首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report we show that yeast expressing brome mosaic virus (BMV) replication proteins 1a and 2a and replicating a BMV RNA3 derivative can be extracted to yield a template-dependent BMV RNA-dependent RNA polymerase (RdRp) able to synthesize (-)-strand RNA from BMV (+)-strand RNA templates added in vitro. This virus-specific yeast-derived RdRp mirrored the template selectivity and other characteristics of RdRp from BMV-infected plants. Equivalent extracts from yeast expressing 1a and 2a but lacking RNA3 contained normal amounts of 1a and 2a but had no RdRp activity on BMV RNAs added in vitro. To determine which RNA3 sequences were required in vivo to yield RdRp activity, we tested deletions throughout RNA3, including the 5',3', and intercistronic noncoding regions, which contain the cis-acting elements required for RNA3 replication in vivo. RdRp activity was obtained only from cells expressing 1a, 2a, and RNA3 derivatives retaining both 3' and intercistronic noncoding sequences. Strong correlation between extracted RdRp activity and BMV (-)-strand RNA accumulation in vivo was found for all RNA3 derivatives tested. Thus, extractable in vitro RdRp activity paralleled formation of a complex capable of viral RNA synthesis in vivo. The results suggest that assembly of active RdRp requires not only viral proteins but also viral RNA, either to directly contribute some nontemplate function or to recruit essential host factors into the RdRp complex and that sequences at both the 3'-terminal initiation site and distant internal sites of RNA3 templates may participate in RdRp assembly and initiation of (-)-strand synthesis.  相似文献   

2.
Summary.  The positive strand RNA genome of hepatitis C virus (HCV) is transcribed exclusively from a full-length cytoplasmic replication intermediate, the negative strand RNA. Despite this essential role in hepatocellular infection, the negative strand has not yet been subjected to extensive molecular characterization, and in comparison with the HCV genome and proteome, remains relatively unexplored as a target for antiviral therapy. The highly conserved negative strand terminal sequences, complementary to the positive strand 5'- and 3'-untranslated regions, are believed to contribute structural features essential for the initiation of positive strand synthesis and the maintenance of template integrity. We investigated the solution structure of the HCV negative strand 5'-terminal region by endoribonuclease mapping and thermodynamic modelling of RNA secondary structure. The enzymatic probing data are consistent with structural models featuring a large terminal stem loop (SL), which constitutes a mirror image of the complementary 3'-X region SL I structure. Nucleotide positions within the negative strand accessible to hybridization were mapped by RNase H digestion in the presence of combinatorial oligonucleotide libraries. The hybridization data further support the existence of a terminal SL, and reveal target sites within the negative strand 5'-terminus which may be susceptible to antisense-mediated inhibition.  相似文献   

3.
4.
5.
Summary. The RNA genome of hepatitis C virus (HCV) contains multiple conserved structural RNA domains that play key roles in essential viral processes. A conserved structural component within the 3′ end of the region coding for viral RNA‐dependent RNA polymerase (NS5B) has been characterized as a functional cis‐acting replication element (CRE). This study reports the ability of two RNA aptamers, P‐58 and P‐78, to interfere with HCV replication by targeting the essential 5BSL3.2 domain within this CRE. Structure‐probing assays showed the binding of the aptamers to the CRE results in a structural reorganization of the apical portion of the 5BSL3.2 stem‐loop domain. This interfered with the binding of the NS5B protein to the CRE and induced a significant reduction in HCV replication (≈50%) in an autonomous subgenomic HCV replication system. These results highlight the potential of this CRE as a target for the development of anti‐HCV therapies and underscore the potential of antiviral agents based on RNA aptamer molecules.  相似文献   

