首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: To study the effects of different stimulus rates on high-frequency oscillations (HFOs) of somatosensory-evoked potentials (SEPs), we recorded median nerve SEPs directly from the human cerebral cortex. METHODS: SEPs were recorded from subdural electrodes in 5 patients with intractable epilepsy, under the conditions of low (3.3Hz) and high (12.3Hz) stimulus rates. RESULTS: Increased stimulus rates to the median nerve from 3.3 to 12.3Hz showed a pronounced amplitude reduction of HFOs when compared with the primary N20-P20, area 3b, and P25, area 1, responses. CONCLUSIONS: HFOs were more sensitive to a high stimulus rate than the primary cortical responses, suggesting that the post-synaptic intracortical activities may greatly contribute to the HFO generation.  相似文献   

2.
OBJECTIVE: Transcranial direct current stimulation (tDCS) has an influence on the excitability of the human motor cortex measured by motor evoked potentials (MEPs) after transcranial magnetic stimulation. Low and high frequency (HFOs) components of somatosensory evoked potentials (SEPs) were studied questioning whether a comparable effect can be observed after applying tDCS to the human somatosensory cortex. METHODS: Multichannel median nerve SEPs were recorded before and after applying tDCS of 1mA over a period of 9min with the cathode placed over the somatosensory cortex and the anode over the contralateral forehead and vice versa in a second session. The source activity of the N20, N30 and HFOs was evaluated before and after application of tDCS. RESULTS: After cathodal tDCS to the somatosensory cortex we found a significant reduction of the N20 source amplitude while there was no effect after anodal stimulation. For the N30 component and HFOs no change in source activity was observed. CONCLUSIONS: Corresponding to the results for the motor cortex a sustained reduction of the excitability of the somatosensory cortex after cathodal tDCS was shown. SIGNIFICANCE: We demonstrated differential effects of tDCS on the high and low frequency components of SEPs confirming the hypothesis of locally and functionally distinct generators of these two components.  相似文献   

3.
To determine the characteristics of high-frequency oscillations (HFOs) of cortical somatosensory evoked potentials (SEPs), the effect of general anesthesia on HFOs and low-frequency primary cortical responses was studied. The authors recorded SEPs elicited by median nerve stimulation directly from human brains of seven patients who underwent implantation of subdural electrodes before surgical treatment of intractable epilepsy. Recordings were made before and during general anesthesia. Changes in the number of HFOs and amplitude ratios of HFOs/primary cortical responses were analyzed. Under general anesthesia, the number of HFO peaks and the amplitude ratios were significantly decreased. General anesthesia induced remarkably decreased HFO activities when compared to low-frequency SEPs, suggesting that each of those originated from different generators. Possible relations between gamma-amino-butyric acid (GABA)ergic inhibitory interneurons and HFOs are discussed.  相似文献   

4.
OBJECTIVE: To investigate the effect of the voluntary movement on the amplitude of the somatosensory evoked potentials (SEPs) recorded by an epidural electrode at level of the cervical spinal cord (CSC). METHODS: Fourteen patients underwent an epidural electrode implant at CSC level for pain relief. After the median nerve stimulation, SEPs were recorded from the epidural electrode and from 4 surface electrodes (in frontal and parietal regions contralateral to the stimulated side, over the 6th cervical vertebra, and on the Erb's point). SEPs were recorded at rest and during a voluntary flexo-extension movement of the stimulated wrist. Beyond the low-frequency SEPs, also the high-frequency oscillations (HFOs) were analysed. RESULTS: The epidural electrode contacts recorded a triphasic potential (P1-N1-P2), whose negative peak showed the same latency as the cervical N13 response. The epidural potential amplitude was significantly decreased during the voluntary movement, as compared to the rest. Two main HFOs were identifiable: (1) the 1200 Hz HFO which was significantly lower in amplitude during movement than at rest, and (2) the 500 Hz HFO which was not modified by the voluntary movement. CONCLUSIONS: The low-frequency cervical SEP component is subtended by HFOs probably generated by: (1) postsynaptic potentials in the dorsal horn neurones (1200 Hz), and (2) presynaptic ascending somatosensory inputs (500 Hz). SIGNIFICANCE: Our findings show that the voluntary movement may affect the somatosensory input processing also at CSC level.  相似文献   

