首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthetic oligodeoxynucleotides containing CpG immunostimulatory sequences (ISS) have been shown to act as potent adjuvants of type 1 immune responses when co-administered with protein or peptide vaccines. We have recently shown that ISS can increase the anti-polysaccharide (CHO) and anti-tetanus toxoid (TT) or anti-diphtheria (CRM) toxoid antibody levels if used as adjuvant of anti-Haemophilus influenzae type b (Hib) CHO vaccine conjugated with TT or CRM. The analysis of anti-TT and anti-CRM IgG subclasses showed a significant increase in IgG2a, IgG2b and/or IgG3 in the presence of ISS. Anti-TT and anti-CRM antibodies were shown to neutralize the activity of both the tetanus and diphtheria toxin in vivo or in vitro tests respectively. These data show that ISS have the potential to increase host antibody response against both the CHO and the protein component of a conjugated vaccine, and encourage the investigation to identify strategies of vaccination with schedules aimed at the valuation of protein carriers as protective immunogens.  相似文献   

2.
A new single-injection combination vaccine against six diseases has been developed to accommodate the growing number of recommended paediatric vaccines. A pentavalent liquid diphtheria, tetanus, acellular pertussis (3-component), hepatitis B, and inactivated polio (types 1-3) combined vaccine (DTPa-HBV-IPV) is extemporaneously mixed with a lyophilized Haemophilus influenza type B (Hib) conjugate vaccine (polyribosyl-ribitol phosphate (PRP)-T) and given as a single-injection. A cohort of 368 healthy infants was initially studied to evaluate the immunogenicity and reactogenicity of this hexavalent combination given as a primary course at 2, 4, and 6 months of age. At 15 months of age, from this cohort, 219 children received a booster dose of a licensed DTPa/Hib (PRP-T) vaccine to assess the booster response, while 70 received a challenge dose of unconjugated PRP (PRP) vaccine (to evaluate Hib-specific memory) plus a separate DTPa vaccine. Seven to 10 days following plain PRP challenge, anti-PRP geometric mean antibody concentrations (GMCs) had increased 13-fold to 5.67 microg/ml, and thirty days after conjugated PRP booster vaccination, anti-PRP antibody GMCs increased 102-fold. Both responses are indicative of immune memory. Vaccination was well tolerated following all primary and booster doses, although 10.5% of booster recipients experienced >50-mm local swelling at the site of DTPa vaccination. We conclude that DTPa-HBV-IPV/Hib is safe and immunogenic for primary vaccination, and that Hib-specific memory is induced by primary vaccination.  相似文献   

3.
Systemic and mucosal immune responses were effectively induced following the subcutaneous administration of Haemophilus influenzae type b oligosaccharide conjugated to diphtheria toxoid vaccine in a formulation containing the active form of vitamin D3. IgA and IgG antibodies with specificity for both the protein and oligosaccharide components of the vaccine were detectable in mucosal secretions following immunization. The IgA and IgG mucosal antibodies were produced locally, and were functional as demonstrated by their diphtheria toxin neutralizing activity. Our data suggests that subcutaneous tissues can effectively serve as effective antigen presenting sites for both mucosal and systemic immune responses to antigens administered in combination with vitamin D3.  相似文献   

4.
Mucosal vaccination requires effective and safe adjuvants. We have evaluated the non-toxic adjuvant CTA1-DD for mucosal vaccination against influenza. CTA1-DD contains the enzymatically active CTA1 subunit of cholera toxin (CT) genetically fused to a gene encoding a dimer of the D-fragment from Staphylococcus aureus protein A. CTA1-DD only binds to Ig-receptor carrying cells of the immune system. Nasal administration of the universal influenza vaccine M2e-HBc in combination with CTA1-DD completely protected mice from a potentially lethal infection and significantly reduced morbidity. Sera of mice immunized with M2e-HBc + CTA1-DD revealed IgG subclass profiles consistent with an enhanced Th1-type immunity. When the vaccine was administered intraperitoneally, the adjuvant improved the M2e antibody titer in circulation, but did not significantly reduce the morbidity.  相似文献   

