首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Data that have accumulated for well over a decade have implicated the beta-amyloid (Abeta) peptide as a central player in the pathogenesis of Alzheimer's disease (AD). Amyloid plaques, composed primarily of Abeta progressively form in the brains of AD patients, and mutations in three genes (amyloid precursor protein [APP] and presenilin 1 and 2 [PS1 and PS2]) cause early-onset familial AD (FAD) by directly increasing production of the toxic, plaque-promoting Abeta42 peptide. Given the strong association between Abeta and AD, it is likely that therapeutic strategies to lower the levels of Abeta in the brain should prove beneficial for the treatment of AD. One such strategy could involve inhibiting the enzymes that generate Abeta. Abeta is a product of catabolism of the large type-I membrane protein APP. Two proteases, called beta- and gamma-secretase, endoproteolyze APP to liberate the Abeta peptide. Recently, the molecules responsible for these proteolytic activities have been identified. Several lines of evidence suggest that the PS1 and PS2 proteins are gamma-secretase, and the identity of beta-secretase has been shown to be the novel transmembrane aspartic protease, beta-site APP-cleaving enzyme 1 (BACE1; also called Asp2 and memapsin 2). BACE2, a protease homologous to BACE1, was also identified, and together the two enzymes define a new family of transmembrane aspartic proteases. BACE1 exhibits all the functional properties of beta-secretase, and as the key enzyme that initiates the formation of Abeta, BACE1 is an attractive drug target for AD. This review discusses the identification and initial characterization of BACE1 and BACE2, and summarizes recent studies of BACE1 knockout mice that have validated BACE1 as the authentic beta-secretase in vivo.  相似文献   

2.
Association studies using novel polymorphisms in BACE1 and BACE2.   总被引:5,自引:0,他引:5  
The release of amyloid-beta peptide (Abeta) from beta-amyloid precursor protein (APP) requires cleavage by beta- and gamma-secretases. Several groups have identified a candidate for the beta-site APP-cleaving enzyme, BACE1, and its homologue BACE2. We sequenced the genes for BACE1 and BACE2 and found several polymorphisms in both genes. Genotyping a large cohort of AD cases and controls has shown no association between AD and the intronic polymorphism in BACE2 while there was a weak association between the BACE1 polymorphism in exon 5 and AD in those carrying the APOE epsilon4 allele.  相似文献   

3.
Liu HC  Leu SJ  Chang JG  Sung SM  Hsu WC  Lee LS  Hu CJ 《Brain research》2003,961(1):88-91
The deposition of amyloid beta-peptide (Abeta) plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Beta-site APP cleaving enzyme (BACE) is the rate-limiting enzyme in the Abeta formation. BACE mutations/polymorphisms may be associated with AD. We searched the BACE coding region mutations/polymorphisms of cDNA in 25 AD patients and 100 healthy controls by single-strand conformational polymorphism. A polymorphism at BACE coding region was identified and confirmed to be 786C/G polymorphism by nucleotide sequencing. Based on these findings, we investigated the association of this polymorphism with the occurrence of AD by PCR-RFLP. A total of 98 AD patients along with 138 controls were recruited in the present study. The allele frequencies of the 786C/G polymorphism were 0.622 for C and 0.378 for G in AD. In controls, the C and G allele frequencies were 0.691 and 0.309, respectively. No significant association of this polymorphism with the occurrence of AD can be established. Larger sample size may be necessary to identify other potential mutations/polymorphisms among BACE gene.  相似文献   

