首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myoferlin, a candidate gene and potential modifier of muscular dystrophy   总被引:7,自引:0,他引:7  
Dysferlin, the gene product of the limb girdle muscular dystrophy (LGMD) 2B locus, encodes a membrane-associated protein with homology to Caenorhabditis elegans fer-1. Humans with mutations in dysferlin ( DYSF ) develop muscle weakness that affects both proximal and distal muscles. Strikingly, the phenotype in LGMD 2B patients is highly variable, but the type of mutation in DYSF cannot explain this phenotypic variability. Through electronic database searching, we identified a protein highly homologous to dysferlin that we have named myoferlin. Myoferlin mRNA was highly expressed in cardiac muscle and to a lesser degree in skeletal muscle. However, antibodies raised to myoferlin showed abundant expression of myoferlin in both cardiac and skeletal muscle. Within the cell, myoferlin was associated with the plasma membrane but, unlike dysferlin, myoferlin was also associated with the nuclear membrane. Ferlin family members contain C2 domains, and these domains play a role in calcium-mediated membrane fusion events. To investigate this, we studied the expression of myoferlin in the mdx mouse, which lacks dystrophin and whose muscles undergo repeated rounds of degeneration and regeneration. We found upregulation of myoferlin at the membrane in mdx skeletal muscle. Thus, myoferlin ( MYOF ) is a candidate gene for muscular dystrophy and cardiomyopathy, or possibly a modifier of the muscular dystrophy phenotype.  相似文献   

2.
Ahnak1 is a giant, ubiquitously expressed, plasma membrane support protein whose function in skeletal muscle is largely unknown. Therefore, we investigated whether ahnak would be influenced by alterations of the sarcolemma exemplified by dysferlin mutations known to render the sarcolemma vulnerable or by mutations in calpain3, a protease known to cleave ahnak. Human muscle biopsy specimens obtained from patients with limb girdle muscular dystrophy (LGMD) caused by mutations in dysferlin (LGMD2B) and calpain3 (LGMD2A) were investigated for ahnak expression and localization. We found that ahnak1 has lost its sarcolemmal localization in LGMD2B but not in LGMD2A. Instead ahnak1 appeared in muscle connective tissue surrounding the extracellular site of the muscle fiber in both muscular dystrophies. The entire giant ahnak1 molecule was present outside the muscle fiber and did only partially colocalize with CD45-positive immune cell infiltration and the extracelluar matrix proteins fibronectin and collagenVI. Further, vesicles shedded in response to Ca(2+) by primary human myotubes were purified and their protein content was analysed. Ahnak1 was prominently present in these vesicles. Electron microscopy revealed a homogenous population of vesicles with a diameter of about 150?nm. This is the first study demonstrating vesicle release from human myotubes that may be one mechanism underlying abnormally localized ahnak1. Taken together, our results define ahnak1 in muscle connective tissue as a novel feature of two genetically distinct muscular dystrophies that might contribute to disease pathology.  相似文献   

3.
Limb girdle muscular dystrophy is a group of clinically and genetically heterogeneous disorders inherited in an autosomal recessive or dominant mode. Caveolin-3, the muscle-specific member of the caveolin gene family, is implicated in the pathogenesis of autosomal dominant limb girdle muscular dystrophy 1C. Here we report on a 4-year-old girl presenting with myalgia and muscle cramps due to a caveolin-3 deficiency in her dystrophic skeletal muscle as a result of a heterozygous 136G-->A substitution in the caveolin-3 gene. The novel sporadic missense mutation in the caveolin signature sequence of the caveolin-3 gene changes an alanine to a threonine (A46T) and prevents the localization of caveolin-3 to the plasma membrane in a dominant negative fashion. Caveolin-3 has been suggested to interact with the dystrophin-glycoprotein complex, which in striated muscle fibers links the cytoskeleton to the extracellular matrix and with neuronal nitric oxide synthase. Similar to dystrophin-deficient Duchenne muscular dystrophy, a secondary decrease in neuronal nitric oxide synthase and alpha-dystroglycan expression was detected in the caveolin-3-deficient patient. These results implicate an important function of the caveolin signature sequence and common mechanisms in the pathogenesis of dystrophin-glycoprotein complex-associated muscular dystrophies with caveolin-3-deficient limb girdle muscular dystrophy.  相似文献   