5.
Cholera is a potentially lethal diarrhea disease caused by the gram-negative bacterium Vibrio cholerae. The need for an effective cholera vaccine is clearly indicated but the challenges of eliciting both systemic and mucosal immune responses remains a significant challenge. In the current report, we discovered that a DNA vaccine expressing a protective cholera antigen, cholera toxin B subunit (CTB), delivered parenterally can elicit both systemic and mucosal anti-CTB antibody responses in mice. The priming effect by DNA immunization was demonstrated by higher mucosal antibody responses following one boost with the inactivated cholera vaccine (KWC-B) delivered orally when compared to the twice oral administration of KWC-B alone. This finding indicates that DNA vaccines delivered parenterally are effective in eliciting mucosal protective immune responses—a unique advantage for DNA vaccination that has not yet been well realized and should bring value to the development of novel vaccination approaches against mucosally transmitted diseases.  相似文献   

6.
The influenza virus, a mucosal pathogen that infects the respiratory tract, is a major global health issue. There have been attempts to mucosally administer inactivated influenza vaccines to induce both mucosal and systemic immune responses. However, mucosally administered inactivated influenza vaccine has low immunogenicity, which is partially due to the lack of an effective mucosal adjuvant. The development of a safe and effective mucosal adjuvant is a prerequisite to the practical use of a mucosal inactivated influenza vaccine. We have previously demonstrated that a bacterial flagellin, Vibrio vulnificus FlaB, when mixed with antigen and administered intranasally, exerts a strong mucosal adjuvant activity by stimulating the Toll-like receptor 5 (TLR5). In this study, we tested whether the FlaB protein could serve as an effective mucosal adjuvant for an inactivated trivalent influenza vaccine (TIV) manufactured for humans; in a murine vaccination model, this vaccine consists of A/Brisbane/59/07 (H1N1 subtype), A/Uruguay/716/07 (H3N2 subtype), and B/Florida/4/06 (B type). Intranasal co-administration of the TIV with FlaB induced prominent humoral responses as demonstrated by high influenza-specific IgA levels in both the mucosal secretions and serum and significant specific IgG induction in the systemic compartment. The FlaB protein significantly potentiated influenza-specific cytokine production by draining lymph node cells and splenocytes. The FlaB mucosal adjuvant conferred excellent protection against a lethal challenge with a live virulent virus with high hemagglutination inhibition (HAI) antibody (Ab) titers. The FlaB did not accumulate in the olfactory nerve and epithelium, guaranteeing against a retrograde uptake into the central nervous system. These results suggest that FlaB can be used as a promising mucosal adjuvant for nasal inactivated influenza vaccine development.  相似文献   

7.
Feline immunodeficiency virus (FIV) is a natural lentiviral pathogen of cats which can be experimentally transmitted via rectal and vaginal routes — the major routes of human immunodeficiency virus type 1 transmission in man. An important objective for lentiviral research is the development of vaccine strategies which generate good mucosal immune responses capable of giving protection from a mucosal virus challenge. The experimental vaccines employed in this study were based on (a) a peptide from the third variable region of the FIV envelope glycoprotein and (b) fixed whole FIV, Glasgow-8 strain. Adjuvants used were Quil A and cholera toxin for mucosal administration and incomplete Freund’s adjuvant and immune stimulating complexes for subcutaneous injection. Mucosal immunization was given by rectal and intranasal routes. Both antibody and proliferative responses were elicited by mucosal immunization and cholera toxin was found to be a good mucosal adjuvant. The addition of a lipo thioester to the FIV peptide improved IgG and IgA responses upon parenteral administration. However, no protection from a rectal FIV challenge was achieved.  相似文献   

8.
Henderson A  Propst K  Kedl R  Dow S 《Vaccine》2011,29(32):5304-5312
Development of effective new mucosal vaccine adjuvants has become a priority with the increase in emerging viral and bacterial pathogens. We previously reported that cationic liposomes complexed with non-coding plasmid DNA (CLDC) were effective parenteral vaccine adjuvants. However, little is known regarding the ability of liposome-nucleic acid complexes to function as mucosal vaccine adjuvants, or the nature of the mucosal immune responses elicited by mucosal liposome-nucleic acid adjuvants. To address these questions, antibody and T cell responses were assessed in mice following intranasal immunization with CLDC-adjuvanted vaccines. The effects of CLDC adjuvant on antigen uptake, trafficking, and cytokine responses in the airways and draining lymph nodes were also assessed. We found that mucosal immunization with CLDC-adjuvanted vaccines effectively generated potent mucosal IgA antibody responses, as well as systemic IgG responses. Notably, mucosal immunization with CLDC adjuvant was very effective in generating strong and sustained antigen-specific CD8+ T cell responses in the airways of mice. Mucosal administration of CLDC vaccines also induced efficient uptake of antigen by DCs within the mediastinal lymph nodes. Finally, a killed bacterial vaccine adjuvanted with CLDC induced significant protection from lethal pulmonary challenge with Burkholderia pseudomallei. These findings suggest that liposome-nucleic acid adjuvants represent a promising new class of mucosal adjuvants for non-replicating vaccines, with notable efficiency at eliciting both humoral and cellular immune responses following intranasal administration.  相似文献   

