首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic resonance imaging is frequently complicated by the presence of motion and susceptibility gradients. Also, some biologic tissues have short T2s. These problems are particularly troublesome in fast spin-echo (FSE) imaging, in which T2 decay and motion between echoes result in image blurring and ghost artifacts. The authors reduced TE in conventional spin-echo (SE) imaging to 5 msec and echo spacing (E-space) in FSE imaging to 6 msec. All magnetic gradients (except readout) were kept at a maximum, with data sampling as fast as 125 kHz and only ramp waveforms used. Truncated sine radio-frequency pulses and asymmetric echo sampling were also used in SE imaging. Short TE (5.8 msec) SE images of the upper abdomen were compared with conventional SE images (TE =11 msec). Also, FSE images with short E-space were compared with conventional FSE images in multiple body sites. Short TE significantly improved the liver-spleen contrast-to-total noise ratio (C/N) (7.9 vs 4.1, n = 9, P <.01) on T1-weighted SE images, reduced the intensity of ghost artifacts (by 34%, P <.02), and increased the number of available imaging planes by 30%. It also improved delineation of cranial nerves and reduced susceptibility artifacts. On short E-space FSE images, spine, lung, upper abdomen, and musculoskeletal tissues appeared crisper and measured spleen-liver C/N increased significantly (6.9 vs 4.0, n = 12, P <.01). The delineation of tissues with short T2 (eg, cartilage) and motion artifact suppression were also improved. Short TE methods can improve image quality in both SE and FSE imaging and merit further clinical evaluation.  相似文献   

2.
A prospective study in 31 patients was designed to compare contrast quantitatively using axial conventional, gated spin-echo T2-weighted (T2W) (SE) (asymmetrical echo TE 30 and 80 ms) and axial dual-echo fast spin-echo (FSE) sequences (TEeff20 and 120 ms) to image lumbar discs, nerve roots, and cerebrospinal fluid CSF. We used two quantitative measures, percent (%) contrast and contrast-to-noise ratio (CNR), to compare the sequences. The FSE sequence had greater % contrast and CNR on the first and second echo images for both disc and nerve root detection using these scan parameters. An axial FSE sequence, therefore, provided contrast characteristics similar to those of gated axial T2W SE sequence in the lumbar spine, with a 60% saving in acquisition time. The FSE sequence is now our standard axial T2W study for the lumbar spine.  相似文献   

3.
Long repetition time (TR) spin-echo (SE) with T2- or proton density weighting is the sequence of choice to detect the brain lesions of multiple sclerosis (MS). Fast spin-echo (FSE) permits the generation of T2-weighted images with similar contrast to SE but in a fraction of the time. We compared the sensitivity of FSE and SE in the detection of the brain lesions of MS. Six patients with clinically definite MS underwent brain imaging with both dual echo (long TR, long and short echo time (TE) SE and dual echo FSE. The SE and FSE images were first reviewed independently and then compared. A total of 404 lesions was detected on SE and 398 on FSE. Slightly more periventricular lesions were detected using SE than FSE (145 vs 127), whereas more posterior cranial fossa lesions were detected by FSE (77 vs 57). With both SE and FSE the short TE images revealed more lesions than the long echo. These results suggest that FSE could replace SE as the long TR sequence of choice in the investigation of MS.  相似文献   

4.
Magnetic resonance imaging (MRI) examinations were performed in 15 patients with musculoskeletal neoplasms to assess the value of magnetization transfer contrast in tumor characterization. Multiplanar gradient-recalled echo sequences (TR 500-600/TE 15-20/flip angle 20–30°) were performed first without and then with magnetization transfer contrast generated by a zero degree binomial pulse (MPGR and MTMPGR). Standard T1-weighted spin echo images (SE; TR 300-400/TE 12-20) and either T2-weighted SE (TR 2000-2900/TE 70-80) or T2-weighted fast spin echo (FSE; TR 4000-5000/TE 100-119 effective) images were also obtained. Signal intensities on MTMPGR scans were compared to those on MPGR scans for both tumors and normal tissues. Signal intensity ratios (SIR) and contrast-to-noise ratios (CNR) were also compared for all sequences. MTMPGR images provided better contrast between pathologic tissues and muscle than did standard MPGR images, increasing both conspicuity of lesions and definition of tumor/muscle interfaces. Benign and malignant tumors, with the exception of lipoma, underwent similar degrees of magnetization transfer and could not be distinguished by this technique.  相似文献   