6.
The association of host proteins with viral RNA replication proteins has been reported for a number of (+)-strand RNA viruses. However, little is known about the identity or function of these host proteins in viral replication. In this paper we report the characterization of a host protein associated with the RNA-dependent RNA polymerase (RdRp) from brome mosaic virus (BMV)-infected barley. A host protein was specifically and proportionally enriched with BMV RdRp activity through several purification steps. This RdRp-associated host protein reacted with an antiserum prepared against wheat germ eukaryotic translation initiation factor 3 (eIF-3). The RdRp-associated host protein, the p41 subunit of wheat germ eIF-3, and an antigenically related protein from rabbit reticulocyte lysates were all found to bind with high affinity and specificity to BMV-encoded protein 2a, which is involved in viral RNA replication. Moreover, addition of wheat germ eIF-3 or the p41 subunit from wheat germ to BMV RdRp gave a specific and reproducible 3-fold stimulation of (-)-strand RNA synthesis in vivo. These results suggest that the barley analog of eIF-3 subunit p41, or a closely related protein, associates with BMV RdRp in vivo and is involved in BMV RNA replication. This observation and the established role of translation factors in bacteriophage Q beta RdRp suggest that association with translation factors may be a general feature of RNA replication by (+)-strand RNA viruses.  相似文献   

7.
An in vitro model of hepatitis C virion production   总被引:21,自引:0,他引:21       下载免费PDF全文
The hepatitis C virus (HCV) is a major cause of liver disease worldwide. The understanding of the viral life cycle has been hampered by the lack of a satisfactory cell culture system. The development of the HCV replicon system has been a major advance, but the system does not produce virions. In this study, we constructed an infectious HCV genotype 1b cDNA between two ribozymes that are designed to generate the exact 5' and 3' ends of HCV. A second construct with a mutation in the active site of the viral RNA-dependent RNA polymerase (RdRp) was generated as a control. The HCV-ribozyme expression construct was transfected into Huh7 cells. Both HCV structural and nonstructural proteins were detected by immunofluorescence and Western blot. RNase protection assays showed positive- and negative-strand HCV RNA. Sequence analysis of the 5' and 3' ends provided further evidence of viral replication. Sucrose density gradient centrifugation of the culture medium revealed colocalization of HCV RNA and structural proteins in a fraction with the density of 1.16 g/ml, the putative density of HCV virions. Electron microscopy showed viral particles of approximately 50 nm in diameter. The level of HCV RNA in the culture medium was as high as 10 million copies per milliliter. The HCV-ribozyme construct with the inactivating mutation in the RdRp did not show evidence of viral replication, assembly, and release. This system supports the production and secretion of high-level HCV virions and extends the repertoire of tools available for the study of HCV biology.  相似文献   

8.
The 3′untranslated region (3′UTR) and NS5B of classical swine fever virus (CSFV) play vital roles in viral genome replication. In this study, two chimeric viruses, vC/SM3′UTR and vC/b3′UTR, with 3′UTR substitution of CSFV Shimen strain or bovine viral diarrhea virus (BVDV) NADL strain, were constructed based on the infectious cDNA clone of CSFV vaccine C strain, respectively. After virus rescue, each recombinant chimeric virus was subjected to continuous passages in PK-15 cells. The representative passaged viruses were characterized and sequenced. Serial passages resulted in generation of mutations and the passaged viruses exhibited significantly increased genomic replication efficiency and infectious virus production compared to parent viruses. A proline to threonine mutation at position 162 of NS5B was identified in both passaged vC/SM3′UTR and vC/b3′UTR. We generated P162T mutants of two chimeras using the reverse genetics system, separately. The single P162T mutation in NS5B of vC/SM3′UTR or vC/b3′UTR played a key role in increased viral genome replication and infectious virus production. The P162T mutation increased vC/SM3′UTRP162T replication in rabbits. From RNA-dependent RNA polymerase (RdRp) assays in vitro, the NS5B containing P162T mutation (NS5BP162T) exhibited enhanced RdRp activity for different RNA templates. We further identified that the enhanced RdRp activity originated from increased initiation efficiency of RNA synthesis. These findings revealed a novel function for the NS5B residue 162 in modulating pestivirus replication.  相似文献   