9.
Reported are the effects of elevated levels of anti-tetanus antibodies on the safety and immune response to a Haemophilus influenzae type b polyribosylphosphate (PRP)-tetanus toxoid conjugate (PRP-T) vaccine. A group of Thai infants (n = 177) born to women immunized against tetanus during pregnancy were vaccinated with either a combined diphtheria-tetanus-pertussis (DTP) PRP-T vaccine or DTP and a PRP-conjugate vaccine using Neisseria meningitidis group B outer-membrane proteins as a carrier (PedVax HIB). Although most infants possessed high titres (> 1 IU/ml) of anti-tetanus antibodies, the DTP-PRP-T combined vaccine engendered an excellent antibody response to all vaccine components. In both vaccine groups > 98% of infants attained anti-PRP antibody titres > or = 0.15 microgram/ml. The geometric mean anti-PRP antibody titres were 5.41 micrograms/ml and 2.1 micrograms/ml for infants immunized with three doses of PRP-T versus two doses of PedVax HIB vaccines, respectively (P < 0.005). Similarly, the proportion of infants who achieved titres > or = 1 microgram/ml was higher in the PRP-T group (87.8%) than in the group immunized with PedVax HIB (74.2%) (P = 0.036). A subgroup analysis showed that there was no significant difference in the anti-PRP antibody response for infants exhibiting either < 1 IU of anti-tetanus antibody per millilitre or > or = 1 IU/ml at baseline. These finding indicate that pre-existing anti-carrier antibody does not diminish the immune response to the PRP moiety. All infants possessed protective levels of anti-D and anti-T antibody levels after immunization.  相似文献   

10.
《Vaccine》2022,40(8):1098-1107
The rapid spread of the COVID-19 pandemic, with its devastating medical and economic impacts, triggered an unprecedented race toward development of effective vaccines. The commercialized vaccines are parenterally administered, which poses logistic challenges, while adequate protection at the mucosal sites of virus entry is questionable. Furthermore, essentially all vaccine candidates target the viral spike (S) protein, a surface protein that undergoes significant antigenic drift. This work aimed to develop an oral multi-antigen SARS-CoV-2 vaccine comprised of the receptor binding domain (RBD) of the viral S protein, two domains of the viral nucleocapsid protein (N), and heat-labile enterotoxin B (LTB), a potent mucosal adjuvant. The humoral, mucosal and cell-mediated immune responses of both a three-dose vaccination schedule and a heterologous subcutaneous prime and oral booster regimen were assessed in mice and rats, respectively. Mice receiving the oral vaccine compared to control mice showed significantly enhanced post-dose-3 virus-neutralizing antibody, anti-S IgG and IgA production and N-protein-stimulated IFN-γ and IL-2 secretion by T cells. When administered as a booster to rats following parenteral priming with the viral S1 protein, the oral vaccine elicited markedly higher neutralizing antibody titres than did oral placebo booster. A single oral booster following two subcutaneous priming doses elicited serum IgG and mucosal IgA levels similar to those raised by three subcutaneous doses. In conclusion, the oral LTB-adjuvanted multi-epitope SARS-CoV-2 vaccine triggered versatile humoral, cellular and mucosal immune responses, which are likely to provide protection, while also minimizing technical hurdles presently limiting global vaccination, whether by priming or booster programs.  相似文献   