4.
BACKGROUND/AIMS: Alterations in the blood-brain barrier (BBB) may play an important role in the pathogenesis and treatment of Alzheimer's disease (AD). We investigated BBB disturbance and its influence on the equilibrium of amyloid-beta protein (Abeta) between plasma and cerebrospinal fluid (CSF) in AD patients. METHODS: We analyzed albumin ratio as a marker of the BBB permeability and correlated it with the severity of dementia, brain atrophy on MRI, apolipoprotein E isoform, CSF levels of total tau, CSF and plasma levels of Abeta 1-40 (Abeta40) and 1-42 (Abeta42), and CSF/plasma ratios of Abeta40 and Abeta42 in 42 AD patients. RESULTS: The albumin ratio was positively correlated with the severity of medial temporal lobe atrophy but not with the other parameters including CSF/plasma ratios of Abeta40 or Abeta42. CONCLUSION: Our results suggest that progression of medial temporal lobe atrophy is associated with increased BBB permeability and that the transport of Abeta across the BBB is not influenced by the BBB alteration in AD.  相似文献   

5.
CONTEXT: Amyloid plaques, a major pathological feature of Alzheimer disease (AD), are composed of an internal fragment of amyloid precursor protein (APP): the 4-kd amyloid-beta protein (Abeta). The metabolic processing of APP that results in Abeta formation requires 2 enzymatic cleavage events, a gamma-secretase cleavage dependent on presenilin, and a beta-secretase cleavage by the aspartyl protease beta-site APP-cleaving enzyme (BACE). OBJECTIVE: To test the hypothesis that BACE protein and activity are increased in regions of the brain that develop amyloid plaques in AD. METHODS: We developed an antibody capture system to measure BACE protein level and BACE-specific beta-secretase activity in frontal, temporal, and cerebellar brain homogenates from 61 brains with AD and 33 control brains. RESULTS: In the brains with AD, BACE activity and protein were significantly increased (P<.001). Enzymatic activity increased by 63% in the temporal neocortex (P =.007) and 13% in the frontal neocortex (P =.003) in brains with AD, but not in the cerebellar cortex. Activity in the temporal neocortex increased with the duration of AD (P =.008) but did not correlate with enzyme-linked immunosorbent assay measures of insoluble Abeta in brains with AD. Protein level was increased by 14% in the frontal cortex of brains with AD (P =.004), with a trend toward a 15% increase in BACE protein in the temporal cortex (P =.07) and no difference in the cerebellar cortex. Immunohistochemical analysis demonstrated that BACE immunoreactivity in the brain was predominantly neuronal and was found in tangle-bearing neurons in AD. CONCLUSIONS: The BACE protein and activity levels are increased in brain regions affected by amyloid deposition and remain increased despite significant neuronal and synaptic loss in AD.  相似文献   

6.
Amyloid plaques, hallmark neuropathological lesions in Alzheimer's disease (AD) brain, are composed of the beta-amyloid peptide (Abeta). Much evidence suggests that Abeta is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. Given the strong correlation between Abeta and AD, therapeutic strategies to lower cerebral Abeta levels should prove beneficial for AD treatment. Abeta is derived from amyloid precursor protein (APP) via cleavage by two proteases, beta- and gamma-secretase. The beta-secretase has been identified as a novel aspartic protease named BACE1 (beta-site APP Cleaving Enzyme 1) that initiates Abeta formation. Importantly, BACE1 appears to be dysregulated in AD. As the rate-limiting enzyme in Abeta generation, BACE1, in principle, is an excellent therapeutic target for strategies to reduce the production of Abeta in AD. While BACE1 knockout (BACE1-/-) mice have been instrumental in validating BACE1 as the authentic beta-secretase in vivo, data indicates that complete abolishment of BACE1 may be associated with specific behavioral and physiological alterations. Recently a number of non-APP BACE1 substrates have been identified. It is plausible that failure to process certain BACE1 substrates may underlie some of the reported abnormalities in the BACE1-/- mice. Here we review the basic biology of BACE1, focusing on the regulation, structure and function of this enzyme. We pay special attention to the putative function of BACE1 during normal conditions and discuss in detail the relationship that exists between key risk factors for AD and the pathogenic alterations in BACE1 that are observed in the diseased state.  相似文献   

