首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative autoradiography using [3H]-SCH 23390, [3H]-sulpiride and [3H]-forskolin was used to assess the effects of single and combined neurotoxin lesions of the nigrostriatal pathway in the rat brain on dopamine (DA) receptor subtypes and adenylate cyclase (AC), respectively. Ibotenic acid (IA) lesions of the caudate-putamen (CPu) resulted in near total loss of both [3H]-SCH 23390 and of [3H]-forskolin binding in the ipsilateral CPu and substantia nigra reticulata (SNR). [3H]-sulpiride binding in the CPu was only partially removed by this same lesion, and nigral [3H]-sulpiride binding was virtually unchanged. 6-Hydroxydopamine (6-OHDA) and IA lesions of the substantia nigra compacta (SNC) did not affect [3H]-SCH 23390 or [3H]-forskolin binding, but largely removed [3H]-sulpiride binding in the SNC. A 6-OHDA lesion of the nigrostriatal pathway followed by an ipsilateral IA injection of the CPu failed to further reduce [3H]-sulpiride binding in the CPu. These results demonstrate that postsynaptic DA receptors in the CPu are of both the D1 and D2 variety; however, a portion of D2 receptors in the CPu may be presynaptic on afferent nerve terminals to this structure. D1 receptors in the SNR are presynaptic on striatonigral terminals, whereas the D2 receptors of the SNC are autoreceptors on nigral DA neurons. The existence of presynaptic D2 receptors on nigrostriatal DA-ergic terminals could not be confirmed by this study. Co-localization of D1 receptors and AC occurs in both the CPu and SNR.  相似文献   

2.
We examined the status of dopamine (DA) D1 and D2 receptors by using [3H]SCH 23390 and [3H]spiperone binding, respectively, and DA uptake sites by using [3H]mazindol binding in spontaneously hypertensive rats (SHR) and Sprague-Dawley (SD) rats. SHR showed significantly higher [3H]SCH 23390 and [3H]spiperone binding in the caudate-putamen (CPu), the nucleus accumbens (NAc) and the olfactory tubercle (OT) in comparison to the SD rats. There were no significant differences in [3H]mazindol-labeled DA uptake sites between the two strains. Unilateral 6-hydroxydopamine (6-OHDA) injection into the striatum resulted in more than 90% depletion of DA uptake sites in the CPu in both strains. 6-OHDA-induced DA depletion was associated with significant increases in striatal [3H]spiperone binding which were of similar magnitude in the SD rats (+64.1%) and SHR (+51.3%). There were only small decreases (-5.4%) in D1 receptor binding in the dorsolateral aspect of the CPu in the SHR, whereas there were no changes in striatal D1 receptors in the SD rats. These results indicate that, although the SHR have higher concentrations of both D1 and D2 receptors in the basal ganglia, these receptors are regulated in a fashion similar to DA receptors in SD rats after 6-OHDA-induced striatal DA depletion.  相似文献   

3.
The topographical changes in proenkephalin (PEK) mRNAs which occur in the caudate-putamen (CPu) after 6-hydroxydopamine (6-OHDA)-induced unilateral lesion of the mesostriatal dopamine (DA) pathway were evaluated by quantitative in situ hybridization. These lesions caused significant increases in PEK mRNA in all regions of the caudate-putamen (CPu). The chronic intraventricular administration of NGF potentiated the increases in PEK mRNA, with the magnitude of changes being greater in the dorsomedial and dorsolateral regions of the striatum. NGF did not affect the loss of tyrosine hydroxylase mRNA observed in the substantia nigra ipsilateral to the 6-OHDA-induced lesion. These results demonstrate that alterations which occur in a neuropeptide system as a consequence to 6-OHDA-induced denervation of the striatum can respond to NGF administration in a topographical fashion.  相似文献   