9.
Hepatitis C virus (HCV) genome multiplication requires the concerted action of the viral RNA, host factors and viral proteins. Recent studies have provided information about the requirement of specific viral RNA motifs that play an active role in the viral life cycle. RNA regulatory motifs controlling translation and replication of the viral RNA are mostly found at the 5'' and 3'' untranslated regions (UTRs). In particular, viral protein synthesis is under the control of the internal ribosome entry site (IRES) element, a complex RNA structure located at the 5''UTR that recruits the ribosomal subunits to the initiator codon. Accordingly, interfering with this RNA structural motif causes the abrogation of the viral cycle. In addition, RNA translation initiation is modulated by cellular factors, including miRNAs and RNA-binding proteins. Interestingly, a RNA structural motif located at the 3''end controls viral replication and establishes long-range RNA-RNA interactions with the 5''UTR, generating functional bridges between both ends on the viral genome. In this article, we review recent advances on virus-host interaction and translation control modulating viral gene expression in infected cells.  相似文献   

10.
Hepatitis C virus (HCV) RNA replication depends on viral protein association with intracellular membranes, but the influence of membrane composition on viral replication is unclear. We report that HCV RNA replication and assembly of the viral replication complex require geranylgeranylation of one or more host proteins. In cultured hepatoma cells, HCV RNA replication was disrupted by treatment with lovastatin, an inhibitor of 3-hydroxy-3-methyglutaryl CoA reductase, or with an inhibitor of protein geranylgeranyl transferase I, each of which induced the dissolution of the HCV replication complex. Viral replication was not affected by treatment of cells with an inhibitor of farnesyl transferase. When added to lovastatin-treated cells, geranylgeraniol, but not farnesol, restored replication complex assembly and viral replication. Inasmuch as the HCV genome does not encode a canonical geranylgeranylated protein, the data suggest the involvement of a geranylgeranylated host protein in HCV replication. Inhibition of its geranylgeranylation affords a therapeutic strategy for treatment of HCV infection.  相似文献   

11.
12.
Interferon (IFN)-alpha is the standard therapy for the treatment of chronic hepatitis C, but the mechanisms underlying its antiviral action are not well understood. In this report, we demonstrated that IFN-alpha, -beta and -gamma inhibit replication of the hepatitis C virus (HCV) in a cell culture model at concentrations between 10 and 100 IU/ml. We demonstrated that the antiviral actions each of each these IFNs are targeted to the highly conserved 5' untranslated region of the HCV genome, and that they directly inhibit translation from a chimeric clone between full-length HCV genome and green fluorescent protein (GFP). This effect is not limited to HCV internal ribosome entry site (IRES), since these IFNs also inhibit translation of the encephalomyocardititis virus (EMCV) chimeric mRNA in which GFP is expressed by IRES-dependent mechanisms (pCITE-GFP). These IFNs had minimal effects on the expression of mRNAs from clones in which translation is not IRES dependent. We conclude that IFN-alpha, -beta and -gamma inhibit replication of sub-genomic HCV RNA in a cell culture model by directly inhibiting two internal translation initiation sites of HCV- and EMCV-IRES sequences present in the dicistronic HCV sub-genomic RNA. Results of this in vitro study suggest that selective inhibition of IRES-mediated translation of viral polyprotein is a general mechanism by which IFNs inhibits HCV replication.  相似文献   

13.
Ribozymes are catalytic RNA molecules that can be designed to cleave specific RNA sequences. To investigate the potential use of synthetic stabilized ribozymes for the treatment of chronic hepatitis C virus (HCV) infection, we designed and synthesized hammerhead ribozymes targeting 15 conserved sites in the 5' untranslated region (UTR) of HCV RNA. This region forms an internal ribosome entry site that allows for efficient translation of the HCV polyprotein. The 15 synthetic ribozymes contained modified nucleotides and linkages that stabilize the molecules against nuclease degradation. All 15 ribozymes were tested for their ability to reduce expression in an HCV 5' UTR/luciferase reporter system and for their ability to inhibit replication of an HCV-poliovirus (HCV-PV) chimera. Treatment with several ribozymes resulted in significant down-regulation of HCV 5' UTR/luciferase reporter expression (range 40% to 80% inhibition, P <.05). Moreover, several ribozymes showed significant inhibition (>90%, P <.001) of chimeric HCV-PV replication. We further show that the inhibitory activity of ribozymes targeting site 195 of HCV RNA exhibits a sequence-specific dose response, requires an active catalytic ribozyme core, and is dependent on the presence of the HCV 5' UTR. Treatment with synthetic stabilized anti-HCV ribozymes has the potential to aid patients who are infected with HCV by reducing the viral burden through specific targeting and cleavage of the viral genome.  相似文献   