7.
8.
9.
One of the main neuropathological lesions observed at brain autopsy of Alzheimer's disease (AD) patients are the extracellular senile plaques mainly composed of amyloid-beta (Abeta) peptides. Abeta is generated by proteolytic processing of amyloid precursor protein (APP) via beta and gamma-secretases. The beta-secretase APP cleaving enzyme 1 (BACE1) has become a target of intense research aimed at blocking the enzyme activity. Recent studies showed that BACE1 is involved in processing other non-APP substrates, and that other proteases are involved in APP processing. We have recently established a novel approach to inhibit Abeta production via antibodies against the beta-secretase cleavage site of APP. These antibodies bind wild type and Swedish mutated APP expressed in transgenic mice brain tissues. The isolated antibodies do not bind any form of Abeta peptides. Antibody up-take experiments, using Chinese hamster ovary cells expressing wild-type APP, suggest that antibody internalization and trafficking are mediated via the endocytic pathway. Administration of antibodies to the cells growing media resulted in a considerable decrease in intracellular Abeta levels, as well as in the levels of the corresponding C-terminal fragment (C99). The relevance of intra-neuronal accumulation of mainly Abeta42 as an early event in AD pathogenesis suggests that this approach may be applicable as a novel therapeutic strategy in AD treatment.  相似文献   

10.
BACKGROUND: In brains with AD, Abeta is a major component of diffuse plaques. Previous reports showed that CSF Abeta42 levels were lower in patients with AD than in controls. Although studies showed higher plasma Abeta42 levels in familial AD, a recent report has indicated that plasma Abeta42 levels were similar in a sporadic AD group and controls. However, no information is published on plasma Abeta40 and Abeta42 levels in relation to Apo E genotype or severity of dementia in sporadic AD. OBJECTIVE: To examine plasma and cerebrospinal fluid (CSF) levels of amyloid beta protein 1-40 (Abeta40) and 1-42 (Abeta42) levels in patients with probable Alzheimer disease (AD) and elderly nondemented control subjects in relation to the apolipoprotein E (Apo E) genotype and dementia severity. SETTING: Two university medical centers. PATIENTS AND METHODS: Levels of Abeta40 and Abeta42 were measured in plasma from 78 patients with AD and 61 controls and in CSF from 36 patients with AD and 29 controls by means of a sandwich enzyme-linked immunosorbent assay. RESULTS: Mean plasma Abeta40 levels were higher in the AD group than in controls (P = .005), but there was substantial overlap; Abeta42 levels were similar between the groups. Levels of Abeta40 and Abeta42 showed no association with sex or Mini-Mental State Examination scores. There was a significant relationship between age and Abeta40 level in controls but not in the AD group. Levels of Abeta40 were higher in patients with AD with the Apo E epsilon4 allele than in controls (P<.01). Cerebrospinal fluid Abeta40 levels were similar in the AD group and controls. However, Abeta42 levels were lower in the AD group than in controls (P<.001). The levels showed no association with severity of dementia. CONCLUSIONS: Although mean plasma Abeta40 levels are elevated in sporadic AD and influenced by Apo E genotype, measurement of plasma Abeta40 levels is not useful to support the clinical diagnosis of AD. Lower levels of CSF Abeta42 in the AD group are consistent with previous studies.  相似文献   

11.
Proteolysis of beta-amyloid precursor protein (APP) into amyloid beta peptide (Abeta) by beta- and gamma-secretases is a critical step in the pathogenesis of Alzheimer's Disease (AD), but the pathways regulating secretases are not fully characterized. Ubiquitinylation, which is dysregulated in AD, may affect APP processing. Here, we describe a screen for APP processing modulators using an siRNA library targeting 532 predicted ubiquitin ligases. Seven siRNA pools diminished Abeta production. Of these, siRNAs targeting PPIL2 (hCyp-60) suppressed beta-site cleavage. Knockdown of PPIL2 mRNA decreased BACE1 mRNA, while overexpression of PPIL2 cDNA enhanced BACE1 mRNA levels. Microarray analysis of PPIL2 or BACE1 knockdown indicated that genes affected by BACE1 knockdown are a subset of those dependent upon PPIL2; suggesting that BACE1 expression is downstream of PPIL2. The association of PPIL2 with BACE expression and its requirement for Abeta production suggests new approaches to discover disease modifying agents for AD.  相似文献   

