首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The axial field of view (AFOV) of the current generation of clinical whole-body PET scanners range from 15-22?cm, which limits sensitivity and renders applications such as whole-body dynamic imaging or imaging of very low activities in whole-body cellular tracking studies, almost impossible. Generally, extending the AFOV significantly increases the sensitivity and count-rate performance. However, extending the AFOV while maintaining detector thickness has significant cost implications. In addition, random coincidences, detector dead time, and object attenuation may reduce scanner performance as the AFOV increases. In this paper, we use Monte Carlo simulations to find the optimal scanner geometry (i.e. AFOV, detector thickness and acceptance angle) based on count-rate performance for a range of scintillator volumes ranging from 10 to 93 l with detector thickness varying from 5 to 20?mm. We compare the results to the performance of a scanner based on the current Siemens Biograph mCT geometry and electronics. Our simulation models were developed based on individual components of the Siemens Biograph mCT and were validated against experimental data using the NEMA NU-2 2007 count-rate protocol. In the study, noise-equivalent count rate (NECR) was computed as a function of maximum ring difference (i.e. acceptance angle) and activity concentration using a 27?cm diameter, 200?cm uniformly filled cylindrical phantom for each scanner configuration. To reduce the effect of random coincidences, we implemented a variable coincidence time window based on the length of the lines of response, which increased NECR performance up to 10% compared to using a static coincidence time window for scanners with a large maximum ring difference values. For a given scintillator volume, the optimal configuration results in modest count-rate performance gains of up to 16% compared to the shortest AFOV scanner with the thickest detectors. However, the longest AFOV of approximately 2?m with 20?mm thick detectors resulted in performance gains of 25-31?times higher NECR relative to the current Siemens Biograph mCT scanner configuration.  相似文献   

2.
A spatially variant convolution subtraction scatter correction was developed for a Hamamatsu SHR-7700 animal PET scanner. This scanner, with retractable septa and a gantry that can be tilted 90 degrees, was designed for studies of conscious monkeys. The implemented dual-exponential scatter kernel takes into account both radiation scattered inside the object and radiation scattered in gantry and detectors. This is necessary because of the relatively large contribution of gantry and detector scatter in this scanner. The correction is used for scatter correction of emission as well as transmission data. Transmission scatter correction using the dual-exponential kernel leads to a measured attenuation coefficient of 0.096 cm(-1) in water, compared to 0.089 cm(-1) without scatter correction. Scatter correction on both emission and transmission data resulted in a residual correction error of 2.1% in water, as well as improved image contrast and hot spot quantification.  相似文献   

3.
The aim of our work is to describe the way in which physical figures of merit such as contrast-to-noise ratio (CNR) behave when varying acquisition parameters such as emission scan duration (ESD) or activity at the start of acquisition (A(acq)) that in clinical practice can be selected by the user, or object properties such as target dimensions or target-to-background (T/B) ratio, which depend uniquely on the intrinsic characteristics of the object being imaged. Figures of merit, used to characterize image quality and quantitative accuracy for a 3D-LSO based PET/CT scanner, were studied as a function of ESD and A(acq) for different target sizes and T/B ratios using a multivariate approach in a wide range of conditions approaching the ones that can be encountered in clinical practice. An annular ring of water bags of 3 cm thickness was fitted over an IEC phantom in order to obtain counting rates similar to those found in average patients. The average scatter fraction (SF) of the modified IEC phantom was similar to the mean SF measured on patients with a similar scanner. A supplemental set of micro-hollow spheres was positioned inside the phantom. The NEMA NU 2-2001 scatter phantom was positioned at the end of the IEC phantom to approximate the clinical situation of having activity that extends beyond the scanner. The phantoms were filled with a solution of water and 18F (12 kBq/mL) and the spheres with various T/B ratios of 22.5, 10.3, and 3.6. Sequential imaging was performed to acquire PET images with varying background activity concentrations of about 12, 9, 6.4, 5.3, and 3.1 kBq/mL, positioned on the linear portion of the phantom's NECR curve, well below peak NECR of 61.2 kcps that is reached at 31.8 kBq/mL. The ESD was set to 1, 2, 3, and 4 min/bed. With T/B ratios of 3.6, 10.3, and 22.5, the 13.0, 8.1, and 6.5 mm spheres were detectable for the whole ranges of background activity concentration and ESD, respectively. The ESD resulted as the most significant predictor of CNR variance, followed by T/B ratio and the cross sectional area of the given sphere. Only last comes A(acq) with a weight more than halved with respect to ESD. Thus, raising ESD seems to be much more effective than raising A(acq) in order to obtain higher CNR, which is the physical figure of merit closely related with target detectability, at least in the simple task of the signal known exactly background known exactly model.  相似文献   