5.
OBJECTIVE: To elucidate the generator sources of high-frequency oscillations of somatosensory evoked potentials (SEPs), we recorded somatosensory evoked high-frequency oscillations directly from the human cerebral cortex. SUBJECTS AND METHODS: Seven patients, 6 with intractable partial epilepsy and one with a brain tumor, were studied. With chronically implanted subdural electrodes, we recorded SEPs to median nerve stimulation in all patients, and also recorded SEPs to lip and posterior tibial nerve stimulation in one. High-frequency oscillations were recorded using a restricted bandpass filter (500-2000 Hz). RESULTS: For the median nerve oscillations, all oscillation potentials were maximum at the electrodes closest to the primary hand sensorimotor area. Most oscillations were distributed similar to or more diffusely than P20/N20. Some later oscillations after the peak of P20 or N20 were present in a very restricted cortical area similar to P25. We investigated the phase change of each oscillation potential around the central sulcus. One-third of the oscillations showed phase reversal around the central sulcus, while later oscillations elicited in a restricted cortical area did not. High-frequency oscillations to posterior tibial nerve and lip stimulation were also maximum in the sensorimotor areas. Most of the lip oscillations showed phase reversal around the central sulcus, but most of the posterior tibial nerve oscillations did not. CONCLUSION: High-frequency oscillations are generated near the primary sensorimotor area. There are at least two different generator mechanisms for the median nerve high-frequency oscillations. We suspect that most oscillations are derived from the terminal segments of thalamocortical radiations or from the primary sensorimotor cortex close to the generator of P20/N20, and some later oscillations from the superficial cortex close to the generator of P25.  相似文献   

6.
OBJECTIVE: To identify low and high-frequency median nerve (MN) somatosensory evoked potential (SEP) generators by means of chronically implanted electrodes in the parietal lobe (SI and neighbouring areas) of two epileptic patients. METHODS: Wide-pass short-latency and long-latency SEPs to electrical MN stimulation were recorded in two epileptic patients by stereotactically chronically implanted electrodes in the parietal lobe (SI and neighbouring areas). To study high-frequency responses (HFOs) an off-line digital filtering of depth short-latency SEPs was performed (500-800 Hz, 24 dB roll-off). Spectral analysis was performed by fast Fourier transform. RESULTS: In both patients we recorded a N20/P30 potential followed by a biphasic N50/P70 response. A little negative response in the 100 ms latency range was the last detectable wide-pass SEP in both patients. Two HFOs components (called iP1 and iP2) were detected by mere visual analysis and spectral analysis, and were supposed to be originated within the parietal cortex. CONCLUSIONS: This was the very first study that recorded wide bandpass and high frequency SEPs by electrodes, exploring both the lateral and the mesial part of the parietal lobe and particularly that of the post-central gyrus.  相似文献   

7.
OBJECTIVES: To investigate the possible contribution of the second somatosensory (SII) area in the generation of the N60 somatosensory evoked potential (SEP).METHODS: In 7 epileptic patients and in 6 healthy subjects scalp SEPs were recorded by 19 electrodes placed according to the 10-20 system. All epileptic patients but one were also investigated using depth electrodes chronically implanted in the parieto-rolandic opercular cortex. Scalp SEPs underwent brain electrical source analysis.RESULTS: In both epileptic patients and healthy subjects, scalp recordings showed two middle-latency components clearly distinguishable on the basis of latency and scalp distribution: a fronto-central N60 potential contralateral to stimulation and a later bilateral temporal N70 response. SEP dipolar source modelling showed that a contralateral perisylvian dipole was activated in the scalp N70 latency range whereas separate perirolandic and frontal sources were activated at the scalp N60 latency. Depth electrodes recorded a biphasic N60/P90 response in the parieto-rolandic opercular regions contra- and ipsilateral to stimulation.CONCLUSIONS: Two different middle-latency SEP components N60 and N70 can be distinguished by topographic analysis and source modelling of scalp recordings, the sources of which are located in the fronto-central cortex contralateral to stimulation and in the supra-sylvian cortex on both sides, respectively. The source location of the scalp N70 in the SII area is strongly supported by its spatio-temporal similarities with SEPs directly recorded in the supra-sylvian opercular cortex.  相似文献   