12.
The intracellular aspartyl protease cathepsin D (catD) is involved in such Alzheimer's disease (AD)-related processes as the activation of the endosomal/lysosomal system and the cleavage of the amyloid precursor protein into amyloidogenic components, which may initiate neurodegeneration. A non-synonymous polymorphism (exon 2, C to T exchange leading to ala-->val substitution) of the gene encoding catD (CTSD) was previously associated with AD, in that the T allele increased the risk for AD. To investigate whether the T allele is associated with disease-related traits, we measured the concentration of the amyloid beta-peptide 1-42 (Abeta(42)) and 1-40 (Abeta(40)) in patients and control subjects. The T allele of the CTSD genotype was associated with a 50% decrease in Abeta(42) levels in the cerebrospinal fluid. Thus, we demonstrate a significant impact of the CTSD genotype on Abeta(42) levels in the cerebrospinal fluid of AD patients and underpin the importance of the validation of susceptibility genes by examining their potential pathophysiological relevance.  相似文献   

13.
Cerebrolysin is a peptide mixture with neurotrophic effects that might reduce the neurodegenerative pathology in Alzheimer's disease (AD). We have previously shown in an amyloid protein precursor (APP) transgenic (tg) mouse model of AD-like neuropathology that Cerebrolysin ameliorates behavioral deficits, is neuroprotective, and decreases amyloid burden; however, the mechanisms involved are not completely clear. Cerebrolysin might reduce amyloid deposition by regulating amyloid-beta (Abeta) degradation or by modulating APP expression, maturation, or processing. To investigate these possibilities, APP tg mice were treated for 6 months with Cerebrolysin and analyzed in the water maze, followed by RNA, immunoblot, and confocal microscopy analysis of full-length (FL) APP and its fragments, beta-secretase (BACE1), and Abeta-degrading enzymes [neprilysin (Nep) and insulin-degrading enzyme (IDE)]. Consistent with previous studies, Cerebrolysin ameliorated the performance deficits in the spatial learning portion of the water maze and reduced the synaptic pathology and amyloid burden in the brains of APP tg mice. These effects were associated with reduced levels of FL APP and APP C-terminal fragments, but levels of BACE1, Notch1, Nep, and IDE were unchanged. In contrast, levels of active cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3beta [GSK-3beta; but not stress-activated protein kinase-1 (SAPK1)], kinases that phosphorylate APP, were reduced. Furthermore, Cerebrolysin reduced the levels of phosphorylated APP and the accumulation of APP in the neuritic processes. Taken together, these results suggest that Cerebrolysin might reduce AD-like pathology in the APP tg mice by regulating APP maturation and transport to sites where Abeta protein is generated. This study clarifies the mechanisms through which Cerebrolysin might reduce Abeta production and deposition in AD and further supports the importance of this compound in the potential treatment of early AD.  相似文献   

14.
The enzyme β-secretase (BACE1) is essentially involved in the production of cerebral amyloidogenic pathology in Alzheimer's disease (AD). The measurement of BACE1 activity in cerebrospinal fluid (CSF) has been reported, which may render CSF measurement of BACE1 a potential biomarker candidate of AD. In order to investigate whether BACE1 protein activity is correlated with regional brain atrophy in AD, we investigated the association between CSF levels of BACE1 and MRI-assessed hippocampus volume in patients with AD (n = 30). An increase in CSF-BACE1 activity was associated with decreased left and right hippocampus volume corrected for global head volume in the AD patients. Boot-strapped regression analysis showed that increased CSF levels of BACE1 activity were associated with increased CSF concentration of total tau but not amyloid-β1-42 in AD. White matter hyperintensities did not influence the results. BACE1 activity and protein levels were significantly increased in AD compared to 19 elderly healthy controls. Thus, the CSF biomarker candidate of BACE1 activity was associated with hippocampus atrophy in AD in a robust manner and may reflect neurotoxic amyloid-β-related processes.  相似文献   