14.
The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is considered to possess RNA-dependent RNA polymerase (RdRp) activity and to play an essential role for the viral replication. In this study, we expressed the NS5B protein of 65 kd by a recombinant baculovirus. With the highly purified NS5B protein, we established an in vitro system for RdRp activity by using poly(A) as a template and a 15-mer oligo(U) (oligo(U)15) as a primer. Optimal conditions of temperature and pH for primer-dependent polymerase activity of the NS5B were 32 degrees C and pH 8.0. The addition of 10 mmol of Mg2+ increased the activity. The importance of three motifs conserved in RdRp among other positive-strand RNA viruses was confirmed by introduction of an Ala residue to every amino acid of the motifs by site-directed mutagenesis. All mutants lost RdRp activity, but retained the RNA binding activity, except one mutant at Thr287/Asn291. Deletion mutant analysis indicated that the N-terminal region of NS5B protein was critical for the RNA binding. Inhibition of RdRp activity by (-)beta-L-2', 3'-dideoxy-3'-thiacytidine 5'-triphosphate (3TC; lamivudine triphosphate) and phosphonoacetic acid (PAA) was observed after screening of nucleoside analogs and known polymerase inhibitors. These data provide us not only important clues for understanding the mechanism of HCV replication, but also a new target of antiviral therapy.  相似文献   

15.
SARS-CoV-2 has caused an extensive pandemic of COVID-19 all around the world. Key viral enzymes are suitable molecular targets for the development of new antivirals against SARS-CoV-2 which could represent potential treatments of the corresponding disease. With respect to its essential role in the replication of viral RNA, RNA-dependent RNA polymerase (RdRp) is one of the prime targets. HeE1-2Tyr and related derivatives were originally discovered as inhibitors of the RdRp of flaviviruses. Here, we present that these pyridobenzothiazole derivatives also significantly inhibit SARS-CoV-2 RdRp, as demonstrated using both polymerase- and cell-based antiviral assays.  相似文献   

16.
Hepatitis C virus (HCV), the major causative agent of chronic and sporadic non-A, non-B hepatitis worldwide, is a distinct member of the Flaviviridae virus family. These viruses have in common a plus-strand RNA genome that is replicated in the cytoplasm of the infected cell via minus-strand RNA intermediates. Owing to the lack of reliable cell culture systems and convenient animal models for HCV, the mechanisms governing RNA replication are not known. As a first step towards the development of appropriate in vitro systems, we expressed the NS5B RNA-dependent RNA polymerase (RdRp) in insect cells, purified the protein to near homogeneity and studied its biochemical properties. It is a primer- and RNA template-dependent RNA polymerase able to copy long heteropolymeric templates without additional viral or cellular cofactors. We determined the optimal reaction parameters, the kinetic constants and the substrate specificity of the enzyme, which turned out to be similar to those described for the 3D polymerase of poliovirus. By analysing a series of nucleosidic and non-nucleosidic compounds for their effect on RdRp activity, we found that ribavirin triphosphates have no inhibitory effect, providing direct experimental proof that the therapeutic effect observed in patients is not related to a direct inhibition of the viral polymerase. Finally, mutation analysis was performed to map the minimal NS5B sequence required for enzymatic activity and to identify the 'classical' polymerase motifs important for template and NTP binding and catalysis.  相似文献   