8.
OBJECTIVE: We compared the high-frequency oscillations (HFOs) evoked by posterior tibial nerve (PTN) and median nerve (MN) stimulation. METHODS: Somatosensory evoked potentials (SEPs) were recorded with a filter set at 10-2000 Hz to right PTN and to right MN stimulation in 10 healthy subjects. The HFOs were obtained by digitally filtering the wide-band SEPs with a band-pass of 300-900 Hz. RESULTS: HFOs were recorded in 8 of the 10 subjects for PTN, and in all subjects for MN stimulation. The HFOs after both PTN and MN stimulation started approximately at or after the onset of the primary cortical response (P37 and N20) and ended around the middle of the second slope. HFO amplitudes and area after PTN stimulation were significantly smaller than those after MN stimulation. HFO duration after PTN stimulation was markedly longer than that after MN stimulation. However, HFO interpeak latencies did not differ between the two nerves. CONCLUSIONS: The present findings suggest that the HFOs after PTN and MN stimulation reflect a neural mechanism common to the hand and foot somatosensory cortex.  相似文献   

9.
OBJECTIVE: We investigated the interference of tactile and painful stimuli on human early somatosensory evoked potentials (SEPs) including high frequency oscillations (HFOs) to further study thalamocortical processing of somatosensory information. METHODS: Multi-channel median nerve SEPs were recorded during (1) no interference, (2) sensory interference by tactile stimulation to digits 2 and 3, and (3) application of pain to the same digits. Spatio-temporal source analysis separated brain stem (S1), thalamic (S2) and two cortical sources (S3, S4), which were evaluated for the low (20-450 Hz) and high (450-750 Hz) frequency portion of the signal. RESULTS: Low frequency SEPs showed a decrease of activity at cortical source S3 during both conditions, while thalamic source S2 was significantly increased during pain interference. HFOs showed an increase of cortical source S3 and in trend of thalamic source S2 and cortical source S4 during both kinds of interference. CONCLUSIONS: Although the painful stimulus might not be specific for the nociceptive afferents, the present data affirm that at this early stage of sensory information processing within the primary sensory cortex (area 3b, area 1) pain is handled similar to sensory interference. SIGNIFICANCE: HFOs might represent an intrinsic "somatosensory alerting" system which reacts to both interference stimuli in a similar way, therefore indicating an interference without a qualitative evaluation.  相似文献   

10.
In scalp recordings, stimulation of the median nerve evokes a number of long-latency (40-300 msec) somatosensory evoked potentials (SEPs) whose neural origins are unknown. We attempted to infer the generators of these potentials by comparing them with SEPs recorded from the cortical surface or from within the brain. SEPs recorded from contralateral sensorimotor cortex can be characterized as "precentral," "postcentral," or "pericentral." The scalp-recorded P45, N60 and P100 potentials appear to correspond to the pericentral P50, N90 and P190 potentials and are probably generated mainly in contralateral area 1 of somatosensory cortex. The scalp-recorded N70-P70 appear to correspond to the precentral and postcentral N80-P80 and are generated mainly in contralateral area 3b of somatosensory cortex. The scalp-recorded N120-P120 appear to correspond to the intracranial N100-P100 and are probably generated bilaterally in the second somatosensory areas. N140 and P190 (the "vertex potentials") are probably generated bilaterally in the frontal lobes, including orbito-frontal, lateral and mesial (supplementary motor area) cortex. The supplementary sensory area probably generates long-latency SEPs, but preliminary recordings have yet to confirm this assumption. Most of the proposed correspondences are speculative because the different conditions under which scalp and intracranial recordings are obtained make comparison difficult. Human recordings using chronically implanted cortical surface electrodes, and monkey studies of SEPs which appear to be analogs of the human potentials, should provide better answers regarding the precise generators of human long-latency SEPs.  相似文献   