5.
Conventional T2-weighted spin-echo magnetic resonance imaging of the knee requires a long TR. Fast spin-echo (FSE) imaging can improve acquisition efficiency severalfold by collecting multiple lines of k space for each TR. Compromises in resolution, section coverage, and contrast inevitably result. The authors examined the compromises encountered in FSE imaging of the knee and discuss the variations in image contrast and resolution due to choices of sequence parameters. For short TR/TE knee imaging, FSE does not appear to offer any advantages, since the increased collection efficiency for one section reduces the available number of sections, so that the total imaging time for a given number of sections remains constant relative to conventional spin-echo imaging. For T2-weighted images, considerable time can be saved and comparable quality images can be obtained. This saved time can be usefully spent on increasing both the resolution of the image and its signal-to-noise ratio, while still reducing total acquisition time by a factor of two. The preferred FSE T2-weighted images were acquired with a TR of 4,500 msec, TE of 120 msec, and eight echoes. The available number of sections is compromised, and the sequence remains sensitive to flow artifacts; however, the FSE sequence appears to be promising for knee imaging.  相似文献   

6.
Objective To prospectively compare inversion recovery (IR) fast spin-echo (FSE) with T1-weighted spin-echo (SE) and T2-weighted chemical-shift fat-saturated (FS) FSE magnetic resonance sequences in the detection of bone marrow abnormality. Design. Twenty-nine sets of T1-weighted SE [400–640/10–20 (TR/TE)], T2-weighted FS-FSE [2400–3800/91–112/8 (TR/TE/ETL)], and IR-FSE [3700–6000/12–14/170/8 (TR/TE/T1/ETL)] images were acquired with a 1.5-T magnet in 27 patients with bone marrow lesions. The visibility, margination, and extent of 41 lesions, image quality, contrast, and artifacts were qualitatively and quantitatively compared. Results. The lesions were more conspicuous on the IR-FSE than on the T1-weighted SE and T2-weighed FS-FSE images. The extent of lesions was similar for all three sequences. Image quality was better and there were fewer motion artifacts on the T1-weighted images. The mean lesion contrast-to-noise ratio was significantly higher on the T1-weighted images (p<0.05). Conclusion. The IR-FSE sequence is highly sensitive for detecting bone marrow pathology, with scan time comparable to the T1-weighted SE and T2-weighted FS-FSE sequences.  相似文献   

7.

Objective

To identify the optimal pulse sequence for ferumoxides-enhanced magnetic resonance (MR) imaging in the detection of hepatocelluar carcinomas (HCCs).

Materials and Methods

Sixteen patients with 25 HCCs underwent MR imaging following intravenous infusion of ferumoxides. All MR studies were performed on a 1.5-T MR system, using a phased-array coil. Ferumoxides (Feridex IV) at a dose of 15 µmol/Kg was slowly infused intravenously, and axial images of seven sequences were obtained 30 minutes after the end of infusion. The MR protocol included fast spin-echo (FSE) with two echo times (TR3333 8571/TE18 and 90-117), singleshot FSE (SSFSE) with two echo times (TR∞/TE39 and 98), T2*-weighted gradient-recalled acquisition in the steady state (GRASS) (TR216/TE20), T2*-weighted fast multiplanar GRASS (FMPGR) (TR130/TE8.4-9.5), and T2*-weighted fast multiplanar spoiled GRASS (FMPSPGR) (TR130/TE8.4-9.5). Contrast-to-noise ratios (CNRs) of HCCs determined during the imaging sequences formed the basis of quantitative analysis, and images were qualitatively assessed in terms of lesion conspicuity and image artifacts. The diagnostic accuracy of all sequences was assessed using receiver operating characteristic (ROC) analysis.

Results

Quantitative analysis revealed that the CNRs of T2*-weighted FMPGR and T2*-weighted FMPSPGR were significantly higher than those of the other sequences, while qualitative analysis showed that image artifacts were prominent at T2*-weighted GRASS imaging. Lesion conspicuity was statistically significantly less clear at SSFSE imaging. In term of lesion detection, T2*-weighted FMPGR, T2*-weighted FMPSPGR, and proton density FSE imaging were statistically superior to the others.