4.
Caveolin-3 deficiency causes muscle degeneration in mice   总被引:8,自引:0,他引:8  
Caveolin-3 is a muscle-specific protein integrated in the caveolae, which are small invaginations of the plasma membrane. Mutations of the caveolin-3 gene, localized at 3p25, have been reported to be involved in the pathogenesis of limb-girdle muscular dystrophy (LGMD1C or caveolinopathy) with mild clinical symptoms, inherited through an autosomal dominant form of genetic transmission. To elucidate the pathogenetic mechanism, we developed caveolin-3-deficient mice for use as animal models of caveolinopathy. Caveolin-3 mRNA and its protein were absent in homozygous mutant mice. In heterozygous mutant mice, both the mRNA and its protein were normal in size, but their amounts were reduced by about half. The density of caveolae in skeletal muscle plasma membrane was roughly proportional to the amount of caveolin-3. In homozygous mutant mice, muscle degeneration was recognized in soleus muscle at 8 weeks of age and in the diaphragm from 8 to 30 weeks, although there was no difference in growth and movement between wild-type and mutant mice. No apparent muscle degeneration was observed in heterozygous mutant mice, indicating that pathological changes caused by caveolin-3 gene disruption were inherited through the recessive form of genetic transmission.  相似文献   

5.
Caveolin-3, a muscle specific caveolin-related protein, is the principal structural protein of caveolar membranes. We have recently identified an autosomal dominant form of limb girdle muscular dystrophy (LGMD-1C) that is due to caveolin-3 deficiency and caveolin-3 gene mutations. Here, we studied by electron microscopy, including freeze-fracture and lanthanum staining, the distribution of caveolae and the organization of the T-tubule system in caveolin-3 deficient human muscle fibers. We found a severe impairment of caveolae formation at the muscle cell surface, demonstrating that caveolin-3 is essential for the formation and organization of caveolae in muscle fibers. In addition, we also detected a striking disorganization of the T-system openings at the sub-sarcolemmal level in LGMD-1C muscle fibers. These observations provide new perspectives in our understanding of the role of caveolin-3 in muscle and of the pathogenesis of muscle weakness in caveolin-3 deficient muscle.  相似文献   

6.
In muscle tissue the protein caveolin-3 forms caveolae – flask-shaped invaginations localized on the cytoplasmic surface of the sarcolemmal membrane. Caveolae have a key role in the maintenance of plasma membrane integrity and in the processes of vesicular trafficking and signal transduction. Mutations in the caveolin-3 gene lead to skeletal muscle pathology through multiple pathogenetic mechanisms. Indeed, caveolin-3 deficiency is associated to sarcolemmal membrane alterations, disorganization of skeletal muscle T-tubule network and disruption of distinct cell-signaling pathways. To date, there have been 30 caveolin-3 mutations identified in the human population. Caveolin-3 defects lead to four distinct skeletal muscle disease phenotypes: limb girdle muscular dystrophy, rippling muscle disease, distal myopathy, and hyperCKemia. In addition, one caveolin-3 mutant has been described in a case of hypertrophic cardiomyopathy. Many patients show an overlap of these symptoms and the same mutation can be linked to different clinical phenotypes. This variability can be related to additional genetic or environmental factors. This review will address caveolin-3 biological functions in muscle cells and will describe the muscle and heart disease phenotypes associated with caveolin-3 mutations.  相似文献   