4.
Quantitative receptor autoradiography was used to assess the effects of unilateral intrastriatal injections of 6-hydroxydopamine (6-OHDA) on the distribution of D1 and D2 dopamine (DA) receptors and of DA uptake sites in the mesostriatal pathway. [3H]Mazindol-labeled DA uptake sites were reduced both in the striatum (-97%) and in the substantia nigra pars compacta (SNpc) (-88%) on the injected side. There were also significant decreases of dopamine uptake sites in the nucleus accumbens (NAc) (-73%) and in the ventral tegmental area (VTA) (-70%). Changes in [3H]mazindol binding were also found within the contralateral VTA (-30%) and SNpc (-13%) but not in the contralateral-striatum. [3H]SCH23390-labeled D1 receptors were significantly reduced in the dorsomedial (-18%) and ventromedial (-14%) aspects of the striatum ipsilateral to the side of the lesions. In contrast, the concentration of [3H]spiperone-labeled D2 receptors was not altered. There were also significant decreases in D1 (-18%) and of D2 (-27%) receptors in the SNpc and of D1 (-10%) in the SN pars reticulata (SNpr). These results suggest that oxyradical-induced damage in striatal DA terminals could lead to retrograde changes in the SNpc. In addition, the data indicate that unilateral striatal damage can result in bilateral changes in the SNpc, thus confirming the interdependence of the two nigrostriatal pathways in rats.  相似文献   

5.
We tested the effect of intrastriatal quinolinic acid (QA) injections 2 weeks before subsequent intrastriatal injections of 6-hydroxydopamine (6-OHDA). Levels of DA and its metabolites were measured 2 days and 21 days after lesioning the dopaminergic nigrostriatal system with 6-OHDA. Intrastriatal 6-OHDA injections in the absence of prior treatment of QA significantly decreased dopamine (DA) and its metabolite levels in striatum but not in substantia nigra at day 2, and in striatum and substantia nigra at day 21, a clear indication of a time-dependent retrograde axonal degeneration of substantia nigra cell bodies. Intrastriatal QA injections 2 weeks before subsequent intrastriatal injection of 6-OHDA partially prevented the 6-OHDA-depleting effect on DA and its metabolite levels in both striatum and substantia nigra 21 days after 6-OHDA injection. However, no statistically significant differences were found between QA + 6-OHDA- and 6-OHDA-treated animals at day 2. Our results suggest that intrastriatal QA injections partially prevent the naturally-occurring retrograde axonal degeneration of substantia nigra cell bodies caused by 6-OHDA, and illustrate a target-derived interaction between dopaminergic nerve endings and cell bodies. We suggest that the protective effect found in the QA-injected animals against the neurotoxic action of 6-OHDA is mediated by neurotrophic agents released by activated astroglia.  相似文献   

6.
Meloni EG  Davis M 《Brain research》2000,879(1-2):93-104
Rats with 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway show enhanced locomotor and stereotyped behaviors when challenged with direct and indirect dopamine (DA) agonists due to the development of postsynaptic supersensitivity. To determine if this phenomenon generalizes to other motor behaviors, we have used this rat model of Parkinson's disease to examine the effects of the direct dopamine D(1) receptor agonist SKF 82958 and the indirect DA agonist L-3,4-dihydroxyphenylalanine (L-DOPA) on the acoustic startle response. In addition, we used the expression of c-Fos protein as a marker of neuronal activity to assess any corresponding drug-induced changes in the caudate-putamen (CPu) after L-DOPA administration. Male Sprague-Dawley rats received bilateral injections of 6-OHDA into the substantia nigra pars compacta and 1 week later were tested for startle after systemic administration of SKF 82958 (0.05 mg/kg) or L-DOPA (1, 5, 10 mg/kg). SKF 82958 produced a marked enhancement of startle with a rapid onset in 6-OHDA-lesioned but not SHAM animals. L-DOPA produced a dose- and time-dependent enhancement of startle in 6-OHDA-lesioned rats that had no effect in SHAM animals even at the highest dose (10 mg/kg). Furthermore, L-DOPA produced a dramatic induction of c-Fos in the CPu in 6-OHDA-lesioned animals. Consistent with other literature, these data suggest that neurons in the CPu become supersensitive to the effects of DA agonists after 6-OHDA-induced denervation of the nigrostriatal pathway and that supersensitive dopamine D(1) receptors may mediate the enhancement of startle seen in the present study.  相似文献   