11.
Pavot V  Rochereau N  Genin C  Verrier B  Paul S 《Vaccine》2012,30(2):142-154
Mucosal surfaces are the major entrance for infectious pathogens and therefore mucosal immune responses serve as a first line of defence. Most current immunization procedures are obtained by parenteral injection and only few vaccines are administered by mucosal route, because of its low efficiency. However, targeting of mucosal compartments to induce protective immunity at both mucosal sites and systemic level represents a great challenge. Major efforts are made to develop new mucosal candidate vaccines by selecting appropriate antigens with high immunogenicity, designing new mucosal routes of administration and selecting immune-stimulatory adjuvant molecules. The aim of mucosal vaccines is to induce broad potent protective immunity by specific neutralizing antibodies at mucosal surfaces and by induction of cellular immunity. Moreover, an efficient mucosal vaccine would make immunization procedures easier and be better suited for mass administration. This review focuses on contemporary developments of mucosal vaccination approaches using different routes of administration.  相似文献   

12.
《Vaccine》2015,33(13):1614-1619
The majority of conjugate vaccines focus on inducing an antibody response to the polysaccharide antigen and the carrier protein is present primarily to induce a T-cell dependent response. In this study conjugates consisting of poly(ribosylribitolphosphate) (PRP) purified from Haemophilus influenzae Type b bound to Hepatitis B virus surface antigen (HBsAg) virus like particles were prepared with the aim of inducing an antibody response to not only the PRP but also the HBsAg. A conjugate consisting of PRP bound to HBsAg via an adipic acid dihydrazide (ADH) spacer induced strong IgG antibodies to both the PRP and HBsAg. When conjugation was performed without the ADH spacer the induction of an anti-PRP response was equivalent to that seen by conjugate with the ADH spacer, however, a negligible anti-HBsAg response was induced. For comparison, PRP was conjugated to diphtheria toxoid (DT) and Vi polysaccharide purified from Salmonella Typhi conjugated to HBsAg both using an ADH spacer. The PRPAH–DT conjugate induced strong anti-PRP and anti-DT responses, the Vi–AHHBsAg conjugate induced a good anti-HBsAg response but not as strong as that induced by the PRPAH–HBsAg conjugate. This study demonstrated that in mice it was possible to induce robust antibody responses to both polysaccharide and carrier protein provided the conjugate has certain physico-chemical properties. A PRPAH–HBsAg conjugate with the capacity to induce anti-PRP and anti-HBsAg responses could be incorporated into a multivalent pediatric vaccine and simplify formulation of such a vaccine.  相似文献   

13.
Recombinant cholera toxin B subunit (rCTB) which is produced by Bacillus brevis carrying pNU212-CTB acts as a mucosal adjuvant capable of enhancing host immune responses specific to unrelated, mucosally co-administered vaccine antigens. When mice were administered intranasally with diphtheria-pertussis-tetanus (DPT) combination vaccine consisting of diphtheria toxoid (DTd), tetanus toxoid (TTd), pertussis toxoid (PTd), and formalin-treated filamentous hemagglutinin (fFHA), the presence of rCTB elevated constantly high values of DTd- and TTd-specific serum ELISA IgG antibody titres, and protective levels of diphtheria and tetanus toxin-neutralizing antibodies but the absence of rCTB did not. Moreover, the addition of rCTB protected all mice against tetanic symptoms and deaths. DPT combination vaccine raised high levels of serum anti-PT IgG antibody titres regardless of rCTB and protected mice from Bordetella pertussis challenge. These results suggest that co-administration of rCTB as an adjuvant is necessary for induction of diphtheria and tetanus antitoxin antibodies on the occasion of intranasal administration of DPT combination vaccine.  相似文献   

14.
For the induction of mucosal immune responses by intranasal vaccination, cholera toxin B subunits (CTB) and Escherichia coli heat-labile toxin (LT) are often administered as mucosal adjuvants in order to enhance immune responses to mucosally co-administered bystander antigens. However, these toxin also are the causative agents of diarrhea. There is a demand for the establishment of an effective and safer adjuvant or vaccine that elicits mucosal immunity, but does not require the use of CTB or LT adjuvants. In order to induce protective mucosal immune responses in the nasal area against influenza virus infection, we have examined the recombinant protein composed of the complement component, C3d, which is fused to the secreted form of hemagglutinin (sHA-mC3d3) in the influenza-BALB/c mouse model. The fusion protein sHA-mC3d3, the secretory form of hemagglutinin, and the transmembrane form of HA (tmHA) from the influenza virus were intranasally administered to the mice with or without CTB containing a trace amount of holotoxin (CTB*) as an adjuvant. After intranasal administration of these proteins with CTB*, all mice produced nasal IgA and serum IgG antibodies (Abs) against the viral HA. In addition, viral infection was completely inhibited in these mice. In contrast, in the absence of the adjuvant, only sHA-mC3d3-induced locally secreted IgA and serum IgG Abs and provided complete protection against the influenza virus challenge. Thus, C3d fused to the influenza HA antigen is an effective and safe tool for mucosal vaccination.  相似文献   