4.
We are currently developing a small animal positron emission tomography (PET) scanner with a design goal of 1 microlitre (1 mm3) image resolution. The detectors consist of a 12 x 12 array of 1 x 1 x 10 mm lutetium oxyorthosilicate (LSO) scintillator crystals coupled to a 64-channel photomultiplier tube (PMT) via 5 cm long optical fibre bundles. The optical fibre connection allows a high detector packing fraction despite the dead space surrounding the active region of the PMT. Optical fibre bundles made from different types of glass were tested for light transmission, and also their effects on crystal identification and energy resolution, and compared to direct coupling of the LSO arrays to the PMTs. We also investigated the effects of extramural absorber (EMA) in the fibre bundles. Based on these results, fibre bundles manufactured from F2 glass were selected. We built three pairs of prototype detectors (directly coupled LSO array, fibre bundle without EMA and fibre bundle with EMA) and measured flood histograms, energy resolution, intrinsic spatial resolution and timing resolution. The results demonstrated an intrinsic spatial resolution (FWHM) of 1.12 mm (directly coupled), 1.23 mm (fibre bundle without EMA coupling) and 1.27 mm (fibre bundle with EMA coupling) using an approximately 500 microm diameter Na-22 point source. Using a 330 microm outer diameter steel needle line source filled with F-18, spatial resolution for the detector with the EMA optical fibre bundle improved to 1.05 mm. The respective timing and energy FWHM values were 1.96 ns, 21% (directly coupled), 2.20 ns, 23% (fibre bundle without EMA) and 2.99 ns, 30% (fibre bundle with EMA). The peak-to-valley ratio in the flood histograms was better with EMA (5:1) compared to the optical fibre bundle without EMA (2.5:1), due to the decreased optical cross-talk. In comparison to the detectors used in our current generation microPET scanner, these detectors substantially improve on the spatial resolution, preserve the timing resolution and provide adequate energy resolution for a modern high-resolution animal PET tomograph.  相似文献   

5.
Quantification accuracy and partial volume effect (PVE) of the Siemens Inveon PET scanner were evaluated. The influence of transmission source activities (40 and 160 MBq) on the quantification accuracy and the PVE were determined. Dynamic range, object size and PVE for different sphere sizes, contrast ratios and positions in the field of view (FOV) were evaluated. The acquired data were reconstructed using different algorithms and correction methods. The activity level of the transmission source and the total emission activity in the FOV strongly influenced the attenuation maps. Reconstruction algorithms, correction methods, object size and location within the FOV had a strong influence on the PVE in all configurations. All evaluated parameters potentially influence the quantification accuracy. Hence, all protocols should be kept constant during a study to allow a comparison between different scans.  相似文献   

6.
We have assessed the possibility of artefacts that can arise in attempting to perform simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) using a small prototype MR compatible PET scanner (McPET). In these experiments, we examine MR images for any major artefacts or loss in image quality due to inhomogeneities in the magnetic field, radiofrequency interference or susceptibility effects caused by operation of the PET system inside the MR scanner. In addition, possible artefacts in the PET images caused by the static and time-varying magnetic fields or radiofrequency interference from the MR system were investigated. Biological tissue and a T2-weighted spin echo sequence were used to examine susceptibility artefacts due to components of the McPET scanner (scintillator, optical fibres) situated in the MR field of view. A range of commonly used MR pulse sequences was studied while acquiring PET data to look for possible artefacts in either the PET or MR images. Other than a small loss in signal-to-noise using gradient echo sequences, there was no significant interaction between the two imaging systems. Simultaneous PET and MR imaging of simple phantoms was also carried out in different MR systems with field strengths ranging from 0.2 to 4.7 T. The results of these studies demonstrate that it is possible to acquire PET and MR images simultaneously, without any significant artefacts or loss in image quality, using our prototype MR compatible PET scanner.  相似文献   