7.
J L Cadet  S M Zhu 《Brain research》1992,595(2):316-326
Unilateral injections of 6-hydroxydopamine into the striatum resulted in almost immediate ipsilateral amphetamine (AMPH)- and delayed contralateral apomorphine (APO)-induced circling behavior in rats. APO-induced rotation correlated positively with that caused by AMPH. In these animals, there was an almost complete disappearance of dopamine uptake sites as well as increases in DA D2 receptors in specific subdivisions of the ipsilateral caudate-putamen (CPu). Both the rate of AMPH- and APO-induced rotation correlated with the percentage of DA terminal loss in the total aspect and in various quadrants of the striatum. In contrast, AMPH- and APO-induced rotation correlated with the percentage increase in striatal D2 receptors only in the dorsolateral (DL) aspect of the CPu. These results indicate that both AMPH- and APO-induced rotation can be used to determine the extent of DA terminal loss in the rat basal ganglia. The positive correlation of circling behavior to only changes in DA D2 receptors observed in the DL striatal subdivision provides further evidence for the heterogeneity of the basal ganglia. This model of hemiparkinsonism in the rat which uses a distant intrastriatal approach to the destruction of nigral DA cell bodies may be a more appropriate model to study the regenerative properties of the nigrostriatal DA system. This approach could also be used to more specifically localize peptidergic receptors on midbrain dopamine cell bodies.  相似文献   

8.
Rats with 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway show enhanced locomotor and stereotyped behaviors when challenged with direct and indirect dopamine (DA) agonists due to the development of postsynaptic supersensitivity. To determine if this phenomenon generalizes to other motor behaviors, we have used this rat model of Parkinson’s disease to examine the effects of the direct dopamine D1 receptor agonist SKF 82958 and the indirect DA agonist -3,4-dihydroxyphenylalanine ( -DOPA) on the acoustic startle response. In addition, we used the expression of c-Fos protein as a marker of neuronal activity to assess any corresponding drug-induced changes in the caudate–putamen (CPu) after -DOPA administration. Male Sprague–Dawley rats received bilateral injections of 6-OHDA into the substantia nigra pars compacta and 1 week later were tested for startle after systemic administration of SKF 82958 (0.05 mg/kg) or -DOPA (1, 5, 10 mg/kg). SKF 82958 produced a marked enhancement of startle with a rapid onset in 6-OHDA-lesioned but not SHAM animals. -DOPA produced a dose- and time-dependent enhancement of startle in 6-OHDA-lesioned rats that had no effect in SHAM animals even at the highest dose (10 mg/kg). Furthermore, -DOPA produced a dramatic induction of c-Fos in the CPu in 6-OHDA-lesioned animals. Consistent with other literature, these data suggest that neurons in the CPu become supersensitive to the effects of DA agonists after 6-OHDA-induced denervation of the nigrostriatal pathway and that supersensitive dopamine D1 receptors may mediate the enhancement of startle seen in the present study.  相似文献   

