首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 647 毫秒
1.
Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response. In this study, Incubation of human umbilical cord blood monocyte-derived immature DCs with CTB-INS autoantigen fusion protein increased the surface membrane expression of DC Toll-like receptor (TLR-2) while no significant upregulation in TLR-4 expression was detected. Inoculation of iDCs with CTB stimulated the biosynthesis of both CD86 and CD83 co-stimulatory factors demonstrating an immunostimulatory role for CTB in both DC activation and maturation. In contrast, incubation of iDCs with proinsulin partially suppressed CD86 co-stimulatory factor mediated DC activation, while incubation of iDCs with CTB-INS fusion protein completely suppressed iDC biosynthesis of both CD86 and CD83 costimulatory factors. The incubation of iDCs with increasing amounts of insulin did not increase the level of immune suppression but rather activated DC maturation by stimulating increased biosynthesis of both CD86 and CD83 costimulatory factors. Inoculation of iDCs with CTB-INS fusion protein dramatically increased secretion of the immunosuppressive cytokine IL-10 and suppressed synthesis of the pro-inflammatory cytokine IL12/23 p40 subunit protein suggesting that linkage of CTB to insulin (INS) may play an important role in mediating DC guidance of cognate naïve Th0 cell development into immunosuppressive T lymphocytes. Taken together, the experimental data suggests Toll like receptor 2 (TLR-2) plays a dominant role in CTB mediated INS inhibition of DC induced type 1 diabetes onset in human Type 1 diabetes autoimmunity. Further, fusion of CTB to the autoantigen was found to be essential for enhancement of immune suppression as co-delivery of CTB and insulin did not significantly inhibit DC costimulatory factor biosynthesis. The experimental data presented supports the hypotheses that adjuvant enhancement of autoantigen mediated suppression of islet beta cell inflammation is dependent on CTB stimulation of dendritic cell TLR2 receptor activation and co-processing of both CTB and the autoantigen in the same dendritic cell.  相似文献   

2.
To investigate the potential immunomodulatory effects of concurrent ascariasis on the cytokine response to a live oral vaccine, we measured cytokine responses to cholera toxin B subunit (CT-B) following vaccination with the live oral cholera vaccine CVD 103-HgR in Ascaris lumbricoides-infected subjects randomized in a double-blind study to receive two doses of either albendazole or placebo prior to vaccination and in a group of healthy U.S. controls. Postvaccination cytokine responses to CT-B were characterized by transient increases in the production of interleukin-2 (IL-2; P = 0.02) and gamma interferon (IFN-gamma; P = 0.001) in the three study groups combined; however, postvaccination increases in IFN-gamma were significant only in the albendazole-treated A. lumbricoides infection group (P = 0.008). Postvaccination levels of IL-2 were significantly greater in the albendazole-treated group compared with the placebo group (P = 0.03). No changes in levels of Th1 and Th2 cytokines in response to control ascaris antigens were observed over the same period. These findings indicate that vaccination with CVD 103-HgR is associated with a Th1 cytokine response (IL-2 and IFN-gamma) to CT-B, that infection with A. lumbricoides diminishes the magnitude of this response, and that albendazole treatment prior to vaccination was able to partially reverse the deficit in IL-2. The potential modulation of the immune response to oral vaccines by geohelminth parasites has important implications for the design of vaccination campaigns in geohelminth-endemic areas.  相似文献   

3.
BALB/c mice were immunized intranasally with either soluble ovalbumin (OVA) or OVA entrapped in liposomes. The effect of adding Sigma cholera toxin B subunit (sCT-B), which contained low amounts of cholera holotoxin (CT), or recombinant CT-B (rCT-B) which was free from CT, as mucosal adjuvants was also investigated. The mucosal [lung enzyme-linked immunospot assay (ELISPOT), lung washing] and systemic (serum antibody and spleen ELISPOT) responses of immunized mice to OVA and CT-B were determined. Results showed that soluble OVA and liposome-entrapped OVA were poor inducers of mucosal or systemic responses unless CT-B was added as adjuvant. The types of responses augmented by sCT-B and rCT-B were different. CT-B containing low levels of CT (i.e. sCT-B) boosted both mucosal and systemic IgA and IgG responses, whereas rCT-B only increased IgG responses, unless antigen was entrapped in liposomes. Although rCT-B was unable to adjuvant IgA responses against soluble OVA, it was able to induce IgA responses against itself. These data show that mucosal responses can be increased by addition of CT-B containing low levels of CT to antigen preparations given intranasally, suggesting a direct role for CT-A in isotype switching. Furthermore, the ability of CT-B to adjuvant IgA responses against added antigens and its ability to induce responses against itself appear to be separate phenomena. The results from this study should assist the rational formulation of mucosal vaccines which induce potent mucosal and systemic immune responses.  相似文献   