Conclusion

T2*-weighted FMPGR, T2*-weighted FMPSPGR, and proton density FSE appear to be the optimal pulse sequences for ferumoxides-enhanced MR imaging in the detection of HCCs.  相似文献   

8.
OBJECTIVE: To compare the magnetic resonance image contrasts due to ferritin and hemosiderin in the brain tissue among different pulse sequences. MATERIALS AND METHODS: Fourteen patients with cavernous hemangioma in the brain prospectively underwent MR imaging with T2*-weighted gradient-echo (GRE), T2-weighted conventional spin-echo (SE) and fast spin-echo (FSE) sequences. The relative contrast ratios (CRs) of the hypointense part of cavernous hemangioma, globus pallidus and putamen to the deep frontal white matter were measured on each pulse sequence and statistically analyzed using analysis of variance followed by paired t-test. RESULTS: In the hypointense part of cavernous hemangioma, relative CRs were significantly lower on T2*-weighted GRE than on T2-weighted SE images (P=0.0001), and on T2-weighted SE than on T2-weighted FSE images (P=0.0001). In the globus pallidus, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.002), and on T2*-weighted GRE than on T2-weighted FSE images (P=0.0002). In the putamen, relative CRs were significantly lower on T2-weighted SE than on T2*-weighted GRE images (P=0.001), and there was no significant difference between CRs on T2-weighted FSE and T2*-weighted GRE images (P=0.90). CONCLUSION: Hemosiderin showed best image contrast on T2*-weighted GRE images but ferritin showed more prominent image contrast on T2-weighted SE than on T2*-weighted GRE images, which may help to determine an appropriate pulse sequence in neurological diseases associated with excessive ferritin accumulation.  相似文献   

9.
RATIONALE AND OBJECTIVES: Spin lock imaging has been shown to be useful in characterizing head and neck tumors. The purposes of this study were to explore and develop multiple-slice spin lock gradient-echo (SL-GRE) sequences for head and neck imaging and to compare the tumor contrast on SL images to spin-echo (SE) T2-weighted images at 0.1 T. METHODS: On the basis of measured relaxation times of tumors and head and neck tissues, the authors evaluated with signal equations the effect of imaging parameters on tissue contrast produced by the SL-GRE sequence. In the clinical study, 34 patients with pathologically verified head and neck tumors were imaged with multiple-slice SL-GRE (repetition time 1500 ms/echo time 30 ms) out-of-phase fat/water sequences and compared with T2-weighted SE (repetition time 1500 ms/echo time 120 ms) sequences. The conspicuity of tumors was evaluated by calculating the contrast-to-noise ratios (CNRs). RESULTS: The combination of a short echo time of 30 ms and the length of locking pulses in the range of 10 to 35 ms produced optimal CNRs for head and neck tumor imaging. The measured CNRs and subjective evaluation for tumor detection were satisfactory with both imaging sequences. However, the CNRs between tumors and salivary gland tissues were significantly greater with the SL sequence than with the T2-weighted sequence. CONCLUSIONS: The multiple-slice SL-GRE technique provides image contrast comparable to that of SE T2-weighted imaging for head and neck tumors at 0.1 T. With short locking pulse lengths and echo times, wide anatomic coverage and reduced motion and susceptibility artifacts can be achieved. The out-of-phase SL technique is useful in imaging salivary gland tumors.  相似文献   

10.
Objective. Fast spin-echo (FSE) sequences reduce imaging time compared with conventional spin-echo (CSE) sequences, but may result in blurring. High-performance gradients permit shorter interecho spacing and use of the second echo as the effective TE (20 ms); both improvements reduce blurring. This randomized observer study compared a short TE, second-echo FSE sequence obtained using high-performance gradients and a CSE sequence with similar TR/TE for the detection of meniscal tears in the knee. Design and patients. One hundred consecutive MR examinations of the knee using FSE and CSE sequences at 1.5 T were evaluated. The FSE sequence used an effective TE of 20 ms (centered on the second echo at 2 times minimal interecho spacing) and an echo train length of 4. FSE and CSE parameters were otherwise similar. Four independent, masked readers reviewed randomized sagittal FSE and CSE sequences. Results. Cases were assessed for the presence or absence of meniscal tears and, if present, whether tears were medial or lateral and anterior or posterior. Sequence concordance was 93.5% (1496 of 1600 meniscal segments); the intermethod kappa value was 0.78. Sequence quality was graded from 1 to 5. Average quality of CSE images was slightly but statistically significantly preferred by three of the four readers. Conclusion. There was no statistically significant difference between CSE imaging and FSE imaging centered on the second echo (20 ms) using high-performance gradients for the detection of meniscal tears in the knee. There was a small preference for the quality of CSE images. Received: 22 July 1999 Revision requested: 27 October 1999 Revision received: 7 February 2000 Accepted: 21 March 2000  相似文献   