11.
OBJECTIVE: In humans, the somatic evoked potentials (SEPs) and magnetic fields (SEFs) elicited by peripheral nerve stimulation contain high-frequency oscillations (HFOs) around 600 Hz superimposed on the initial cortical response N20. Responses elicited by snout stimulation in the swine also contain similar HFOs during the rising phase of the porcine N20. This study examined the generators of the N20 and HFOs in the swine. METHODS: We recorded intracortical SEPs and multi-unit activities in the sulcal area of the primary somatosensory cortex (SI) simultaneously with SEFs. The laminar profiles of the potential and current-source-density (CSD) were analyzed. RESULTS: The CSD analysis revealed that the N20 was produced by two dipolar generators, both directed toward the cortical surface. After the arrival of the initial thalamocortical volley in layer IV, the sink of the first generator shifted toward shallower layers II-III with a velocity of 0.109+/-0.038 m/s (mean+/-SD). The sink of the second generator moved to layer V. The initial thalamocortical axonal component of the HFO was produced by repolarizing current with the sink in layer IV. The CSD laminar profile of the postsynaptic component was very similar to the profile of intracortical N20. The current sink within each cycle of HFO propagated upward with a velocity of 0.633+/-0.189 m/s, indicating backpropagation. CONCLUSIONS: We propose that the N20 is generated by two sets of excitatory neurons which also produce the HFOs. Although the loci of synaptic inputs are unknown, these neurons appear to fire initially in the soma and produce backpropagating spikes toward distal apical dendrites. SIGNIFICANCE: These conclusions relate the N20 to the HFO and provide a new explanation of how the current underlying the N20 is invariantly directed toward superficial layers across species.  相似文献   

12.
Human cortical somatosensory evoked potentials (SEPs), which are presumably generated in afferent thalamocortical and early cortical fibers, reveal a burst of superimposed early (N20) high-frequency oscillations (HFOs), around 600 Hz. There is increasing evidence of an imbalance of thalamocortical systems in schizophrenic patients. In order to assess correlations between somatosensory evoked oscillations and symptoms of schizophrenia, we investigated median nerve SEPs in 20 inpatients and their age-matched and gender-matched healthy controls using a multichannel EEG. Dipole source analysis and wavelet transformation were performed before and after application of a 450-Hz high-pass filter. In schizophrenics, the maximum HFOs occurred with a significantly prolonged latency. There was also a higher amplitude (energy) in the low-frequency range of the N20 component compared with the controls. Importantly, amplitudes (energy) of HFOs were inversely correlated with symptoms of formal thought disorder and delusions. Alterations of the thalamocortical somatosensory signal processing in schizophrenia with absence of an early HFO - assumed to be of inhibitory nature - could indicate a dysfunctional thalamic inhibition with increased amplitudes of N20, paralleled by enhanced positive schizophrenic symptoms.  相似文献   

13.
OBJECTIVE: To investigate the role of sensory modulation in the control of sensory-guided behaviour. Specifically, we hypothesized that early somatosensory evoked potentials (SEPs) would be facilitated during performance of continuous sensory-guided movement requiring sustained attention. METHODS: Median nerve SEPs were elicited via electrical stimulation and recorded from scalp electrodes while subjects performed tasks requiring continuous sensory-motor transformations. Subjects received a predictable (rhythmic amplitude modulation) or unpredictable (random amplitude modulation) amplitude varying tactile stimulus (frequency constant at 20 Hz) delivered to the tip of the index finger either alone or with the requirement to track it by modulating the isometric grip force produced by the opposite hand. RESULTS: Early SEP (N20-P27) amplitudes were differentially modulated during unpredictable tracking compared to sensory-motor controls. Specifically, N20 amplitudes were attenuated and P27 amplitudes were enhanced during sensory-guided tracking. CONCLUSIONS: Sustained attention to task-relevant sensory stimuli differentially modulates areas within primary somatosensory cortex (S1) during a continuous sensory-motor transformation. SIGNIFICANCE: These data have implications for understanding the role of attention in regulating somatosensory cortices during sensory-motor behaviour.  相似文献   

14.
OBJECTIVE: High-frequency oscillations (HFOs) evoked by upper limb stimulation reflect highly synchronised spikes generated in the somatosensory human system. Since acetylcholine produces differential modulation in subgroups of neurons, we would determine whether cholinergic drive influences HFOs. METHODS: We recorded somatosensory evoked potentials (SEPs) from 31 scalp electrodes in 7 healthy volunteers, before and after single administration of rivastigmine, an inhibitor of central acetylcholinesterase. Right median nerve SEPs have been analysed after digital narrow bandpass filtering (500-700 Hz). Raw data were further submitted to Brain Electrical Source analysis (BESA) to evaluate the respective contribution of lemniscal, thalamic and cortical sources. Lastly, we analysed by Fast Fourier transform spectral changes after drug administration in the 10-30 ms latency range. RESULTS: Rivastigmine administration caused a significant increase of HFOs in the 18-28 ms latency range. Wavelets occurring before the onset latency of the conventional N20 SEP did not show any significant change. A similar increase concerned the strength of cortical dipolar sources in our BESA model. Lastly, we found a significant power increase of the frequency peak at about 600 Hz in P3-F3 traces after drug intake. CONCLUSIONS: Our findings demonstrate that the cortical component of HFOs is significantly enhanced by cholinergic activation. Pyramidal chattering cells, which are capable to discharge high-frequency bursts, are mainly modulated by cholinergic inputs; by contrast, acetylcholine does not modify the firing rate of fast-spiking GABAergic interneurons. We thus discuss the hypothesis that cortical HFOs are mainly generated by specialised pyramidal cells.  相似文献   