15.
beta-Amyloid peptide (Abeta) is generated by two cleavages of amyloid precursor protein (APP). The initial cleavage by BACE is followed by gamma-secretase cleavage of the C-terminal APP fragment. Presenilin-1 (PS-1) is intimately related to gamma-secretase. Once formed, Abeta is mainly broken down by neprilysin. To estimate vulnerability to Abeta senile plaque formation, we measured the relative mRNA levels of APP695, APP751, APP770, BACE, presenilin-1 (PS-1) and neprilysin in nine brain areas and in heart, liver, spleen and kidney in a series of Alzheimer disease (AD) and control cases. Each of the mRNAs was expressed in every tissue examined. APP695 was the dominant APP isoform in brain. Compared with controls, APP695 and PS-1 mRNA levels were significantly elevated in high plaque areas of AD brain, while neprilysin mRNA levels were significantly reduced. BACE levels were not significantly different in AD compared with control brain. In peripheral organs, there were no significant differences in any of the mRNAs between AD and control cases. APP isoforms were differently expressed in the periphery than in brain, with APP 751>770>695. Neprilysin mRNA levels were much higher, while APP695 and PS-1 mRNA levels were much lower in the periphery than in brain. The data suggest that, in the periphery, the capacity to degrade Abeta is srong, accounting for the failure of Abeta deposits to form. In plaque prone areas of AD brain, the capacity to degrade Abeta is weak, while the capacity to generate Ab is upregulated. In plaque resistant areas of brain, a closer balance exists, but there is some tendency towards lower degrading and higher synthesizing capacity in AD brain compared with control brain. Overall, the data indicate that effectiveness of degradation by neprilysin may be a key factor in determining whether Abeta deposits develop.  相似文献   

16.
In the course of cognitive deterioration leading to Alzheimer's disease (AD) the increase of amyloid beta (Abeta42) in cerebrospinal fluid or plasma might be an initial event. We previously reported about the associations between concomitant medication and plasma Abeta42 levels in the non-demented population cohort of the Vienna transdanube aging study at baseline. In the present study, the longitudinal influence of insulin, gingko biloba, non-steroidal anti-inflammatory drugs (NSAIDs), oral anti-diabetics (sulfonylurea and biguanides), estrogens, fibrates, and statins on plasma Abeta42 are presented. Associated with medial temporal lobe atrophy (MTA), users of insulin showed significantly increased levels of Abeta42. Long-term users of gingko biloba, independent of their MTA, had significantly decreased plasma Abeta42 and the age-dependent increase of plasma Abeta42 was significantly smaller in long-term gingko biloba treated subjects. The use of fibrates also decreased plasma Abeta42 levels. In multiple testing considering interactions between medications, gender, APOE-epsilon4 presence and creatinine, insulin long-term users again showed significantly increased levels; fibrate and gingko biloba users showed a trend to rather decreased plasma Abeta42 levels compared to the non-users (p=0.05-0.08). Neither statins nor NSAIDs showed a significant effect on plasma Abeta42 in this model. Measuring the effect on cognition, no single medication studied was a significant predictor of conversion to AD or mild cognitive impairment (MCI). Whether the use of gingko biloba might prevent the conversion to MCI or AD needs to be proven in prospective, clinical trials.  相似文献   