4.
Activation of lymphocytes is a complex, yet finely regulated cascade of events that results in the expression of cytokine receptors, production and secretion of cytokines and expression of several cell surface molecules that eventually lead to divergent immune responses. Assessing the qualitative and quantitative nature of lymphocyte function following immunotherapy provides valuable information about the immune responses mediated by a therapeutic agent. To facilitate evaluation of the immunomodulatory activity of therapeutic agents, we have established a platform of in vitro immunoassays with normal human peripheral blood mononuclear cells (PBMCs) treated with several polyclonal activators that are known to exhibit different modes of action. We evaluated the kinetics of cell surface marker expression and cytokine release from PBMCs stimulated in parallel with various activating agents over a time course. These stimulating agents induced early (CD69 and CD71) and late (CD25 and HLA-DR) activation markers to varying antigen densities, indicated different cytokine profiles, and showed differential inhibition with dexamethasone (DEX), an inhibitor of early signaling events. Based on the association or correlation of the kinetics of activation marker expression and secreted cytokines, the results of our study indicate the appropriate time points for the simultaneous measurement of both these activation products. This study defines the kinetics for both measures of T cell activation and provides a comprehensive review with various polyclonal activators that can serve as a reference for monitoring lymphocyte function in clinical study samples.  相似文献   

5.
Alum is the principal vaccine adjuvant for clinical applications but it is a poor inducer of cellular immunity and is not an optimal adjuvant for vaccines where Th1 responses are required for protection. The mechanism underlying the inefficiency of alum in promoting Th1 responses is not fully understood. We show that aluminium hydroxide, aluminium phosphate, and calcium phosphate adjuvants inhibit the secretion of the Th1 polarizing cytokine, IL‐12 by dendritic cells (DCs). Alum selectively inhibited DC expression of the IL‐12p35 subunit and the inhibitory effect results from adjuvant‐induced PI3 kinase signaling. To develop a more effective adjuvant for promoting cell‐mediated immunity, we investigated alternative particulates and found that in contrast to alum, the cationic polysaccharide chitosan did not inhibit IL‐12 secretion. A combination of chitosan and the TLR9 agonist CpG activated the NLRP3 inflammasome and enhanced secretion of IL‐12 and the other key Th1 and Th17‐cell polarizing cytokines. When used as an adjuvant, CpG‐chitosan induced NLRP3‐dependent antigen‐specific Th1 and Th17 responses. A combination of alum and CpG also enhanced Th1 and Th17 responses but was less effective than CpG‐chitosan. Therefore, chitosan is an attractive alternative to alum in adjuvants for vaccines where potent cell‐mediated immunity is required.  相似文献   

6.
Pneumococcal surface protein A (PspA) plays a key role in the pathogenesis of invasive pneumococcal infection. PspA might modulate specific immune responses in human population. Circulating monocytes are essential for the innate responses and subsequent acquired immune responses to Streptococcus pneumoniae. In this study, we investigated the effects of PspA on cytokine and chemokine secretion from human peripheral blood monocytes and the underlying intracellular signaling mechanisms. Stimulation of monocytes with purified PspA protein induced the significant release of inflammatory cytokine IL-6 and chemokines including CXCL8, CCL2, CCL4 and CCL5. Products from PspA-deficient mutant pneumococcus that did not express PspA induced significantly less secretion of these mediators than those from wild type pneumococcus. Further investigations showed that PspA activated the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen activated protein kinase (MAPK) and nuclear factor (NF)-κB signaling pathways in human monocytes. Moreover, inhibition of these pathways using selective inhibitors could significantly reduce the cytokine and chemokine secretion induced by PspA. Taken together, our findings provide insight for PspA-mediated activation of human monocytes via NF-κB and MAPKs signaling cascades in the pathogenesis of invasive pneumococcal infection.  相似文献   