15.
Influenza vaccines capable of inducing both systemic and mucosal antibody responses are highly desirable. Optimal induction of mucosal IgA is accomplished by mucosal delivery of vaccine. Mucosal adjuvants may improve the immunogenicity and efficacy of vaccines delivered by this route. Here, we compare the adjuvant activities of a mutant of heat-labile enterotoxin from Escherichia coli [LT(R192G)] with those of the wildtype LT (wtLT) for oral vaccination with inactivated influenza vaccine in BALB/c mice. Compared with administration of oral influenza vaccine alone, co-administration of vaccine with LT(R192G) provided enhanced protection from infection in the upper and lower respiratory tract equivalent to and at similar doses as that obtained with wtLT. Likewise, LT(R192G) augmented virus-specific IgG and IgA responses in serum, lung and nasal washes and the numbers of virus-specific antibody-forming cells in spleen, lung and Peyer's patches in a manner comparable to wtLT. Virus-specific splenic CD4(+) cells from mice administered oral vaccine with either adjuvant produced a mixed Th1- and Th2-type cytokine response pattern. Taken together, these results indicate that LT(R192G), like wtLT, is a potent adjuvant for oral vaccination of mice with influenza vaccine.  相似文献   

16.
《Vaccine》2017,35(20):2647-2653
Polio is on the brink of eradication. Improved inactivated polio vaccines (IPV) are needed towards complete eradication and for the use in the period thereafter. Vaccination via mucosal surfaces has important potential advantages over intramuscular injection using conventional needle and syringe, the currently used delivery method for IPV. One of them is the ability to induce both serum and mucosal immune responses: the latter may provide protection at the port of virus entry.The current study evaluated the possibilities of polio vaccination via mucosal surfaces using IPV based on attenuated Sabin strains. Mice received three immunizations with trivalent sIPV via intramuscular injection, or via the intranasal or sublingual route. The need of an adjuvant for the mucosal routes was investigated as well, by testing sIPV in combination with the mucosal adjuvant cholera toxin.Both intranasal and sublingual sIPV immunization induced systemic polio-specific serum IgG in mice that were functional as measured by poliovirus neutralization. Intranasal administration of sIPV plus adjuvant induced significant higher systemic poliovirus type 3 neutralizing antibody titers than sIPV delivered via the intramuscular route. Moreover, mucosal sIPV delivery elicited polio-specific IgA titers at different mucosal sites (IgA in saliva, fecal extracts and intestinal tissue) and IgA-producing B-cells in the spleen, where conventional intramuscular vaccination was unable to do so. However, it is likely that a mucosal adjuvant is required for sublingual vaccination. Further research on polio vaccination via sublingual mucosal route should include the search for safe and effective adjuvants, and the development of novel oral dosage forms that improve antigen uptake by oral mucosa, thereby increasing vaccine immunogenicity. This study indicates that both the intranasal and sublingual routes might be valuable approaches for use in routine vaccination or outbreak control in the period after complete OPV cessation and post-polio eradication.  相似文献   

17.
Woo PC  Wong LP  Zheng BJ  Yuen KY 《Vaccine》2001,19(20-22):2945-2954
A novel vaccine for hepatitis B virus (HBV) was designed by putting a naked DNA vaccine carrying hepatitis B surface antigen (HBsAg) into live-attenuated Salmonella typhimurium. Mucosal immunization by the oral route in mice showed significantly stronger cytotoxic T lymphocyte (CTL) response than recombinant HBsAg vaccination (P < 0.01 at an effector:target ratio of 100:1), while comparable to intramuscular naked DNA immunization at all effector:target ratios. Contrary to previous reports on naked DNA vaccines given intramuscularly, the IgG antibody response induced by the mucosal DNA vaccine is relatively weak when compared to recombinant HBsAg vaccine (P < 0.001 at day 21). These findings are supported by a high interferon-gamma but a low interleukin-4 level detected in the supernatant of splenic cell cultures obtained from mucosally immunized mice. As distinct to recombinant HBsAg vaccine which is effective for protection, oral mucosal DNA vaccine should be considered as a candidate for therapeutic immunization in chronic HBV infection, donor immunization before adoptive transfer of HBV-specific CTL to HBsAg positive bone marrow transplant recipients, and immunization of non-responders to recombinant HBsAg vaccine. This strongly cellular and relatively absent humoral response may make this vaccine a better candidate as a therapeutic vaccine for chronic HBV carriers than naked DNA vaccines, as the humoral response is relatively less important for the clearance of HBV from hepatocytes, but its presence may lead to side effects such as serum sickness and immune complex deposition in chronic HBV carriers.  相似文献   