9.
Extracellular single unit recording and microiontophoretic techniques were used to determine the sensitivities and interactions of D1 and D2 dopamine (DA) receptors in the caudate putamen (CPu) of rats that were denervated of DA by intraventricular injections of the catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). Seven to 10 d after the 6-OHDA injection, DA levels in the ipsilateral CPu were reduced to 11.8% of control. Current-response curves revealed that the inhibitory responses of CPu neurons to microiontophoretic administration of both the selective D1 receptor agonist SKF-38393 and the selective D2 receptor agonist quinpirole were significantly increased in 6-OHDA-pretreated rats, suggesting up-regulation of both receptor subtypes. Although our previous studies have established that D1 receptor activation is normally required for (enables) the inhibitory effects of selective D2 agonists in the CPu, this requirement was no longer evident in 6-OHDA-denervated rats. Whereas acute DA depletion [produced by the tyrosine hydroxylase inhibitor alpha-methyl-p-tyrosine (AMPT)] attenuated the inhibitory effects of quinpirole on CPu neurons, long-term DA denervation (produced by 6-OHDA) enhanced the inhibitory effects of the D2 agonist. The enhanced effects of quinpirole in 6-OHDA-lesioned rats were not due to residual DA stimulating supersensitive D1 receptors (i.e., enabling) since further DA depletion (99.7%), produced by acute administration of AMPT in 6-OHDA-lesioned rats, failed to diminish the inhibitory efficacy of quinpirole. In addition to relieving D2 receptors from the need for D1 receptor-mediated enabling, 6-OHDA lesions also abolished the normal synergistic relationship between the receptor subtypes since low (subinhibitory) currents of SKF-38393 (4 nA) failed to potentiate the inhibitory effects of quinpirole on CPu neurons in lesioned rats. Similar findings (i.e., supersensitivity and loss of synergistic effects) were obtained from rats that had received repeated pretreatment with reserpine (2.5 mg/kg) for 4 d, indicating that these effects of 6-OHDA lesions were due to the depletion of synaptic DA rather than to the structural loss of DA terminals. Therefore, both the quantitative (potentiation) and the qualitative (enabling) synergistic effects between D1 and D2 receptors in the rat CPu were abolished when these receptors were functionally supersensitive. The present study provides electrophysiological support for previous behavioral studies indicating that the requirement of D1 receptor stimulation for D2 receptor-mediated functional effects (enabling) is not maintained in rats chronically depleted of DA by either 6-OHDA lesions or repeated reserpine.  相似文献   

10.
Transplantation of dopamine (DA) cells into the rat model of hemiparkinsonism induced by intranigral 6-hydroxydopamine (6-OHDA) injections has so far focused mainly on DA replacement via a pump-like mechanism. In the present study, we employed a model of hemiparkinsonism that uses an intrastriatal approach to lesioning the nigrostriatal DA pathway to assess the possibility of using cell transplantation to cause regeneration of that system. Toward that end, we transplanted two types of cells on the side of the 6-OHDA-induced lesions: 1) nonmodified fetal mesencephalic cells and 2) fetal mesencephalic cells that have been infected with a retrovirus vector containing a PKC beta 1 cDNA. Both types of cells cause behavioral improvement although the changes were more prominent and occurred earlier in the PKC-modified groups. Tyrosine hydroxylase (TH) immunocytochemistry revealed significantly cell survival in both groups of animals; in situ hybridization studies confirmed the continuous expression of TH mRNA in both groups. Interestingly, long TH-positive axons were observed only in the striata of animals implanted with PKC-modified cells. More importantly, surviving endogenous nigral TH-positive cell bodies were found only on the lesioned side in the latter group. The observations in these animals were associated with significantly smaller decreases in [3H]mazindol-labeled DA uptake sites in both the striata and substantia nigra pars compacta on the side ipsilateral to the 6-OHDA-induced lesions. Furthermore, immunohistochemical studies revealed increased gliosis in the striata of animals grafted with the PKC-modified cells. When taken together, these results indicate that transplantation of normal fetal mesencephalic cells can cause behavioral improvement by providing DA to the host striata whereas PKC-modified cells can, in addition, prevent the progressive degeneration of or cause regeneration of the dying nigrostriatal DA neurons in this model of hemiparkinsonism. These results are discussed in terms of their support for a role for second messenger systems and glial cells, as well as extracellular matrix molecules in the regeneration of the CNS.  相似文献   