11.
The aim of this study was to assess the efficacy of a superparamagnetic iron oxide, ferumoxides, in the detection and characterization of focal nodular hyperplasia (FNH) on MR conventional spin-echo (SE), fast spin-echo (FSE) and gradient-echo (GRE) images. Fourteen adults with 27 FNHs were evaluated at 1.5 T before and after injection of ferumoxides. T1-weighted and T2-weighted SE, T2-weighted FSE and T2*-weighted GRE sequences were used and analysed qualitatively and quantitatively. One hundred percent of FNHs showed a significant postcontrast decrease in signal intensity on T2- and T2*-weighted images. Heavily T2-weighted SE images showed the maximum decrease in FNH signal-to-noise ratio (S/N). Postcontrast GRE T2*-weighted images improved the detection of the central scar and the delineation of FNHs and demonstrated the best lesion-to-liver contrast-to-noise ratio (C/N). Postcontrast T1-weighted SE images showed the least lesion-to-liver C/N. Ferumoxides-enhanced MR imaging can help detect and characterize FNH. Conventional pre- and postcontrast T2-weighted SE images and postcontrast GRE T2*-weighted images should be used preferentially. Received: 30 November 1998; Revised: 5 April 1999; Accepted: 6 April 1999  相似文献   

12.
Functional NMR imaging of the brains response to a simple visual task has been performed using a fast spin echo (FSE) imaging sequence at 1.5 T. The FSE method refocuses dephasing effects induced by large-scale susceptibility variations, and permits imaging in regions where macroscopic field gradients produce artifacts in gradient echo sequences. At 1.5 T, gradient echo (GRE) sequences are sensitive to the effects of brain activation, but relatively large effects may arise from large vessels and veins, and these may dominate the effects produced by smaller capillaries. Spin echo (SE) sequences with short echo times are relatively immune to large vessel effects and emphasize the susceptibility induced losses from small capillaries, but the imaging time for these sequences is prohibitive for most functional brain studies. We demonstrate that multislice functional brain imaging may be performed in reasonable imaging times at 1.5 T using an FSE imaging sequence. The FSE sequence with short echo spacing but long effective TE is sensitive to susceptibility induced effects at the capillary level. It is not sensitive to larger scale in homogeneities such as those found in veins and can be used in regions near tissuelair boundaries. Results are shown comparing conventional GRE and FSE images in activation of the visual cortex and these are supported by theoretical calculations and phantom experiments.  相似文献   

13.
The aim of this study was to compare the diagnostic performance of contrast-enhanced fast multiplanar gradient-echo (GRE) and T2-weighted fast spin-echo (FSE) image sets in the assessment of uterus, cervix, and vagina. Fast (up to 20 contiguous sections in 23 s) multiplanar GRE and FSE images of 45 patients referred for imaging of the female pelvis were evaluated retrospectively with regard to overall image quality and the ability to detect normal anatomic structures, as well as lesion conspicuity. Results were compared with histologic findings (n = 29) or clinical follow-up. Furthermore, a quantitative assessment of contrast-to-noise ratios among normal uterine and cervical structures as well as uterine lesions was performed for both sequences. On GRE images, uterine and cervical differentiation was best seen on the image sets acquired 15 and 60 s following contrast enhancement and results were significantly better compared with delayed images (p < 0.05). Delineation of the junctional zone was significantly (p < 0.05) better on FSE compared with GRE images; no significant difference was seen for the other anatomic structures. Overall image quality of GRE and FSE images was similar. Sensitivity for lesion detection based on both GRE and FSE images was 96 % with a sensitivity of 93 % for GRE, and 81 % for FSE images alone, respectively. Using the extended McNemar χ 2 test, the difference in diagnostic performance between FSE and GRE revealed no significant difference, whereas the combination of both techniques performed better than FSE imaging alone (p < 0.05). The presented data suggest that dynamic contrast-enhanced GRE imaging should be part of an MR examination of the female pelvis. Combined GRE and FSE imaging provide an excellent sensitivity in the assessment of uterine and vaginal pathologies. Received 8 August 1997; Revision received 23 December 1997; Accepted 16 February 1998  相似文献   