7.
8.
We had previously shown that BALB/c mice immunized with the extracellular domain of human thyrotropin receptor (ETSHR) developed moderate hyperthyroxinemia. The antibody responses in these mice were predominantly of the IgG1 subclass. Since cholera toxin B subunit (CT-B) has direct effects on the thyroid, and is known to activate B lymphocytes and cause enhanced IgG1 production, we tested the ability of CT-B to modulate the antibody response to ETSHR. CT-B is unique in that it not only elicits a strong immune response to itself, but more importantly, when given with other antigens acts as a potent adjuvant. In the present study, BALB/c mice given ETSHR with CFA or CT-B via ip route showed higher titers of antibodies to ETSHR when compared to mice similarly immunized with ETSHR alone, or with IFA. Antibodies in ETSHR+CT-B immunized mice were mostly of the IgG1 subclass and reacted predominantly with ETSHR peptides 1 (aa 22-41), 21 (aa 322-341), and 23 (352-371). In contrast, animals immunized with ETSHR+CFA showed IgG1, IgG2a and IgG2b responses and reacted with peptides 1 and 21. Furthermore, mice immunized with ETSHR along with CT-B showed significantly higher levels of thyrotropin (TSH) binding inhibitory immunoglobulins (TBII) compared to those that did not receive CT-B. None of the mice immunized with a control antigen showed antibody response to ETSHR. These results suggested that CT-B could enhance and modulate immune response to ETSHR.  相似文献   

9.
核因子κB及其与其它信号通路的交互作用   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

10.
11.
12.
According to the hygiene hypothesis, triggering the immune system with microbial components during childhood balances the inherent Th2 bias. In contrast, specific immunotherapy involves exposure of the patient to the allergen in order to achieve desensitization to subsequent contact.In a human in vitro allergy model the potential of the TLR2/6 agonist BPPcysMPEG to modulate antigen presenting cells and allergen-specific immune responses was evaluated. Specific immunomodulation via co-administration of the allergen and BPPcysMPEG enhanced expression of co-stimulatory molecules on DC and increased secretion of the proinflammatory cytokine TNF-α. Acting as an adjuvant, BPPcysMPEG elevated allergen-specific immune responses in co-culture with autologous lymphocytes. Although administration of BPPcysMPEG alone enhanced expression of co-stimulatory molecules on DC, proliferation of autologous lymphocytes was not induced.Based on this finding, the potential of BPPcysMPEG to reduce allergic airway inflammation by preventive modulation of the innate immune system via TLR2/6 agonization was investigated in mice. Local administration of BPPcysMPEG altered cellular influx and cell composition in BAL fluid. Furthermore, the Th2-associated cytokines IL-4 and IL-5 were diminished. Allergen-specific restimulation of cells from mediastinal lymph nodes and splenocytes suggested an alteration of immune responses. The treatment with BPPcysMPEG induced a Th1-dominated cytokine milieu in mediastinal lymph nodes, while allergen-specific immune responses in splenocytes were diminished. The co-administration of allergen and BPPcysMPEG reduced cytokine secretion upon restimulation in mediastinal lymph nodes and splenocytes.From these data we conclude that BPPcysMPEG was able to influence the immune system with regard to subsequent allergen contact by TLR2/6 agonization.  相似文献   

13.
14.
Complexes of cationic liposomes and non‐coding DNA (CLDC) have shown promise as vaccine adjuvant. Using the woodchuck animal model of hepatitis B virus (HBV) infection, the immunogenic effects of CLDC were evaluated following vaccination with three doses of woodchuck hepatitis virus surface antigen (WHsAg) adjuvanted with either CLDC or conventional alum and administered intramuscularly (im) or subcutaneously (sc). IM vaccination with WHsAg and CLDC elicited antibodies earlier, in more woodchucks, and with higher titers than WHsAg and alum. After two vaccine doses, antibody titers were higher following im than sc administration. Woodchucks administered two vaccine doses sc received the third vaccine dose im, and antibody responses reached titers comparable to those elicited by im administration. Following the second vaccine dose, im vaccination with WHsAg and CLDC induced T cell responses to WHsAg and selected WHs peptides and expression of the leukocyte surface marker CD8 and of the Th1 cytokines interferon‐gamma and tumor necrosis factor alpha in woodchucks. T cell responses and CD8/cytokine expression were diminished in woodchucks from the other groups suggesting that this vaccine regimen induced a skew toward Th1 immune responses. The present study in woodchucks demonstrates that CLDC‐adjuvanted WHsAg vaccine administered im resulted in a more rapid induction of humoral and cellular immune responses compared to conventional, alum‐adjuvanted WHsAg vaccine. While less rapid, the immune responses following sc administration can prime the im immune responses. This adjuvant activity of CLDC over alum may be beneficial for therapeutic vaccination in chronic HBV infection. J. Med. Virol. 81:1760–1772, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Host immune response remains a key obstacle to widespread application of adeno‐associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP‐ribose) polymerase‐1 (PARP‐1) negatively affect the integration of AAV in the host genome. However, the role of PARP‐1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP‐1 improves the transduction of single‐stranded AAV vectors both in vitro (~174%) and in vivo (two‐ to 3.4‐fold). Inhibition of PARP‐1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF‐κB subunit proteins associated with the host innate response against self‐complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP‐1 and NF‐κB signaling. This strategy also effectively attenuated the AAV capsid‐specific cytotoxic T‐cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV‐mediated gene therapy.  相似文献   