11.
To explore new therapeutic strategies for Parkinson's disease, we studied the possible protective effect of an immunosuppressant, cyclosporin A (CsA), treatment on changes in dopaminergic function in rats with intrastriatal injections of 6-hydroxydopamine (6-OHDA). Four weeks after injection of 6-OHDA, dopamine (DA) and dihydroxyphenylacetic acid in the striatum were depleted by 70–80%, and repeated high-dose CsA (20 mg/kg) treatment for 1 week significantly protected against these depletions. Tyrosine hydroxylase immunoreactivity (TH-IR) of the cell bodies in the substantia nigra pars compacta (SNc) ipsilateral to the injection were lower than on the contralateral side at 4 weeks but not at 1 week after 6-OHDA injection. The number of TH-positive cell bodies in the SNc decreased to 64% but CsA treatment increased this to 87%. The staining of microglia in the SN with OX42 andGriffonia simplicifoliaB4isolectin was intense at 3 days and gradually decreased by 28 days after injection. At 3 and 7 days after injection, the microglial staining in the SN was prominent and equal both in the 6-OHDA group and in ascorbic acid (SA)-injected controls. By 28 days postinjection, the staining had decreased to control levels in the SA group but was still above the control in the 6-OHDA group. CsA treatment did not affect this staining in either group. These results suggest that CsA protects against 6-OHDA-induced injury of nigrostriatal DA neurons by a mechanism not involving microglia.  相似文献   

12.
Changes in binding of selective radioligands at NMDA ([3H]MK-801), AMPA ([3H]CNQX), and kainate ([3H]kainic acid) glutamate (GLU) ionotropic receptors in rat caudate-putamen (CPu) and nucleus accumbens (NAc) were examined by quantitative autoradiography following: 1) unilateral surgical ablation of frontal cerebral cortex to remove descending corticostriatal GLU projections, 2) unilateral injection of kainic acid (KA) into CPu or NAc to degenerate local intrinsic neurons, or 3) unilateral injections of 6-hydroxydopamine (6-OH-DA) into substantia nigra to degenerate ascending nigrostriatal dopamine (DA) projections. Cortical ablation significantly decreased NMDA receptor binding in ipsilateral medial CPu (20%), and NAc (16%), similar to previously reported losses of DA D4 receptors. KA lesions produced large losses of NMDA receptor labeling in CPu and NAc (both by 52%), AMPA (41% and 45%, respectively), and kainate receptors (40% and 45%, respectively) that were similar to the loss of D2 receptors in CPu and NAc after KA injections. Nigral 6-OH-DA lesions yielded smaller but significant losses in NMDA (17%), AMPA (12%), and kainate (11%) receptor binding in CPu. The results indicate that most NMDA, AMPA, and kainate receptors in rat CPu and NAc occur on intrinsic postsynaptic neurons. Also, some NMDA, but not AMPA or kainate, receptors are also found on corticostriatal projections in association with D4 receptors; these may, respectively, represent excitatory presynaptic NMDA autoreceptors and inhibitory D4 heteroceptors that regulate GLU release from corticostriatal axons in medial CPu and NAc. Conversely, the loss of all three GLU receptor subtypes after lesioning DA neurons supports their role as excitatory heteroceptors promoting DA release from nigrostriatal neurons. Synapse 30:227–235, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Parkinson's disease is a major neurological disorder that primarily affects the nigral dopaminergic cells. Nigral histamine innervation is altered in human postmortem Parkinson's disease brains. However, it is not known if the altered innervation is a consequence of dopamine deficiency. The aim of the present study was to investigate possible changes in the H3 receptor system in a well-characterized model of Parkinson's disease--the 6-hydroxydopamine (6-OHDA) lesioned rats. Histamine immunohistochemistry showed a minor increase of the fibre density index but we did not find any robust increase of histaminergic innervation in the ipsilateral substantia nigra on the lesioned side. In situ hybridization showed equal histidine decarboxylase mRNA expression on both sides in the posterior hypothalamus. H3 receptors were labelled with N-alpha-[3H]-methyl histamine dihydrochloride ([3H] NAMH). Upregulation of binding to H3 receptors was found in the substantia nigra and ventral aspects of striatum on the ipsilateral side. An increase of GTP-gamma-[35S] binding after H3 agonist activation was found in the striatum and substantia nigra on the lesioned side. In situ hybridization of H3 receptor mRNA demonstrated region-specific mRNA expression and an increase of H3 receptor mRNA in ipsilateral striatum. Thus, the histaminergic system is involved in the pathological process after 6-OHDA lesion of the rat brain at least through H3 receptor. On the later stages of the neurotoxic damage, less H3 receptors became functionally active. Increased H3 receptor mRNA expression and binding may, for example, modulate GABAergic neuronal activity in dopamine-depleted striatum.  相似文献   

