护作用,缺血性快速起搏预适应的保护效力大于非缺血性起搏预适应,心肌声学造影可以准确评价快速心房起搏预应对心肌缺血再灌注损伤的保护作用。  相似文献   

15.
Trimetazidine is a widely used anti-ischemic agent, but effects of its chronic treatment on myocardial preconditioning in anesthetized animals have not been investigated. The aim of this study was to examine the effects of 15-day treatment of trimetazidine on ischemic preconditioning and carbachol-induced preconditioning in anesthetized rats. Ischemic preconditioning, induced by 5 min of coronary artery occlusion and 5 min of reperfusion, significantly decreased the total number of ventricular ectopic beats, the incidence of ventricular tachycardia and abolished the occurrence of ventricular fibrillation (VF) during 30 min of ischemia. Trimetazidine (10 mg/kg/day, i.p. for 15 days and 10 mg/kg, i.v.) itself attenuated these arrhythmia parameters with no marked effect on hemodynamic effects. In the presence of trimetazidine, anti-arrhythmic effects of ischemic preconditioning were present. Carbachol infusion induced preconditioning with a marked depression of mean arterial blood pressure, heart rate and the total number of ventricular ectopic beats. No VF was observed in carbachol-induced preconditioning. The marked reductions in arrhythmia parameters that induced carbachol-induced preconditioning were also preserved in the presence of trimetazidine. Arrhythmia scores and myocardial infarct size were reduced significantly with ischemic preconditioning or carbachol-induced preconditioning and were not modified by trimetazidine. Lactate and malondialdehyde levels were suppressed significantly with preconditioning or trimetazidine + preconditioning groups. These results show that chronic treatment of trimetazidine protects the heart against ischemia-induced arrhythmias, reduces myocardial infarct size, plasma lactate and malondialdehyde levels, and preserves the effects of ischemic and pharmacological preconditioning in anesthetized rats.  相似文献   

16.
心肌缺血预适应现象与心肌梗塞临床及预后关系的研究   总被引:2,自引:0,他引:2  
目的:探讨心肌缺血预适应对心肌梗塞临床及预后的影响。方法:对385例心肌梗塞患者的临床及随访资料进行分析,按梗塞前有无心肌缺血表现分为A、B两组。结果:A组心肌梗塞时心肌坏死范围、心肌酶峰值、心律失常、左心衰竭、室壁瘤形成及病死率均明显低于B组,而梗塞后心绞痛及再次心肌梗塞的发生率却明显高于B组。两组差异显著(P<0.05或<0.01)。结论:心肌缺血预适应的临床意义有:①使再次缺血的程度减轻。②降低心律失常的发生率,提高室颤阈。③缩小梗塞范围。④维持梗塞后心脏功能。  相似文献   

17.
目的:探讨蛋白激酶C(PKC)在缺血预处理限制心肌梗死范围中的作用。方法:采用非循环式Langendorf离体兔心恒压灌流缺血再灌注模型,观察特异性PKC对缺血预处理心肌保护作用的影响。结果:单纯缺血30分钟及再灌注60分钟可引起33.96%±12.07%的心肌坏死;在缺血前如给予5分钟全心缺血及10分钟再灌注的预处理可缩小心肌梗死范围至15.26%±5.14%,2组比较P<0.05;Chelerythrine(PKC阻滞剂)预灌流心脏不能影响心肌梗死范围(36.51%±6.91%),但如在预处理的再灌注期用Chelerythrine灌流心脏,则可取消缺血预处理的心肌保护作用,其心肌梗死范围为32.19%±8.31%,与对照组比较差异无统计学意义。结论:蛋白激酶C介导了缺血预处理限制心肌梗死范围的作用。  相似文献   