17.
Beta-secretase beta-site APP cleaving enzyme 1 (BACE1), is a membrane-bound aspartyl protease necessary for the generation of amyloid beta-protein (Abeta), which accumulates in the brains of individuals with Alzheimer's disease (AD). To gain insight into the mechanisms by which BACE1 activity is regulated, we used proteomic methods to search for BACE1-interacting proteins in human neuroblastoma SH-SY5Y cells, which overexpress BACE1. We identified reticulon 4-B (RTN4-B; Nogo-B) as a BACE1-associated membrane protein. Co-immunoprecipitation experiments confirmed a physical association between BACE1 and RTN4-B, RTN4-C (the shortest isoform of RTN-4), and their homologue reticulon 3 (RTN3), both in SH-SY5Y cells and in transfected human embryonic kidney (HEK) 293 cells. Overexpression of these reticulons (RTNs) resulted in a 30-50% reduction in the secretion of both Abeta40 and Abeta42 from HEK293 cells expressing the AD-associated Swedish mutant amyloid precursor protein (APP), but did not affect Abeta secretion from cells expressing the APP beta-C-terminal fragment (beta-CTF), indicating that these RTNs can inhibit BACE1 activity. Furthermore, a BACE1 mutant lacking most of the N-terminal ectodomain also interacted with these RTNs, suggesting that the transmembrane region of BACE1 is critical for the interaction. We also observed a similar interaction between these RTNs and the BACE1 homologue BACE2. Because RTN3 and RTN4-B/C are substantially expressed in neural tissues, our findings suggest that they play important roles in the regulation of BACE1 function and Abeta production in the brain.  相似文献   

18.
The assessment of protein or amino acid variations across evolution allows one to glean divergent features of disease-specific pathology. Within the Alzheimer's disease (AD) literature, extensive differences in Abeta processing across cell lines and evolution have clearly been observed. In the recent past, increased levels of amyloid beta Abeta1-42 have been heralded to be what distinguishes whether one is prone to the development of AD [59]. However, observations in naturally occurring, non-transgenic animals which display a great deal of parenchymal Abeta1-42 (Abeta found within extracellular plaque deposits) and a complete lack ofbeta1-40 within these same Abeta1-42 plaques raise the issue of whether Abetax-42 (Abeta that is truncated or modified at the N- terminus), rather than Abeta1-42, is instead the critical mediator of Abeta production and pathogenesis [47,49]. Distinct ratios of Abeta N-terminal variants (i.e. Abeta1-x, Abeta3-x, Abeta11-x, beta17-x) have been assessed in human amyloid plaques [18,21,40,41,42,47,48,49,52]. Moreover, ratios of specific Abeta N-terminal variants separate naturally occurring, non-transgenic animals which develop abundant levels of Abetax-42 and not Abetax-40 from human AD participants who harbor plaques that contain both the Abetax-42 and Abetax-40 variants [49]. Next, Teller and colleagues have demonstrated the presence of N-terminal truncated soluble 3kD (likely Abeta17-x) and 3.7kD peptides (in addition to 4kD Abeta) well before the appearance of amyloid plaques in Down Syndrome brain [51], indicating an early contribution of thebeta N-terminus to the formation of amyloid pathology. Additional critical facts concerning the major contribution of the Abeta N-terminus in AD pathogenesis include observations which support thatbeta generated by rodent neurons is predominantly truncated at Abeta11-x [13], the major form of APP C-terminal fragments in mice lacking functional PS1 is AbetaPP11-98 [9], beta11-x expression is increased as a function of BACE expression [55], and an interrelationship between presenilin-1 mutations and increased levels of N-terminally truncatedbeta [40]. This commentary highlights current understanding and potential biochemical, pathological, and cell biological contributions of Abeta N-terminal variants implicated during the course of AD pathogenesis. Although the amyloid beta protein precursor (AbetaPP) gene and Abeta are highly conserved across mammalian species, there are species-specific differences. For instance, the primate, guinea pig, canine, and polar bear share an identical Abeta sequence to that observed in human brain while the rat displays a distinct amino acid sequence with substitutions at residues 5 (Arg), 10 (Tyr), and 13 (His) [24,37]. All of these mammals generate Abeta1-42 via cleavage by at least two enzymes, beta (beta-) secretase and gamma (gamma-) secretase (Fig. 1). The enzyme that liberates the N- terminus of the Abeta peptide ('beta-secretase') is also termed BACE (beta-site AbetaPP cleaving enzyme) [55]. Cathepsin D, which accumulates within AD neurons [15], also cleaves at the N-terminal side of the first aspartate residue of amyloid beta [2].beta-secretase activity is necessary in order to initiate 4kD beta1-x formation by cleaving AbetaPP at the N-terminus and results in the release of a soluble 100kD AbetaPP N- terminal fragment and a 12kD membrane bound C-terminal fragment (C99/C100) [55]. The carboxyl-terminus of the Abetapeptide is liberated through cleavage by the enzyme termed gamma-secretase. In the past, potential AD therapeutic strategies have mainly been geared towards gamma-secretase inhibition. However, such strategies alone no longer appear sound as it is clear that the AbetaPP C99/C100 fragment itself, which requires beta-, but not gamma-, secretase cleavage for generation and includes the entire Abeta peptide, is neurotoxic when evaluated in cultured cells [12,30,34]. Thus, gamma-secretase inhibition alone would not preclude the generation of the neurotoxic C99/C100 fragment.  相似文献   