7.
We present a unique data acquisition system designed to read out signals from the MADPET-II small animal LSO-APD PET tomograph. The scanner consists of 36 independent detector modules arranged in a dual-radial layer ring (phi 71 mm). Each module contains a 4 x 8 array of optically isolated, 2 x 2 mm LSO crystals, coupled one-to-one to a 32 channel APD. To take full advantage of the detector geometry, signals from each crystal are individually processed without any data reduction. This is realized using custom designed mixed-signal ASICs for analogue signal processing, and FPGAs to control the digitization of analogue signals and subsequent multiplexing. Analogue to digital converters (ADCs) digitize the signal peak height, time to digital converters (TDCs) time stamp each event relative to a system clock and two 32 bit words containing the energy, time and position information for each singles event are multiplexed through three FIFO stages before being written to disk via gigabit Ethernet. Every singles event is processed and stored in list-mode format, and coincidences are sorted post-acquisition in software. The 1152 channel data acquisition system was designed to be able to handle sustained data rates of up to 11 520 000 cps without loss (10 000 cps/channel). The timing resolution of the TDC was measured to be 1 ns FWHM. In addition to describing the data acquisition system, performance measurements made using a 128-channel detector prototype will be presented.  相似文献   

8.
A multi-pinhole collimation device is developed that uses the gamma camera detectors of a clinical SPECT or SPECT-CT scanner to produce high-resolution SPECT images. The device consists of a rotating cylindrical collimator having 22 tungsten pinholes with 0.9 mm diameter apertures and an animal bed inside the collimator that moves linearly to provide helical or ordered-subsets axial sampling. CT images also may be acquired on a SPECT-CT scanner for purposes of image co-registration and SPECT attenuation correction. The device is placed on the patient table of the scanner without attaching to the detectors or scanner gantry. The system geometry is calibrated in-place from point source data and is then used during image reconstruction. The SPECT imaging performance of the device is evaluated with test phantom scans. Spatial resolution from reconstructed point source images is measured to be 0.6 mm full width at half maximum or better. Micro-Derenzo phantom images demonstrate the ability to resolve 0.7 mm diameter rod patterns. The axial slabs of a Micro-Defrise phantom are visualized well. Collimator efficiency exceeds 0.05% at the center of the field of view, and images of a uniform phantom show acceptable uniformity and minimal artifact. The overall simplicity and relatively good imaging performance of the device make it an interesting low-cost alternative to dedicated small animal scanners.  相似文献   

9.
The removal of Compton scattered photons included within the pulse height window is recognized as one of the most difficult noise problems in the restoration of nuclear medicine images. A new approach to Compton scatter correction based on factor analysis of dynamic structures (FADS) is presented in this study. The method requires all of the energy information. Acquisition of data can be performed either by list-mode or frame-mode. While the former presents some theoretical advantages, the latter is actually used in this work. Two factors are extracted by FADS, unfortunately no pure photopeak factor can be found by the algorithm. These rough factors lead to incorrect factor images. The innovation reported here is the use of a constrained photopeak factor. This novel algorithm is evaluated both on planar imaging and SPECT data using Monte Carlo simulations and real phantoms. A comparison with the modified method of Jaszczak is also presented. Different parameters are significantly improved with our recombination method in SPECT studies, particularly after attenuation compensation by the iterative method of Chang. Compared with the subtraction method the contrast is increased by 1.5 for planar Monte Carlo simulations and the scatter fraction is reduced four times with our recombination method.  相似文献   

10.
We compared two correction methods for simultaneous 201Tl/99mTc dual-isotope single-photon emission computed tomography (SPECT). Both approaches use the information from the third energy window placed between the photopeak windows of the 201Tl and 99mTc. The first approach, described by Moore et al, corrects only for the contribution of the 99mTc to the 201Tl primary 70 keV window. We developed the three-window transformation dual isotope correction method, which is a simultaneous cross-talk correction. The two correction methods were compared in a simultaneous 201Tl/99mTc sestamibi cardiac dog study. Three separate acquisitions were performed in this dog study: two single-isotope and one dual-isotope acquisition. The 201Tl single-isotope images were used as references. The total number of counts, and the contrast between the left ventricular cavity (LVC) and the myocardium, were used in 70 keV short axis slices as parameters for evaluating the results of the dual-isotope correction methods. Three consecutive short-axis slices were used to calculate averaged contrast and the averaged total number of counts. The total number of the counts was 667000+/-500 and 414500+/-400 counts for the dual isotope (201Tl+/-99mTc) and single-isotope (201Tl-only) 70 keV images, respectively. The corrected dual-isotope images had 514700+/-700 and 368000+/-600 counts for Moore's correction and our approach, respectively. Moore's method improved contrast in the dual isotope 70 keV image to 0.14+/-0.03 from 0.11+/-0.02, which was the value in the 70 keV non-corrected dual-isotope image. Our method improved the same contrast to 0.22+/-0.03. The contrast in the 201Tl single-isotope 70 keV image was 0.28+/-0.02. Both methods improved the 70 keV dual-isotope images. However, our approach provided slightly better images than Moore's correction when compared with 201Tl-only 70 keV images.  相似文献   