14.
Quantitative autoradiography was utilized to examine the response of the dopamine (DA) and muscarinic cholinergic system within the striatum to lesions of the mesostriatal DA system following intranigral 6-hydroxydopamine (6-OHDA) injections. In addition, the response of DA system was examined in the striatum of animals treated with low, medium, or high doses of 6-OHDA made intracerebroventricularly (icv). Three weeks following removal of the mesostriatal DA fibers with intranigral 6-OHDA, there was an almost complete depletion of DA and [3H]mazindol binding throughout the striatum. The resulting increase in D2 receptors labeled with [3H]spiroperidol (27%) was most evident in the lateral striatum and topographically correlated with an increase in choline uptake sites labeled with [3H]hemicholinium-3 (20%). There was a smaller but significant decrease in D1 receptors labeled with [3H]SCH 23390 (15-18%) that was not topographically related to changes in [3H]spiroperidol or [3H]hemicholinium-3 binding. All doses of icv 6-OHDA produced a significant loss of DA and of [3H]mazindol binding as compared to vehicle injections that was more pronounced in the medial than in the lateral striatum. No increase in D1 receptors was observed with any dose of 6-OHDA and greater than 90% loss of DA and [3H]mazindol resulted in an increase in D2 receptors in the lateral striatum and a reduction in D1 receptors in the dorsal striatum. These data are consistent with the evidence that there is independent regulation of the two subtypes of the DA receptor. Moreover, the distribution and regulation of the subtypes of the muscarinic receptor were independent. Muscarinic M2 receptors ([3H]N-methylscopolamine in presence of excess pirenzepine) showed a lateral to medial gradient (highest laterally) that was related to the pattern of choline uptake sites and D2 receptors. Loss of DA resulted in a reduction in M2 receptors (24-30%) that was correlated with the increase in choline uptake sites. In contrast, M1 ([3H]pirenzepine) receptors showed a reverse gradient from the M2 receptor and a smaller reduction following loss of DA.  相似文献   

15.
This study was undertaken to investigate the neuroprotective effects of rutin (vitamin P) on 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) in rats. Oxidative stress and inflammation is an important event, play a crucial role in neurodegenerative diseases. Rutin has been shown to have antioxidant and anti-inflammatory actions, and thus was tested for its beneficial effects using 6-OHDA-induced PD rat model. Male Wistar rats were pre-treated with rutin (25?mg/kg bwt, orally) for 3?weeks and subjected to unilateral intrastriatal injection of 6-OHDA (10?μg in 0.1% ascorbic acid in normal saline). Three weeks after 6-OHDA infusion, rats were tested for neurobehavioral activity, and were killed after 4?weeks of 6-OHDA infusion for the estimation of thiobarbituric acid reactive substances, glutathione, and its dependent enzymes (glutathione peroxidase and glutathione reductase), dopamine (DA) and its metabolite 3,4-dihydroxyphenyl acetic acid. The increase in 6-OHDA-induced rotations and deficits in locomotor activity and motor coordination and decrease in antioxidant level, DA content and its metabolite and increase in the number of dopaminergic D2 receptors in striatum were protected significantly with lesioned group pre-treated with rutin. These findings were further supported by the histopathological and immunohistochemical findings in the substantia nigra that showed that rutin protected neurons from deleterious effects of 6-OHDA. These results suggest that the consumption of rutin, which is novel vitamin, may have the possibility of protective effect against the neurological disorder such as PD.  相似文献   