14.
Magnitude-reconstructed short inversion-time (TI) inversion-recovery (IR) sequences have the advantage of reducing the signal of fat while providing additive T1 and T2 contrast. A double-echo short TI IR sequence was implemented to offer different degrees of T1- and T2-dependent image contrast. In 50 consecutive patients with proved liver tumors (30 metastases, 13 hemangiomas, seven other primary liver tumors), images obtained with a double-echo IR sequence at a repetition time (TR) of 1,500 msec, echo time (TE) of 30 and 60 msec, and TI of 80 msec (TR/TE/TI = 1,500/30, 60/80) were compared with those obtained with spin-echo (SE) sequences at a TR of 275 msec and a TE of 14 msec (TR/TE = 275/14) and 2,350/60, 120, 180. Metastases-liver contrast-to-noise ratios were highest at SE 275/14, followed by IR 1,500/30/80 and SE 2,350/180. IR 1,500/30/80 and SE 275/14 sequences consistently showed higher sensitivity for the detection of metastases than T2-weighted SE sequences. Differential diagnosis of benign and malignant lesions was more reliable with T2-weighted SE sequences than T2-weighted short TI IR sequences.  相似文献   

15.
S Saini  W Li  B Wallner  P F Hahn  R R Edelman 《Radiology》1991,181(2):449-453
The authors evaluated soft-tissue contrast on spin-echo (SE) proton density-weighted, SE T2-weighted, SE short-echo-time (TE) T1-weighted, and gradient-echo (GRE) images of 34 patients with known hepatic tumors who underwent high-field-strength (1.5-T) magnetic resonance imaging. For solid liver tumors, the difference in the mean lesion-liver contrast-to-noise ratios (C/Ns) with T1- (GRE and SE) and T2-weighted pulse sequences was not statistically significant (P greater than .05). For nonsolid liver tumors, the T2-weighted images provided significantly greater (P less than .05) mean lesion-liver C/N than T1-weighted GRE images. Mean liver signal-to-noise ratio was significantly greater on T1-weighted GRE (P less than .0001) and T1-weighted SE (P less than .05) images than on T2- and proton density-weighted images. Qualitative analysis of T1-weighted (SE and GRE) images and proton density- plus T2-weighted images showed that lesion conspicuity was similar in 25 of 32 patients (78%). The results suggest that liver tumor imaging at high field strength can be performed with short-TE T1-weighted (SE or GRE) or conventional T2-weighted pulse sequences.  相似文献   

16.
BACKGROUND AND PURPOSE: The T1-weighted fast spin-echo (T1-FSE) MR imaging sequence is not used routinely, since the speed advantage is not as dramatic as it is in T2-weighted imaging. We evaluated the T1-FSE sequence to determine whether this technique can replace the conventional T1-weighted spin-echo (T1-SE) sequence for routine contrast-enhanced imaging. METHODS: Sixty-nine patients with intracranial enhancing lesions underwent both T1-SE and T1-FSE sequences in a random order after administration of contrast agent. Acquisition time was 55 seconds for the T1-FSE sequence and 2 minutes 38 seconds for the SE sequence. The conspicuity of enhancing lesions, peritumoral edema, and gray-to-white matter contrast as well as motion and flow artifacts were analyzed. Signal-to-noise ratios of enhancing lesions, gray matter, and white matter as well as contrast-to-noise ratios (CNRs) of enhancing lesions, with gray matter with white matter as the standard, were calculated. RESULTS: The conspicuity of enhancing lesions was better on T1-FSE sequences than on T1-SE sequences, although the difference in the CNRs of enhancing lesions did not reach significance. Images obtained with the T1-FSE sequence showed less flow and motion artifacts than did those obtained with the T1-SE sequence. The conspicuity of peritumoral edema and gray-to-white matter contrast was lower on the T1-FSE images than on the T1-SE images. CONCLUSION: The T1-FSE sequence reduces imaging time and has the potential to replace the conventional T1-SE sequence for the evaluation of enhancing lesions in the brain when time is a consideration.  相似文献   