7.
Mutations in the caveolin-3 gene (CAV3) cause limb girdle muscular dystrophy (LGMD) type 1C (LGMD1C) and other muscle phenotypes. We screened 663 patients with various phenotypes of unknown etiology, for caveolin-3 protein deficiency, and we identified eight unreported caveolin-deficient patients (from seven families) in whom four CAV3 mutations had been detected (two are unreported). Following our wide screening, we estimated that caveolinopathies are 1% of both unclassified LGMD and other phenotypes, and demonstrated that caveolin-3 protein deficiency is a highly sensitive and specific marker of primary caveolinopathy. This is the largest series of caveolinopathy families in whom the effect of gene mutations has been analyzed for protein level and phenotype. We showed that the same mutation could lead to heterogeneous clinical phenotypes and muscle histopathological changes. To study the role of the Golgi complex in the pathological pathway of misfolded caveolin-3 oligomers, we performed a histopathological study on muscle biopsies from caveolinopathy patients. We documented normal caveolin-3 immunolabeling at the plasmalemma in some regenerating fibers showing a proliferation of the Golgi complex. It is likely that caveolin-3 overexpression occurring in regenerating fibers (compared with caveolin-deficient adult fibers) may lead to an accumulation of misfolded oligomers in the Golgi and to its consequent proliferation.  相似文献   

8.
A defect of the gene for p94 (calpain 3), a skeletal muscle-specific calpain, is responsible for limb girdle muscular dystrophy type 2A (LGMD2A), or 'calpainopathy', which is an autosomal recessive and progressive neuromuscular disorder. To study the relationships between the physiological functions of p94 and the etiology of LGMD2A, we created transgenic mice that express an inactive mutant of p94, in which the active site Cys129 is replaced by Ser (p94:C129S). Three lines of transgenic mice expressing p94:C129S mRNA at various levels showed significantly decreased grip strength. Sections of soleus and extensor digitorum longus (EDL) muscles of the aged transgenic mice showed increased numbers of lobulated and split fibers, respectively, which are often observed in limb girdle muscular dystrophy muscles. Centrally placed nuclei were also frequently found in the EDL muscle of the transgenic mice, whereas wild-type mice of the same age had almost none. There was more p94 protein produced in aged transgenic mice muscles and it showed significantly less autolytic degradation activity than that of wild-type mice. Although no necrotic-regenerative fibers were observed, the age and p94:C129S expression dependence of the phenotypes strongly suggest that accumulation of p94:C129S protein causes these myopathy phenotypes. The p94:C129S transgenic mice could provide us with crucial information on the molecular mech-anism of LGMD2A.  相似文献   

9.
Mutations in the gene encoding dysferlin (DYSF) cause the allelic autosomal recessive disorders limb girdle muscular dystrophy 2B and Miyoshi myopathy. It encompasses 55 exons spanning 150 kb of genomic DNA. Dysferlin is involved in membrane repair in skeletal muscle. We identified three families with novel sequence variants in DYSF. All affected family members showed limb girdle weakness and had reduced or absent dysferlin protein on immunohistochemistry. All exons of DYSF were screened by genomic sequencing. Five novel variants in DYSF were found: two missense mutations (c.895G>A and c.4022T>C), one 5' donor splice-site variant (c.855+1delG), one nonsense mutation (c.1448C>A), and a variant in the 3'UTR of DYSF (c.*107T>A). All alterations were confirmed by restriction enzyme analysis and not found in 400 control alleles. Nonsense mediated RNA decay or changes in the three-dimensional protein structure resulting in intracellular dysferlin aggregates and finally the lack of dysferlin protein were identified as consequences of the novel DYSF variants.  相似文献   