15.
《Clinical neurophysiology》2021,132(10):2357-2364
ObjectivesTo investigate the subcortical somatosensory evoked potentials (SEPs) to electrical stimulation of either muscle or cutaneous afferents.MethodsSEPs were recorded in 6 patients suffering from Parkinson’s disease (PD) who underwent electrode implantation in the pedunculopontine (PPTg) nucleus area. We compared SEPs recorded from the scalp and from the intracranial electrode contacts to electrical stimuli applied to: 1) median nerve at the wrist, 2) abductor pollicis brevis motor point, and 3) distal phalanx of the thumb. Also the high-frequency oscillations (HFOs) were analysed.ResultsAfter median nerve and pure cutaneous (distant phalanx of the thumb) stimulation, a P1-N1 complex was recorded by the intracranial lead, while the scalp electrodes recorded the short-latency far-field responses (P14 and N18). On the contrary, motor point stimulation did not evoke any low-frequency component in the PPTg traces, nor the N18 potential on the scalp. HFOs were recorded to stimulation of all modalities by the PPTg electrode contacts.ConclusionsStimulus processing within the cuneate nucleus depends on modality, since only the cutaneous input activates the complex intranuclear network possibly generating the scalp N18 potential.SignificanceOur results shed light on the subcortical processing of the somatosensory input of different modalities.  相似文献   

16.
OBJECTIVE: To investigate whether the reduction of amplitude of the scalp somatosensory evoked potentials (SEPs) during movement (gating) is due to an attenuation of the afferent volley at subcortical level. METHODS: Median nerve SEPs were recorded from 9 patients suffering from Parkinson's disease, who underwent implant of intracerebral (IC) electrodes in the subthalamic nucleus or in the globus pallidum. SEPs were recorded from Erb's point ipsilateral to stimulation, from the scalp surface and from the IC leads, at rest and during a voluntary flexo-extension movement of the stimulated wrist. The recorded IC traces were submitted to an off-line filtering by a 300-1500 bandpass to obtain the high-frequency SEP bursts. RESULTS: IC leads recorded a triphasic component (P1-N1-P2) from 14 to 22 ms of latency. The amplitudes of the scalp N20, P20 and N30 potentials and of the IC triphasic component were significantly decreased during movement, while the peripheral N9 amplitude remained unchanged. Also the IC bursts, whose frequency was around 1000 Hz, were reduced in amplitude by the voluntary movement. CONCLUSIONS: Since the IC triphasic component is probably generated by neurons of the thalamic ventro-postero-lateral nucleus, which receive the somatosensory afferent volley, the P1-N1 amplitude reduction during movement suggests that the gating phenomenon involves also the subcortical structures.  相似文献   

17.
OBJECTIVE: Theta burst transcranial magnetic stimulation (TBS) causes changes in motor cortical excitability. In the present study, somatosensory-evoked potentials (SEPs) and high-frequency oscillations (HFOs) were recorded before and after TBS over the motor cortex to examine how TBS influenced the somatosensory cortex. METHODS: SEPs following electric median nerve stimulation were recorded, and amplitudes for the P14, N20, P25, and N33 components were measured and analyzed. HFOs were separated by 400-800 Hz band-pass filtering, and root-mean-square amplitudes were calculated from onset to offset. SEPs and HFOs were measured before and after application of either intermittent or continuous TBS (iTBS/cTBS; 600 total pulses at 80% active motor threshold) over the motor cortex. Motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) of the first dorsal interosseous muscle were examined before and after TBS. RESULTS: MEPs, SICI, and HFO amplitudes were increased and decreased significantly after iTBS and cTBS, respectively. Wide-band SEPs did not change significantly after TBS. CONCLUSIONS: TBS changed the cortical excitability of the sensorimotor cortices. Changes in HFOs after TBS were parallel to those in SICI. SIGNIFICANCE: The mechanisms of changes in HFOs after TBS may be the same as those in SICI.  相似文献   