16.
Glial cell-line-derived neurotrophic factor (GDNF) has been shown to enhance the survival of dopaminergic neurones both in vitro and in vivo , and to protect the rodent dopaminergic system from neurotoxic damage. However, most previous studies have only examined the short-term protective effects of GDNF. We have investigated the long-term effects of GDNF on a 6-hydroxydopamine (6-OHDA)-induced lesion of the rat medial forebrain bundle (MFB), which results in complete and irreversible destruction of the nigrostriatal pathway, and is a robust model of Parkinson's disease.
GDNF was administered ipsilaterally above the substantia nigra and into the lateral ventricle immediately before a unilateral 6-OHDA injection into the MFB. The effects of GDNF were examined in vivo by behavioural testing and positron emission tomography (PET) at weekly intervals, for 12 weeks. GDNF prevented the development of amphetamine-induced rotations at all time-points. PET studies, using [11C]-RTI-121 as a tracer for the dopamine transporter, indicated that GDNF prevented 6-OHDA-induced reduction of dopamine reuptake sites in the ipsilateral striatum. Post-mortem neurochemical analysis at 13 weeks after surgery found that GDNF significantly inhibited 6-OHDA-induced loss of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid in the ipsilateral striatum. Immunocytochemistry showed that GDNF reduced 6-OHDA-induced loss of tyrosine hydroxylase-positive neurones in both the substantia nigra pars compacta and ventral tegmental area. We have shown that a single treatment with GDNF can confer long-term protective effects against a 6-OHDA lesion, which suggests that this factor may be useful for the treatment of Parkinson's disease.  相似文献   

17.
丘脑底核高频电刺激对大鼠纹状体多巴胺代谢影响的研究   总被引:3,自引:0,他引:3  
目的研究丘脑底核(STN)高频电刺激(HFS)对大鼠纹状体多巴胺(DA)代谢的影响。方法给予正常大鼠一侧STN-HFS,应用微透析观察其对纹状体DA及其代谢产物的影响,应用免疫组化观察其对黑质DA能神经元的影响。结果微透析检测发现刺激侧纹状体DA代谢产物明显增高(P<0.05),DA水平无变化(P>0.05);免疫组化检测发现刺激组和对照组酪氨酸羟化酶(TH)阳性神经元数量无差异(损毁侧分别为24.00±6.81、23.43±5.49,P>0.05)。结论STN-HFS可能通过影响黑质-纹状体DA代谢发挥作用,STN-HFS对黑质DA能神经元可能无保护作用。  相似文献   