10.
Objective: Dysferlin is a sarcolemmal protein that plays an important role in membrane repair by regulating vesicle fusion with the sarcolemma. Mutations in the dysferlin gene (DYSF) lead to multiple clinical phenotypes, including Miyoshi myopathy (MM), limb girdle muscular dystrophy type 2B (LGMD 2B), and distal myopathy with anterior tibial onset (DMAT). Patients with dysferlinopathy also show muscle inflammation, which often leads to a misdiagnosis as inflammatory myopathy. In this study, we examined and analyzed the dyferlinopathy-associated immunological features. Methods: Comparative immunohistochemical analysis of inflammatory cell infiltration, and muscle expression of MHC-I and C5b-9 was performed using muscle biopsy samples from 14 patients with dysferlinopathy, 7 patients with polymyositis, and 8 patients with either Duchenne muscular dystrophy or Becker muscular dystrophy (DMD/BMD). Results: Immunohistochemical analysis revealed positive staining for immune response-related CD4+ cells, macrophages, MHC-I and C5b-9 in dysferlinopathy, which is in a different mode of polymyositis and DMD/BMD. Conclusion: These results demonstrated the involvement of immune factors in the pathogenesis of dysferlinopathy.  相似文献   

11.
Caveolin-3 is the muscle-specific isoform of the caveolin protein family, which is a major component of caveolae, small membrane invaginations found in most cell types. Caveolins play important roles in the formation of caveola membranes, acting as scaffolding proteins to organize and concentrate lipid-modified signaling molecules, and modulate a signaling pathway. For instance, caveolin-3 interacts with neuronal nitric oxide synthase (nNOS) and inhibits its catalytic activity. Recently, specific mutations in the caveolin-3 gene, including the Pro104Leu missense mutation, have been shown to cause an autosomal dominant limb-girdle muscular dystrophy (LGMD1C), which is characterized by the deficiency of caveolin-3 in the sarcolemma. However, the molecular mechanism by which these mutations cause the deficiency of caveolin-3 and muscle cell degeneration remains elusive. Here we generated transgenic mice expressing the Pro104Leu mutant caveolin-3. They showed severe myopathy accompanied by the deficiency of caveolin-3 in the sarcolemma, indicating a dominant negative effect of mutant caveolin-3. Interestingly, we also found a great increase of nNOS activity in their skeletal muscle, which, we propose, may play a role in muscle fiber degeneration in caveolin-3 deficiency.  相似文献   

12.
Recently, a single gene, DYSF, has been identified which is mutated in patients with limb-girdle muscular dystrophy type 2B (LGMD2B) and with Miyoshi myopathy (MM). This is of interest because these diseases have been considered as two distinct clinical conditions since different muscle groups are the initial targets. Dysferlin, the protein product of the gene, is a novel molecule without homology to any known mammalian protein. We have now raised a monoclonal antibody to dysferlin and report on the expression of this new protein: immunolabelling with the antibody (designated NCL-hamlet) demonstrated a polypeptide of approximately 230 kDa on western blots of skeletal muscle, with localization to the muscle fibre membrane by microscopy at both the light and electron microscopic level. A specific loss of dysferlin labelling was observed in patients with mutations in the LGMD2B/MM gene. Furthermore, patients with two different frameshifting mutations demonstrated very low levels of immunoreactive protein in a manner reminiscent of the dystrophin expressed in many Duchenne patients. Analysis of human fetal tissue showed that dysferlin was expressed at the earliest stages of development examined, at Carnegie stage 15 or 16 (embryonic age 5-6 weeks). Dysferlin is present, therefore, at a time when the limbs start to show regional differentiation. Lack of dysferlin at this critical time may contribute to the pattern of muscle involvement that develops later, with the onset of a muscular dystrophy primarily affecting proximal or distal muscles.  相似文献   

13.
14.
Limb-girdle muscular dystrophy type 2B (LGMD2B), a subtype of autosomal recessive limb-girdle muscular dystrophy (ARLGMD), is characterized by a relatively late onset and slow progressive course. LGMD2B is known to be caused by the loss of the dysferlin protein at sarcolemma in muscle fibers. In this study, the clinical and pathological characteristics of Korean LGMD2B patients were investigated. Seventeen patients with ARLGMD underwent muscle biopsy and the histochemical examination was performed. For the immunocytochemistry, a set of antibodies against dystrophin, alpha, beta, gamma, delta-sarcoglycans, dysferlin, caveolin-3, and beta-dystroglycan was used. Four patients (24%) showed selective loss of immunoreactivity against dysferlin at the sarcolemma on the muscle specimens. Therefore, they were classified into the LGMD2B category. The age at the onset of disease ranged from 9 yr to 33 yr, and none of the patients was wheelchair bound at the neurological examination. The serum creatine kinase (CK) was high in all the patients (4010-5310 IU/L). The pathologic examination showed mild to moderate dystrophic features. These are the first Korean LGMD2B cases with a dysferlin deficiency confirmed by immunocytochemistry. The clinical, pathological, and immunocytochemical findings of the patients with LGMD2B in this study were in accordance with those of other previous reports.  相似文献   