16.
17.
The nucleotide-binding domain leucine-rich repeat proteins (NLRs), a class of innate immune receptors that respond to pathogen attack or cellular stress, have gained increasing attention. NLRC5 is the largest member of NLR family, which has recently been identified as a critical regulator of immune responses. In this study, we explore the role of NLRC5 in cytokine secretion and the role of the JAK2/STAT3 signaling pathway in lipopolysaccharide-induced NLRC5 expression in RAW264.7 cells. We demonstrated that overexpression of NLRC5 results in a downregulation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion; on the other hand, knockdown of NLRC5 by transfecting siRNA enhanced IL-6 and TNF-α secretion in RAW264.7 cells. These results indicated that NLRC5 plays a negative role in the regulation of IL-6 and TNF-α. Meanwhile, AG490 (a specific inhibitor of the JAK2/STAT3 signaling pathway) and JAK2 siRNA were used to manipulate JAK2/STAT3 activity. Finally, the results showed that AG490 and JAK2 siRNA inhibited NLRC5 expression and the expression levels of p-JAK2 and p-STAT3. We, for the first time, demonstrate that the inhibition of the JAK2/STAT3 signaling pathway results in decrease of NLRC5 expression.  相似文献   

18.
We show, using a murine NK cell line which responds quantitatively to rmIL-12, that treatment with ChABCase, but not other GAGases, results in substantial reductions in the secretion of gamma-IFN. Likewise, treatment of the cells with a beta-D-xyloside inhibitor of proteoglycan biosynthesis inhibits this cytokine response. In both treatments, the addition of soluble, exogenous GAGs does not relieve the inhibition of gamma-IFN secretion. We also demonstrate by ELISA that rmIL-12 binds to CS B. Overall, our studies on this in vitro cellular model of the initiation of Th1 immune responses indicate a major role for cell-surface, iduronate-rich, CS proteoglycan in the biological activity of IL-12.  相似文献   

19.
Studies of the biological activity of T-lymphocytes in response to immune activation are often based on in vitro models using polyclonal activators such as anti-CD3 antibodies, pharmacological agents, like phorbol esters, and mitogens, like phytohemagglutinin. Activation of T-lymphocytes results in expression of cytokine receptors, production and secretion of cytokines, expression of cell surface activation markers, and cellular proliferation. This study reviews the most commonly used methods of in vitro activation by non-specific polyclonal activators on target populations of both isolated T-lymphocytes and mononuclear cells. The resultant biological activity was measured by expression of cell surface cytokine receptors, intracellular cytokine expression and quantitation of secreted cytokines. This study demonstrates the different results that can occur depending upon the nature of the population making up the responding cells, method of activation, and duration of culture. Special care must be taken when developing in vitro models of immune activation and interpreting the resultant biological activity. The results of the experiments reviewed here demonstrate the importance of measuring cytokine receptors and quantitating cytokine secretion in conjunction with identifying the cytokine-producing cells. Recent advances in flow cytometry technology permit analysis of all these parameters on a single platform.  相似文献   

20.
Papillomavirus-like particles (VLPs) are potent inducers of humoral and cellular immune responses, making them attractive candidates for noninfectious viral subunit vaccines. To further our understanding of how VLPs activate the immune system, we have investigated their interaction with human myeloid antigen-presenting cells. We found that VLPs bound, with increasing density, to the cell surface of human monocytes, macrophages, and monocyte-derived dendritic cells (DCs). Interestingly, there was a negative correlation between binding intensity and CD83 expression in DCs, suggesting that the main receptor for binding of VLPs may be downregulated during maturation. Exposure to VLPs resulted in acute phenotypic activation of monocytes and DCs. Furthermore, VLPs rapidly induced production of inflammatory cytokines in monocytes, macrophages, and DCs, as assessed by intracellular cytokine staining. For each cell type, the patterns of interleukin-1beta, interleukin-12, tumor necrosis factor-alpha, and interleukin-6 production were distinct from the pattern induced by lipopolysaccharide (LPS), a bacterial activator of myeloid antigen-presenting cells. Our results indicate that VLPs target multiple cells of the immune system, which helps to account for VLPs being so effective in priming humoral and cellular immune responses even in the absence of adjuvant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号