11.
The key performance measures of resolution, count rate, sensitivity and scatter fraction are predicted for a dedicated BGO block detector patient PET scanner (GE Advance) in 2D mode for imaging with the non-pure positron-emitting radionuclides 124I, 55Co, 61Cu, 62Cu, 64Cu and 76Br. Model calculations including parameters of the scanner, decay characteristics of the radionuclides and measured parameters in imaging the pure positron-emitter 18F are used to predict performance according to the National Electrical Manufacturers Association (NEMA) NU 2-1994 criteria. Predictions are tested with measurements made using 124I and show that, in comparison with 18F, resolution degrades by 1.2 mm radially and tangentially throughout the field-of-view (prediction: 1.2 mm), count-rate performance reduces considerably and in close accordance with calculations, sensitivity decreases to 23.4% of that with 18F (prediction: 22.9%) and measured scatter fraction increases from 10.0% to 14.5% (prediction: 14.7%). Model predictions are expected to be equally accurate for other radionuclides and may be extended to similar scanners. Although performance is worse with 124I than 18F, imaging is not precluded in 2D mode. The viability of 124I imaging and performance in a clinical context compared with 18F is illustrated with images of a patient with recurrent thyroid cancer acquired using both [124I]-sodium iodide and [18F]-2-fluoro-2-deoxyglucose.  相似文献   

12.
Choi N  Kim SM  Hong KS  Cho G  Cho JH  Lee C  Ryu EK 《Biomaterials》2011,32(29):7151-7158
The human serum albumin tissue inhibitor of metalloproteinase 2 (HSA-TIMP2) is known to possess antitumor activity, which has been attributed to its ability to inhibit endothelial cell proliferation by binding to integrin receptors. In this study, a fusion protein, cyclic arginine-glycine-aspartate (RGD)-HSA-TIMP2, formed by conjugating HSA-TIMP2 with a RGD peptide, and its (123)I- and (68)Ga-labeled compounds, were synthesized and evaluated with in vivo tumor imaging using single photon emission computed tomography (SPECT) and positron emission tomography (PET). RGD-HSA-TIMP2 was synthesized by covalent bonding of the RGD peptide to the side chain amino groups of HSA-TIMP2 from a two-step reaction involving from activation with N-succinimidyl iodoacetate. This conjugation improved the anticancer effect of HSA-TIMP2 in cancer cells. The (123)I- and (68)Ga-labeled fusion proteins were prepared and subsequently injected into the tail veins of mice bearing human glioblastoma cancer U87MG xenografts for SPECT and PET imaging and biodistribution studies. Tumor uptake of radioligand was high in both the PET images and in the biodistribution studies at 3 h after injection. These studies demonstrated that the new fusion protein has potential not only as an anticancer agent but also as a radioligand for the diagnosis of tumors.  相似文献   

13.
Several positron emitting nuclides with applications in PET, such as 76Br, 124I, 110In and 86Y, also emit gamma radiation in their decays. Measured coincidences between annihilation photons and this cascade gamma radiation are essentially true coincidences and the standard PET corrections do not account for them. We investigated the performance of 76Br in 2D and 3D PET, the effect of the gamma radiation emitted by 76Br on quantitative accuracy and the distribution of cascade gamma radiation coincidences in 2D and 3D PET sinograms. A correction method for cascade gamma radiation coincidences was implemented and evaluated. Count rate linearity was affected by the gamma radiation from the 76Br decay. Spatial resolution and sphere recovery were slightly worse for 76Br compared to 18F. Correction for cascade gamma radiation coincidences by subtraction of a linear projection tail fit improved total correction accuracy to similar values as for positron-only emitters such as 18F, and improved image contrast significantly.  相似文献   