15.
Mutations in the dysferlin gene cause limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy. Dysferlin-deficient cells show abnormalities in vesicular traffic and membrane repair although onset of symptoms is not commonly seen until the late teenage years and is often associated with subacute onset and marked muscle inflammation. To identify molecular networks specific to dysferlin-deficient muscle that might explain disease pathogenesis, muscle mRNA profiles from 10 mutation-positive LGMD2B/MM patients were compared with a disease control [LGMD2I; (n = 9)], and normal muscle samples (n = 11). Query of inflammatory pathways suggested LGMD2B-specific increases in co-stimulatory signaling between dendritic cells and T cells (CD86, CD28, and CTLA4), associated with localized expression of both versican and tenascin. LGMD2B muscle also showed an increase in vesicular trafficking pathway proteins not normally observed in muscle (synaptotagmin-like protein Slp2a/SYTL2 and the small GTPase Rab27A). We propose that Rab27A/Slp2a expression in LGMD2B muscle provides a compensatory vesicular trafficking pathway that is able to repair membrane damage in the absence of dysferlin. However, this same pathway may release endocytotic vesicle contents, resulting in an inflammatory microenvironment. As dysferlin deficiency has been shown to enhance phagocytosis by macrophages, together with our findings of abnormal myofiber endocytosis pathways and dendritic-T cell activation markers, these results suggest a model of immune and inflammatory network over-stimulation that may explain the subacute inflammatory presentation.  相似文献   

16.
Recessively inherited limb girdle muscular dystrophy (LGMD) type 2A is the most common LGMD worldwide. Here, we report the first single missense variant in CAPN3 causing dominantly inherited calpainopathy. A 43‐year‐old proband, his father and two sons were heterozygous for a c.1715G>C p.(Arg572Pro) variant in CAPN3. Affected family members had at least three of the following; muscle pain, a LGMD2A pattern of muscle weakness and wasting, muscle fat replacement on magnetic resonance imaging, myopathic muscle biopsy, and elevated creatine kinase. Total calpain 3 protein expression was 4 ± 3% of normal. In vitro analysis of c.1715G>C and the previously described c.643_663del variant indicated that the mutant proteins lack autolytic and proteolytic activity and decrease the quantity of wild‐type CAPN3 protein. Our findings suggest that dominantly inherited calpainopathy is not unique to the previously reported c.643_663del mutation of CAPN3, and that dominantly inherited calpainopathy should be considered for other single variations in CAPN3.  相似文献   

17.
18.
CAPN3 (also called p94/calpain‐3) is a skeletal muscle‐specific calpain, an intracellular cysteine protease. Loss of CAPN3 protease activity and/or structural functions cause limb‐girdle muscular dystrophy type 2A (LGMD2A). However, the precise mechanism of action of CAPN3 in skeletal muscles in vivo remains largely elusive. By studying the protein modifications that regulate CAPN3 activity, we found that CAPN3 was phosphorylated. By performing mutagenesis and mass spectrometry analyses, we identified two Ser residues at positions 629 and 636 in human CAPN3 that are phosphorylated and showed that S629 is a major phosphorylation site. Intriguingly, rapid and exhaustive autolysis of CAPN3 was slightly attenuated by the substitution of S629. In skeletal muscles, phosphorylated CAPN3 was enriched in the myofibril fraction. These results imply that phosphorylated CAPN3 is a myofibril structural component and/or participates in myofibril‐based signaling pathways, rather than functions as a protease. We evaluated the relationship between phosphorylated CAPN3 and the pathology of LGMD2A. The level of phosphorylated CAPN3 was greatly reduced in LGMD2A muscles. Our findings suggest that phosphorylated CAPN3 is involved in the pathology of LGMD2A through defects in myofibril integrity and/or signaling pathways. This is the first report that phosphorylation of CAPN3 may be involved in its physiological function.  相似文献   