17.
The goal of our prospective study was to compare quantitatively and qualitatively in-phase and opposed-phase T1-weighted breath-hold spoiled gradient-recalled-echo (GRE) MR imaging technique for imaging focal hepatic lesion. Thirty-eight patients with 53 focal hepatic lesions had in-phase (TR = 12.3 ms, TE = 4.2 ms) and opposed-phase (TR = 10.1 ms, TE = 1.9 ms) GRE (flip angle = 30°, bandwidth ± 32 kHz, matrix size 256 × 128, one signal average) MR imaging at 1.5 T. Images were analyzed quantitatively by measuring the lesion-to-liver contrast and for lesion detection. In addition, images were reviewed qualitatively for lesion conspicuity. Quantitatively, lesion-to-liver contrast obtained with in-phase (3.22 ± 1.86) and opposed-phase pulse sequence (3.72 ± 2.32) were not statistically different (Student's t-test). No difference in sensitivity was found between in-phase and opposed-phase pulse sequence (31 of 53, sensitivity 58 % vs 30 of 53, sensitivity 57 %, respectively). Two lesions not seen with opposed-phase imaging were detected with in-phase imaging. Conversely, one lesion not seen on in-phase imaging was detected on opposed-phase imaging so that the combination of in-phase and opposed-phase imaging yielded detection of 32 of 53 lesions (sensitivity 60 %). Qualitatively, lesion conspicuity was similar with both techniques. However, in-phase images showed better lesion conspicuity than opposed-phase images in 9 cases, and opposed-phase images showed better lesion conspicuity than in-phase images in 7 cases. No definite advantage (at a significant level) emerged between in-phase and opposed-phase spoiled GRE imaging. Because differences in lesion conspicuity and lesion detection may be observed with the two techniques in individual cases, MR evaluation of patients with focal hepatic lesion should include both in-phase and opposed-phase spoiled GRE imaging. Received 30 October 1996; Revision received 6 January 1997; Accepted 8 January 1997  相似文献   

18.
Fast spin-echo MR imaging of the eye   总被引:5,自引:0,他引:5  
Magnetic resonance imaging of the eye usually includes T2-weighted images both for screening purposes and for characterization of melanoma. Conventional T2-weighted spin-echo (SE) imaging suffers both from long acquisition times and incomplete recovery of the vitreous' signal. A fast SE sequence was therefore compared prospectively with conventional sequences in 29 consecutive patients with lesions of the eye. Fast SE images delineated melanoma and other lesions of the eye from vitreous better than conventional T2-weighted images. Image quality and lesion conspicuity were improved on the fast sequence. Whereas melanoma appeared hypointense to vitreous on both types of images, subretinal effusion was hypointense on fast images and hyperintense on conventional T2-weighted images. Ghosting of the globe, which, however, did not decrease diagnostic value, was more pronounced on fast images. Conventional T2-weighted images may be replaced by fast SE images in MR studies of the eye with a gain in lesion conspicuity and significant time saving.Correspondence to: N. HostenThis work was supported by grant 70-01847-Ho 1, Deutsche Krebshilfe.  相似文献   

19.
Short TR, short TE, high resolution, 3D gradient-recalled echo (GRE) imaging was evaluated for lesion detection in the brain. High resolution 3D GRE data acquisition was used to reduce partial volume effects and flow artifacts, to better visualize smaller structures, to minimize signal losses caused by field inhomogeneities, and to allow better image reformatting. Spin-echo (SE) and 3D GRE approaches were compared for lesion detection after the administration of an MR contrast agent, gadopentetate dimeglumine. Preliminary clinical studies demonstrated that the signal-to-noise ratio (SNR) in each slice of the GRE scan was worse than that of the SE scan because of the much thicker slices acquired with the SE technique. However, by averaging two adjacent 3D slices, the SNR of the two methods was essentially equivalent. In the averaged GRE slices, large lesions were seen just as well as in the SE images. More importantly, small lesions were better visualized in the thin 3D GRE images than in the thick SE images for the lesions studied in this work and the protocols used. These observations were confirmed by theoretical simulations.  相似文献   

20.
Fast recovery 3D fast spin-echo MR imaging of the inner ear at 3 T   总被引:7,自引:0,他引:7  
High-resolution MR imaging of the inner ear with a heavily T2-weighted 3D fast spin-echo sequence has been performed successfully at 1.5 T. However, at 3 T, the longer T1 time of CSF necessitates a longer TR, resulting in significantly prolonged imaging times. In this study, the fast recovery 3D fast spin-echo sequence, which permits the TR to be reduced while maintaining T2 contrast, was optimized at 3 T for imaging of the inner ear. The optimized sequence parameters are as follows: 1500/294 (TR/TE); echo spacing, 18.1 ms; bandwidth, 38 kHz at 512 readout; and imaging time, 13 minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号