14.
Three differing exact methods of inverting the two-dimensional (2D) exponential Radon transform were implemented and evaluated quantitatively with a phantom study. The phantom had the shape of a pie-chart divided into six cavities, each 480 ml in volume and 10 cm in height, that were symmetrically positioned in a cylinder that was 20 cm in diameter and 10 cm in height. This phantom tests for linearity between true activity concentration and measured activity concentration, and it is denoted as a linearity phantom in the present study. Each cavity contained a different concentration of a homogeneous solution of 99mTc (74, 148, 222, 296, 370 and 444 kBq ml(-1)). Data acquisition was performed with two energy windows: a 20% photopeak energy window set symmetrically over the 140 keV of 99mTc and a secondary 5% energy window set over the 122 keV peak. We optimized a triple-energy window scatter correction method for a gamma camera-collimator system to obtain accurate scatter-corrected projections. A circular ROI 3 cm in diameter was identified over each cavity region, and count density (counts per pixel) was calculated. This value was converted to activity concentration (kBq ml(-1)) using a cross-calibration coefficient between SPECT counts and the gamma well counter. The relation between true activity (x) and measured activity concentration (y) was fitted to a line using the least-squares method. Regression lines were y = 0.63 + 1.0255x (R2 = 0.9987), y = -2.62 + 1.0278x (R2 = 0.9995), and y = 0.092 + 1.0241x (R2 = 0.9989) for the Bellini, Inouye and Metz-Pan methods respectively. In another phantom study using two different types of phantoms, contrast of a cold region in the two was 96% and 101% for all three methods. Combined optimized scatter correction and analytical attenuation correction methods achieve good accuracy in quantification of activity distribution with a uniform attenuating medium.  相似文献   

15.
Fully three-dimensional (3D) positron emission tomography (PET) can achieve high sensitivity of coincidence events, but the absence of inter-slice septa inevitably leads to increased scattered events. The scattered events can represent as much as 50% of the total detected events. In this research, we proposed a scatter correction method for 3D PET based on beam stoppers and dual-energy window acquisition. The beam stoppers were placed surrounding the object to attenuate primary beams. The scatter fractions were directly estimated at those blocked lines of response and then the entire scatter fraction distribution was recovered using the dual-energy window ratio as reference. The performance was evaluated by using Monte Carlo simulations of various digital phantoms. For the Utah phantom study, the proposed method accurately estimated the scatter fraction distribution, and improved image contrast and quantification based on four different quality indices as performance measures. For the non-homogeneous Zubal phantom, the simulated results also demonstrated that the proposed method achieved a better restoration of image contrast than the dual-energy window method. We conclude that the proposed scatter correction method could effectively suppress various kinds of scattered events, including multiple scatter and scatter from outside the field of view.  相似文献   

16.
Macrophages are key players in the pathogenesis of large-vessel vasculitis (LVV) and may serve as a target for diagnostic imaging of LVV. The radiotracer, 18F-FDG has proven to be useful in the diagnosis of giant cell arteritis (GCA), a form of LVV. Although uptake of 18F-FDG is high in activated macrophages, it is not a specific radiotracer as its uptake is high in any proliferating cell and other activated immune cells resulting in high non-specific background radioactivity especially in aging and atherosclerotic vessels which dramatically lowers the diagnostic accuracy. Evidence also exists that the sensitivity of 18F-FDG PET drops in patients upon glucocorticoid treatment. Therefore, there is a clinical need for more specific radiotracers in imaging GCA to improve diagnostic accuracy. Numerous clinically established and newly developed macrophage targeted radiotracers for oncological and inflammatory diseases can potentially be utilized for LVV imaging. These tracers are more target specific and therefore may provide lower background radioactivity, higher diagnostic accuracy and the ability to assess treatment effectiveness. However, current knowledge regarding macrophage subsets in LVV lesions is limited. Further understanding regarding macrophage subsets in vasculitis lesion is needed for better selection of tracers and new targets for tracer development. This review summarizes the development of macrophage targeted tracers in the last decade and the potential application of macrophage targeted tracers currently used in other inflammatory diseases in imaging LVV.  相似文献   

17.
Three types of tissue-air ratio (TAR) are summarized. These TARS differ in their definition of the in-air absorbed dose. The first defines it as the absorbed dose at the centre of a spherical or cylindrical minimal water phantom in free space. The second defines it as the maximum primary absorbed dose in a semi-infinite water phantom. The third defines it as the absorbed dose in an imaginary infinitesimal mass of water within the cavity of a chamber in free space, where the absorbed dose is averaged within the cavity. It is concluded that the 60Co TAR data compiled by Godden and the 60Co TAR data of Johns and Cunningham should be reviewed. Aeq and other factors are evaluated for spherical and cylindrical minimal water phantoms in a 60Co gamma-ray beam. A method of obtaining Aeq and other factors for an ionization chamber with a known Awall correction factor is also reported. The work indicates some discrepancies with previously published material.  相似文献   