19.
Mutations in the non-lysosomal, cysteine protease calpain 3 (CAPN3) result in the disease limb girdle muscular dystrophy type 2A (LGMD2A). CAPN3 is localized to several subcellular compartments, including triads, where it plays a structural, rather than a proteolytic, role. In the absence of CAPN3, several triad components are reduced, including the major Ca(2+) release channel, ryanodine receptor (RyR). Furthermore, Ca(2+) release upon excitation is impaired in the absence of CAPN3. In the present study, we show that Ca-calmodulin protein kinase II (CaMKII) signaling is compromised in CAPN3 knockout (C3KO) mice. The CaMK pathway has been previously implicated in promoting the slow skeletal muscle phenotype. As expected, the decrease in CaMKII signaling that was observed in the absence of CAPN3 is associated with a reduction in the slow versus fast muscle fiber phenotype. We show that muscles of WT mice subjected to exercise training activate the CaMKII signaling pathway and increase expression of the slow form of myosin; however, muscles of C3KO mice do not exhibit these adaptive changes to exercise. These data strongly suggest that skeletal muscle's adaptive response to functional demand is compromised in the absence of CAPN3. In agreement with our mouse studies, RyR levels were also decreased in biopsies from LGMD2A patients. Moreover, we observed a preferential pathological involvement of slow fibers in LGMD2A biopsies. Thus, impaired CaMKII signaling and, as a result, a weakened muscle adaptation response identify a novel mechanism that may underlie LGMD2A and suggest a pharmacological target that should be explored for therapy.  相似文献   

20.
Limb girdle muscular dystrophies (LGMD) are characterized by genetic and clinical heterogeneity: seven autosomal dominant and 12 autosomal recessive loci have so far been identified. Aims of this study were to evaluate the relative proportion of the different types of LGMD in 181 predominantly Italian LGMD patients (representing 155 independent families), to describe the clinical pattern of the different forms, and to identify possible correlations between genotype, phenotype, and protein expression levels, as prognostic factors. Based on protein data, the majority of probands (n=72) presented calpain-3 deficiency; other defects were as follows: dysferlin (n=31), sarcoglycans (n=32), alpha-dystroglycan (n=4), and caveolin-3 (n=2). Genetic analysis identified 111 different mutations, including 47 novel ones. LGMD relative frequency was as follows: LGMD1C (caveolin-3) 1.3%; LGMD2A (calpain-3) 28.4%; LGMD2B (dysferlin) 18.7%; LGMD2C (gamma-sarcoglycan) 4.5%; LGMD2D (alpha-sarcoglycan) 8.4%; LGMD2E (beta-sarcoglycan) 4.5%; LGMD2F (delta-sarcoglycan) 0.7%; LGMD2I (Fukutin-related protein) 6.4%; and undetermined 27.1%. Compared to Northern European populations, Italian patients are less likely to be affected with LGMD2I. The order of decreasing clinical severity was: sarcoglycanopathy, calpainopathy, dysferlinopathy, and caveolinopathy. LGMD2I patients showed both infantile noncongenital and mild late-onset presentations. Age at disease onset correlated with variability of genotype and protein levels in LGMD2B. Truncating mutations determined earlier onset than missense substitutions (20+/-5.1 years vs. 36.7+/-11.1 years; P=0.0037). Similarly, dysferlin absence was associated with an earlier onset when compared to partial deficiency (20.2+/-standard deviation [SD] 5.2 years vs. 28.4+/-SD 11.2 years; P=0.014).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号