19.
BACKGROUND: Plasma amyloid beta-protein Abeta42 levels are increased in patients with familial Alzheimer disease (AD) mutations, and high levels reportedly identify individuals at risk to develop AD. OBJECTIVES: To determine whether there are characteristic changes in plasma Abeta40 and Abeta42 levels in sporadic AD, and to examine the relationship of plasma Abeta measures with clinical, demographic, and genetic variables in a prospectively characterized outpatient clinic population. PATIENTS: A total of 371 outpatients with sporadic AD (n = 146), mild cognitive impairment (n = 37), or Parkinson disease (n = 96) and nondemented control cases (n = 92). METHODS: We collected plasma samples and determined Abeta40 and Abeta42 levels by sandwich enzyme-linked immunosorbent assay with the use of the capture antibody BNT77 (anti-Abeta11-28) and the detector antibodies horseradish peroxidase-linked BA27 (anti-Abeta40) and BC05 (anti-Abeta42). RESULTS: Mean Abeta40 and Abeta42 levels increased significantly with age in each diagnostic group. When covaried for age, mean plasma levels of Abeta40 and Abeta42 did not differ significantly among the 4 diagnostic groups. Within the mild cognitive impairment and AD groups, Abeta40 and Abeta42 levels did not correlate with duration of memory impairment or with cognitive test scores. The Abeta measures were not influenced by family history of AD, apolipoprotein E genotype, or current medication use of cholinesterase inhibitors, vitamin E, statins, nonsteroidal anti-inflammatory drugs, or estrogen. CONCLUSIONS: Plasma Abeta measures increase with age, but, in contrast to reports on familial AD, plasma Abeta measures were neither sensitive nor specific for the clinical diagnosis of mild cognitive impairment or sporadic AD.  相似文献   

20.
Accumulation of Abeta peptide in the brain results in the formation of amyloid plaques characteristic of Alzheimer's disease (AD) pathology. Abeta soluble oligomers and protofibrils are neurotoxic and these are believed to be a major cause of neurodegeneration in AD. Abeta is derived from a precursor protein by two sequential cleavage steps involving beta- and gamma-secretases, two proteolytic enzymes that represent rational drug targets. beta-secretase was identified as the membrane-anchored aspartyl protease BACE (or BACE1) and found to be elevated in brain cortex of patients with sporadic Alzheimer's disease. In this review, we summarize current approaches towards the development of BACE inhibitors with focus on bioactive compounds and related patents. Recent reports have described drugs that are effective at inhibiting Abeta production in the brain of transgenic mouse models. The beginning of Phase I clinical trials has been approved for one of them and we can expect that in the near future BACE inhibitors will provide novel effective therapeutics to treat AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号