18.
《Vaccine》2018,36(25):3694-3700
Mucosal vaccines are a promising platform for combatting infectious diseases for which we still lack effective preventative measures. Optimizing these vaccines to generate the best protective immune responses with the least complicated immunization regimen is imperative. Mucosal barriers are the first line of defense against many pathogens and, as such, we looked to their biology for strategies to improve vaccine delivery. Interleukin-22 (IL-22) is a key cytokine in both healthy and inflamed mucosal tissues. IL-22 promotes epithelial cell proliferation and inhibits apoptosis, upregulates mucin and antimicrobial peptides, all of which promote mucosal barrier integrity. In this study, we find that IL-22 impairs the development of a T cell response during mucosal immunization. Compared to wild-type control mice, IL-22 deficient mice had increased antigen-specific CD4 T cell responses to intrarectal immunization using a protein and cholera toxin adjuvant vaccine. When immunized systemically with the same protein antigen adsorbed to alum, no differences in the CD4 T cell response between wild-type and IL-22 deficient mice were detected. This suggests that transiently inhibiting IL-22 during mucosal vaccination could enhance T cell responses. The broad-applicability of this proposed approach would allow for improvement of many existing mucosal vaccine regimens and have positive implications in the development of more efficacious mucosal vaccines.  相似文献   

19.
《Vaccine》2018,36(29):4354-4361
Vaccine adjuvants are essential for enhancing immune responses during vaccination. However, only a limited number of safe and effective adjuvants, especially mucosal adjuvants, are available for use in vaccines. The development of a practically applicable mucosal adjuvant is therefore urgently needed. Here, we showed that the non-toxic CTA1-DD adjuvant, which combined the full enzymatic activity of the A1 subunit of cholera toxin (CT) with two immunoglobulin-binding domains of Staphylococcus aureus protein A (SpA), promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal administration with H1N1 split vaccine in mice. We demonstrated that CTA1-DD-adjuvant vaccine provided 100% protection against mortality and greatly reduced morbidity in a mouse model. We also showed that addition of CTA1-DD to the vaccine elicited significantly higher hemagglutination inhibition titers and IgG antibodies in sera than alum adjuvant. Furthermore, CTA1-DD significantly promoted the production of mucosal secretory IgA in lung lavages and vaginal lavages. We also showed that CTA1-DD could be used as a mucosal adjuvant to enhance T cell responses. Our results clearly indicated that CTA1-DD contributed to the elicitation of a protective cell-mediated immune response required for efficacious vaccination against influenza virus, which suggested that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for respiratory diseases and other mucosal diseases.  相似文献   

20.
Transmission-blocking vaccines (TBVs) targeting ookinete surface proteins expressed on sexual-stage malaria parasites are considered one promising strategy for malaria control. To evaluate the prospect of developing non-invasive and easy-to-administer mucosal malaria transmission-blocking vaccines, mice were immunized intranasally with a Plasmodium vivax ookinete surface protein, Pvs25 with a mucosal adjuvant cholera toxin (CT). Immunization induced significant serum IgG with high IgG1/IgG2a ratio (indicative of Th-2 type immune response). Feeding Anopheles dirus mosquitoes with mixtures of immune sera and gametocytemic blood derived from vivax-infected volunteer patients in Thailand significantly reduced both the number of midgut oocysts as well as the percentage of infected mosquitoes. The observed transmission-blocking effect was dependent on immune sera dilution. This study demonstrates for the first time that the mucosally induced mouse immune sera against a human malaria ookinete surface protein can completely block parasite transmission to vector mosquitoes, suggesting the possibility of non-invasive mucosal vaccines against mucosa-unrelated important pathogens like malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号