18.
We investigated the chronological changes of dopamine D1 and D2 receptors and dopamine uptake sites in the striatum and substantia nigra of mouse brain treated with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) by quantitative autoradiography using [3H]SCH23390, [3H]raclopride and [3H]mazindol, respectively. The mice received i.p. injections of MPTP (10 mg/kg) four times at intervals of 60 min, the brains were analyzed at 6 h and 1, 3, 7 and 21 days after the last the injection. Dopamine D2 receptor binding activity was significantly decreased in the substantia nigra from 7 to 21 days after MPTP administration, whereas such binding activity was significantly increased in the medial part of the striatum at 21 days. There was no alteration of dopamine D1 receptor binding activity in either the striatum or the substantia nigra for the 21 days. The number of dopamine uptake sites gradually decreased in the striatum and the substantia nigra, starting at 6 h after MPTP administration, and the lowest levels of binding activity were observed at 3 and 7 days in the striatum (18% of the control values in the medial part and 30% in the lateral part) and at 1 day in the substantia nigra (20% of the control values). These results indicate that severe functional damage to the dopamine uptake sites occurs in the striatum and the substantia nigra, starting at an early stage after MPTP treatment. Our findings also demonstrate the compensatory up-regulation in dopamine D2 receptors, but not dopamine D1 receptors, in the striatum after MPTP treatment. Furthermore, our results support the existence of dopamine D2 receptors, but not dopamine D1 receptors, on the nigral neurons. The present findings suggest that there are differential vulnerabilities to MPTP toxicity in the nigrostriatal dopaminergic receptor systems of mouse brain.  相似文献   

19.
Interruption of the ascending dopamine neurons of the nigrostriatal pathway, by 6-hydroxydopamine (6-OHDA) lesion in rats, produced a significant loss of the dopamine transport complexes labeled with the phencyclidine derivative [3H]BTCP. This loss of dopamine innervation in the striatum was present at least 12 to 14 months after lesioning and was functionally manifested by ipsilateral rotation of the animals in response to amphetamine. In these same animals, in comparison to controls, there was a significant increase in the number (Bmax) of [3H]SCH 23390-labeled D-1 receptors in the striatum (36.7%) and the substantia nigra (35.1%) and a 54.4% increase in the number (Bmax) of [3H]sulpiride-labeled striatal D-2 receptors without an apparent change in affinity (Kd). Ten to twelve months after the transplantation of homologous fetal substantia nigra into the denervated striatum, there was a significant decrease in amphetamine-induced turning behavior. In these animals, there was an ingrowth of dopamine nerve terminals in the striatum as demonstrated by a return of [3H]BTCP binding. Accompanying this reinnervation was the normalization of D-1 and D-2 receptors to control values in the striatum as well as the return of D-1 receptors to prelesion densities in the substantia nigra. In a subgroup of transplanted rats, amphetamine continued to induce ipsilateral turning. In these animals both D-1 and D-2 receptors remained supersensitive. These results support the hypothesis that the functional recovery of transplanted animals is due, in part, to reinnervation of the striatum. In addition, long-term alterations in receptor density may be related to the behavioral deficits that are associated with the 6-OHDA-lesioned rat. Furthermore, dopamine receptor plasticity may play a role in the functional recovery of substantia nigra transplanted animals and graft viability seems to be a prerequisite for behavioral recovery as well as receptor normalization.  相似文献   

20.
Unilateral injections of 6-hydroxydopamine into the striatum resulted in almost immediate ipsilateral amphetamine (AMPH)- and delayed contralateral apomorphine (APO)-induced circling behavior in rats. APO-induced rotation correlated positively with that caused by AMPH. In these animals, there was al almost complete disappearance of dopamine uptake sites as well as increases in DA D2 receptors in specific subdivision of the ipsilateral caudate-putamen CPu). Both the rate of AMPH- and APO-induced rotation correlated with the percentage of DA terminal loss in the total aspect and in various quadrants of the striatum. In contrast, AMPH- and APO-induced rotation correlated with the percentage increase in striatal D2 receptors only in the dorsolateral (DL) aspect of the CPu. These results indicate that both AMPH- and APO-induced rotation can be sued to determine the extent of DA terminal loss in the rat basal ganglia. The positive correlation of circling behavior to only changes in DA D2 receptors observed in the DL striatal subdivision provides further evidence for the heterogeneity of the basal ganglia. This model of hemiparkinsonism in the rat which uses a distant intrastriatal approach to the destruction of nigral DA cell bodies may be a more appropriate model to study the regenerative properties of the nigrostriatal DA system. This approach could also be used to more specifically localize peptidergic receptors on midbrain dopamine cell bodies  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号