18.
The feasibility of off-line positron emission tomography/computed tomography (PET/CT) for routine three dimensional in-vivo treatment verification of proton radiation therapy is currently under investigation at Massachusetts General Hospital in Boston. In preparation for clinical trials, phantom experiments were carried out to investigate the sensitivity and accuracy of the method depending on irradiation and imaging parameters. Furthermore, they addressed the feasibility of PET/CT as a robust verification tool in the presence of metallic implants. These produce x-ray CT artifacts and fluence perturbations which may compromise the accuracy of treatment planning algorithms. Spread-out Bragg peak proton fields were delivered to different phantoms consisting of polymethylmethacrylate (PMMA), PMMA stacked with lung and bone equivalent materials, and PMMA with titanium rods to mimic implants in patients. PET data were acquired in list mode starting within 20 min after irradiation at a commercial luthetium-oxyorthosilicate (LSO)-based PET/CT scanner. The amount and spatial distribution of the measured activity could be well reproduced by calculations based on the GEANT4 and FLUKA Monte Carlo codes. This phantom study supports the potential of millimeter accuracy for range monitoring and lateral field position verification even after low therapeutic dose exposures of 2 Gy, despite the delay between irradiation and imaging. It also indicates the value of PET for treatment verification in the presence of metallic implants, demonstrating a higher sensitivity to fluence perturbations in comparison to a commercial analytical treatment planning system. Finally, it addresses the suitability of LSO-based PET detectors for hadron therapy monitoring. This unconventional application of PET involves countrates which are orders of magnitude lower than in diagnostic tracer imaging, i.e., the signal of interest is comparable to the noise originating from the intrinsic radioactivity of the detector itself. In addition to PET alone, PET/CT imaging provides accurate information on the position of the imaged object and may assess possible anatomical changes during fractionated radiotherapy in clinical applications.  相似文献   

19.
Positron Emission Tomography of bromine-76 and yttrium-86 results in the detection of coincident events that are not strictly associated with annihilation photon pairs. Instead, these coincidences occur because prompt gamma rays emitted by these nuclides result in cascades of photons that are emitted within the timing window of the PET scanner. Pairs of detected photons from these cascades are not angularly correlated and therefore contain little information regarding the location of their source. Furthermore, these coincidences are not removed by correction procedures (e.g., randoms, scatter) routinely applied to PET data. If left uncorrected, the cascade coincidences will result in spurious apparent activity within the PET images. A correction, applied within projection space, that removes the cascade coincidence signal from septa-in (i.e., two-dimensional) datasets is proposed and tested on phantom data.  相似文献   

20.
The viscacha (Lagostomus maximus maximus) is a rodent with photoperiod‐dependent seasonal reproduction. The aim of this work was to study the morphological variations of the prostate during periods of maximal (summer, long photoperiod) and minimal (winter, short photoperiod) reproductive activity. Prostates of adult male viscachas were studied by light and electron microscopy, immunohistochemistry for androgen receptor, and morphometric analysis. The prostate consisted of two regions: peripheral and central. The peripheral zone exhibited large adenomeres with a small number of folds and lined with a pseudostratified epithelium. The central zone had small adenomeres with pseudostratified epithelium and the mucosa showed numerous folds. The morphology of both zones showed variations during periods of maximal and minimal reproductive activity. The prostate weight, prostate‐somatic index, luminal diameter of adenomeres, epithelial height and major nuclear diameter decreased during the period of minimal reproductive activity. Principal cells showed variations in their shape, size and ultrastructural characteristics during the period of minimal reproductive activity in comparison with the active period. The androgen receptor expression in epithelial and fibromuscular stromal cells was different between the studied periods. Our results suggest a reduced secretory activity of viscacha prostate during the period of minimal reproductive activity. Thus, the morphological variations observed in both the central and peripheral zones of the viscacha prostate agree with the results previously obtained in the gonads of this rodent of photoperiod‐dependent reproduction. Additionally, the variations observed in the androgen receptors suggest a direct effect of the circulating testosterone on the gland. Anat Rec, 298:1919–1931, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号