18.
OBJECTIVE: To investigate the possible contribution of the primary somatosensory area (SI) to pain sensation. METHODS: Depth recordings of CO2 laser evoked potentials (LEPs) and somatosensory evoked potentials (SEPs) were performed in an epileptic patient with a stereotactically implanted electrode (Talairach coordinates y=-23, z=40) that passed about 10 mm below the hand representation in her left SI area, as assessed by the source of the N20 SEP component. RESULTS: The intracerebral electrode was able to record the N20 SEP component after non-painful electrical stimulation of her right median nerve. The N20 potential showed a phase reversal in the bipolar montage (at about 31 mm from the midline), which confirms that the electrode was located near its generator in area 3b. In contrast, no reliable response was recorded from the SI electrode after painful CO2 laser stimulation of the right hand. An N2-P2 response was evoked at the vertex electrode (Cz), thus demonstrating the effectiveness of the delivered CO2 laser stimuli. CONCLUSIONS: Since the N20 SEP component originates from the anterior bank of the post-central gyrus (area 3b), our result suggests that this part of SI does not participate in LEP generation. In fact, the previously published LEP sources in the SI area estimated from scalp recordings are about 10-17 mm posterior of the electrode in our patient, suggesting that they are more likely located in area 1, 2 or posterior parietal cortex.  相似文献   

19.
OBJECTIVE: To evaluate the recovery function of the sensory cortex in patients with Kii amyotrophic lateral sclerosis/parkinsonism-dementia complex (Kii ALS/PDC) using somatosensory evoked potentials (SEPs) elicited by paired stimuli of the median nerve at the wrist. METHODS: Five patients with Kii ALS/PDC were compared with 5 patients with classical ALS, 5 with Parkinson's disease (PD), and 7 healthy normal volunteers. SEPs were recorded from the hand sensory area contralateral to the side of stimulation. Recovery functions of N20-P25 and P25-N33 components were evaluated by comparing the second SEPs elicited by paired pulse stimuli at various interstimulus intervals (ISIs, 20-300 ms) with the SEPs elicited by single stimuli. RESULTS: Conventional SEPs to a single stimulus had a normal latency and size in all patients. The recovery function of the N20-P25 and P25-N33 components showed significantly less suppression at short ISIs without any facilitation at long ISIs in Kii ALS/PDC patients than in normal subjects, classical ALS or PD patients. CONCLUSIONS: In Kii ALS/PDC, the sensory cortex is disinhibited or hyperexcitable. These abnormalities may reflect cortical pathology in the sensory cortex and may be partly due to a secondary effect on the sensory cortex from the primary parkinsonian pathological changes.  相似文献   

20.
OBJECTIVE: Until now, the demonstration that early components of high-frequency oscillations (HFOs) evoked by electrical upper limb stimulation are generated in the brain-stem has been based on the results of scalp recordings. To better define the contribution of brain-stem components to HFOs building, we recorded high-frequency somatosensory evoked potentials (SEPs) in 6 healthy volunteers by means of a nasopharyngeal (NP) electrode. Moreover, since HFOs are highly susceptible to arousal fluctuations, we investigated whether eyes opening can influence HFOs at this level. METHODS: We recorded right median nerve SEPs from the ventral surface of the medulla by means of a NP electrode as well as from the scalp, in 6 healthy volunteers under two different arousal states (eyes opened versus eyes closed). SEPs have been further analyzed after digital narrow bandpass filtering (400-800 Hz). RESULTS: NP recordings demonstrated in all subjects a well-defined burst, occurring in the same latency window of the low-frequency P13-P14 complex. Eyes opening induced a significant amplitude increase of the NP-recorded HFOs, whereas scalp-recorded HFOs as well as low-frequency SEPs remained unchanged. CONCLUSIONS: Our findings demonstrate that slight arousal variations induce significant changes in brain-stem components of HFOs. According to the hypothesis that HFOs reflect the activation of central mechanisms, which modulate sensory inputs depending on variations of arousal state, our data suggest that this modulation is already effective at brain-stem level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号