17.
AIM: To examine the effect of hepatitis C virus (HCV) structural mimics of regulatory regions of the genome on HCV replication.METHODS: HCV RNA structural mimics were constructed and tested in a HCV genotype 1b aBB7 replicon,and a Japanese fulminant hepatitis-1 (JFH-1) HCV genotype 2a infection model.All sequences were computer-predicted to adopt stem-loop structures identical to the corresponding elements in full-length viral RNA.Huh7.5 cells bearing the BB7 replicon or infected with JFH-1 virus were trans...  相似文献   

18.
Hepatitis C virus (HCV) is a positive-stranded RNA virus that causes severe liver diseases, such as cirrhosis and hepatocellular carcinoma. HCV uses an RNA-dependent RNA polymerase to replicate its genome and an internal ribosomal entry site to translate its proteins. HCV infection is characterized by an increase in the concentrations of reactive oxygen species (ROS), the effect of which on HCV replication has yet to be determined. In this report, we investigated the effect of ROS on HCV replication, using a bicistronic subgenomic RNA replicon and a genomic RNA that can replicate in human hepatoma cells. The treatment with peroxide at concentrations that did not deplete intracellular glutathione or induce cell death resulted in significant decreases in the HCV RNA level in the cells. This response could be partially reversed by the antioxidant N-acetylcysteine. Further studies indicated that such a suppressive response to ROS was not due to the suppression of HCV protein synthesis or the destabilization of HCV RNA. Rather, it occurred rapidly at the level of RNA replication. ROS appeared to disrupt active HCV replication complexes, as they reduced the amount of NS3 and NS5A in the subcellular fraction where active HCV RNA replication complexes were found. In conclusion, our results show that ROS can rapidly inhibit HCV RNA replication in human hepatoma cells. The increased ROS levels in hepatitis C patients may therefore play an important role in the suppression of HCV replication.  相似文献   

19.
RNAs 33 nucleotides in length can direct accurate initiation of subgenomic RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase (RdRp), provided that the native sequences are maintained at five positions: −17, −14, −13, −11, and the +1 initiation site. The functional groups in the bases of these essential nucleotides required to interact with RdRp were examined by using chemically synthesized RNAs containing base analogs at each of the five positions. Analysis using a template competition assay revealed that the mode of recognition for the initiation nucleotide (+1) is distinct from that of the other essential nucleotides in the promoter. Competition experiments also determined that three template nucleotides are sufficient for stable interaction with RdRp. These results identify base moieties in the brome mosaic virus subgenomic promoter required for efficient RNA synthesis and support the hypothesis that the recognition of a RNA promoter by a viral RdRp is analogous to the recognition of DNA promoters by DNA-dependent RNA polymerases.  相似文献   

20.
The hepatitis C virus (HCV) co-opts numerous cellular elements, including proteins, lipids, and microRNAs, to complete its viral life cycle. The cellular RNA-binding protein, poly(rC)-binding protein 1 (PCBP1), was previously reported to bind to the 5′ untranslated region (UTR) of the HCV genome; however, its importance in the viral life cycle has remained unclear. Herein, we sought to clarify the role of PCBP1 in the HCV life cycle. Using the HCV cell culture (HCVcc) system, we found that knockdown of endogenous PCBP1 resulted in an overall decrease in viral RNA accumulation, yet resulted in an increase in extracellular viral titers. To dissect PCBP1’s specific role in the HCV life cycle, we carried out assays for viral entry, translation, genome stability, RNA replication, as well as virion assembly and secretion. We found that PCBP1 knockdown did not directly affect viral entry, translation, RNA stability, or RNA replication, but resulted in an overall increase in infectious particle secretion. This increase in virion secretion was evident even when viral RNA synthesis was inhibited, and blocking virus secretion could partially restore the viral RNA accumulation decreased by PCBP1 knockdown. We therefore propose a model where endogenous PCBP1 normally limits virion assembly and secretion, which increases viral RNA accumulation in infected cells by preventing the departure of viral genomes packaged into virions. Overall, our findings improve our understanding of how cellular RNA-binding proteins influence viral genomic RNA utilization during the HCV life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号