18.
Introduction: Novel therapies for myocardial infarction (MI) involving stem cells, gene therapy, biomaterials, or revascularization strategies have shown promise in animal studies and clinical trials, but results have been limited partially due to the injection of therapeutics into ischemic myocardium that cannot support their mechanism of action. Accurate targeting of therapeutics precisely to the infarct border zone (BZ) may be essential for effective repair of the ischemic heart. Methods: Ischemia‐reperfusion MI was induced in Yorkshire swine by inflation of an angioplasty balloon in the left anterior descending coronary artery. Fluorescent microspheres were injected into the BZ under NOGA catheter guidance, and this location was identified grossly then examined by immunohistochemistry and Western analysis. Results: Analysis of the infarct zone two hours post‐MI revealed a frankly necrotic region devoid of contractile proteins with marked activation of caspase‐3. The NOGA‐defined BZ closely approximates the grossly‐defined BZ and contains intact myocytes and vasculature. Western analysis detected Akt expression and levels of Ca2+ handling proteins equivalent to that of viable tissues. Conclusions: Histological and Western analysis revealed that NOGA mapping precisely identifies grossly and molecularly defined infarct BZ at a location where there are still viable cells and vessels capable of supporting novel therapeutic strategies. Clin Trans Sci 2012; Volume 5: 416–421  相似文献   

19.
Vanadate has been shown to inhibit tyrosine phosphatase, leading to an increased tyrosine phosphorylation state. The latter has been demonstrated to be involved in the signal transduction pathway of ischemic preconditioning, the most potent endogenous mechanism to limit myocardial infarct size. Furthermore, there is evidence that phosphatase inhibition may be cardioprotective when given late after the onset of ischemia, but the mechanism of protection is unknown. We tested the hypothesis that the organic vanadate compound bis(maltolato)oxovanadium (BMOV) limits myocardial infarct size by attenuating reperfusion injury and investigated the underlying mechanism. Myocardial infarction was produced in 112 anesthetized rats by a 60-min coronary artery occlusion, and infarct size was determined histochemically after 180 min of reperfusion. Intravenous infusion of BMOV in doses of 3.3, 7.5, and 15 mg/kg i.v. decreased infarct size dose-dependently from 70 +/- 2% of the area at risk in vehicle-treated rats down to 41 +/- 5% (P < 0.05 versus control), when administered before occlusion. Administration of the low dose just before reperfusion was ineffective, but administration of the higher doses was equally cardioprotective as compared with administration before occlusion. The cardioprotection by BMOV was abolished by the tyrosine kinase inhibitor genistein and by the ATP-sensitive potassium (K(+)(ATP)) channel blocker glibenclamide but was not affected by the ganglion blocker hexamethonium. We conclude that BMOV afforded significant cardioprotection principally by limiting reperfusion injury. The mode of action appears to be by opening of cardiac K(+)(ATP) channels via increased tyrosine phosphorylation.  相似文献   

20.
In many animal models, mild therapeutic hypothermia is a powerful intervention, reducing myocardial infarct size, reducing the no-reflow phenomenon, and improving healing after infarction. Cooling in these models has been produced by various means including whole-body hypothermia, synchronized hypothermic coronary venous retro-perfusion, heat exchangers, and regional hypothermia targeting the heart alone. However, in humans, the most widely used techniques are surface cooling and cooling by endovascular heat-exchange catheters. The reduction in temperature necessary to produce cardioprotection is mild (32-34°C), appears to have no detrimental effects on left ventricular function or regional myocardial blood flow, and may improve microvascular reflow to previously ischemic heart tissue. It has been shown in experimental and clinical studies that for therapeutic hypothermia to be effective it must be (1) initiated as early as possible after the onset of ischemia and (2) initiated before reperfusion. This may require initiation of hypothermia in the ambulance, well before mechanical reperfusion occurs. The mechanisms of protection produced by hypothermia have yet to be conclusively determined but may include a decrease in tissue metabolic rate, preservation of high energy phosphates, a reduction in tissue apoptosis or induction of heat shock proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号