首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

Objectives

To test the influence of photoinitiator type and filler particle inclusion on the validity of exposure reciprocity law.

Materials and methods

50/50 wt% Bis-GMA/TEGDMA resins were prepared with equimolar concentrations of camphorquinone/DMAEMA (0.20/0.80 mass%) (CQ) or Lucirin-TPO (0.42 mass%), and were used either unfilled or filled to 75 mass%. Specimens were cured with a halogen Swiss Master Light (EMS, Switzerland) using four different curing protocols: 400 mW/cm2 for 45 s as reference protocol (18 J/cm2), 1500 mW/cm2 for 12 s (18 J/cm2), 3000 mW/cm2 for 6 s (18 J/cm2) and 3 s (9 J/cm2). Degree of conversion (DC) was measured in real time for 70 s by FT-NIRS and temperature rise using a thermocouple. Depth of cure was determined with a penetrometer technique.

Results

With respect to DC and depth of cure, exposure reciprocity law did not hold for any tested material, except for the depth of cure of filled CQ-based materials. At similar radiant exposure, DC was significantly higher (p < 0.05) for all unfilled and filled TPO-based materials compared with CQ-based materials. As exposure time was reduced and irradiance increased, TPO-based materials exhibited higher DC whilst an opposite trend was observed for CQ-based materials (p < 0.05). For similar curing regimes, depth of cure of CQ-based materials remained significantly greater than that of TPO-based materials. Adding fillers generally reduced DC, except at higher irradiance for CQ-based materials where a positive effect was observed (p < 0.05).

Significance

The validity of exposure reciprocity law was dependent on several factors, among which photoinitiator type and filler content were important. Lucirin-TPO is a highly reactive and efficient photoinitiator, which may allow the potential for a reduction in curing time of TPO-based photoactive materials in thin sections.  相似文献   

2.

Objective

Monomer development for a reduced shrinkage of composite materials still challenges the modern research. The purpose of this study was to analyse the shrinkage behavior of an innovative composite material for dental restorations based on a resin system that is claimed to control polymerization kinetics having incorporated a photoactive group within the resin.

Methods

Shrinkage stress development within the first 300 s after photoinitiation, gel point as well as micro-mechanical properties (Vickers hardness HV, modulus of elasticity E, creep Cr and elastic-plastic indentation work We/Wtot) were evaluated (n = 10). The experimental flowable resin-based composite (RBC) was measured in comparison to regular methacrylate-based micro- (Esthet X Flow) and nano-hybrid flowable RBCs (Filtek Supreme Plus Flow). Additionally, the high viscosity counterparts of the two regular flowable methacryate-based composites (Esthet X Plus and Filtek Supreme Plus) as well as a low shrinkage silorane-based micro-hybrid composite (Filtek Silorane) were considered. The curing time was 20 s (LED unit Freelight2, 3M-ESPE, 1226 mW/cm2).

Results

The experimental material achieved the significantly lowest contraction stress (1.1 ± .01 MPa) followed by the silorane-based composite (3.6 ± .03 MPa), whereas the highest stress values were induced in the regular methacrylate-based flowable composites EsthetX Flow (5.3 ± .3 MPa) and Filtek Supreme Flow (6.5 ± .3 MPa). In view of gel point, the best values were obtained for the experimental flowable composite (3.1 ± .1s) and Filtek Silorane (3.2 ± .3 s), which did not differ significant from each others, whereas EsthetX Plus and Filtek Supreme Plus did also not differ significantly, inducing the shortest gel point. The experimental flowable material achieved also the lowest shrinkage-rate (maximum at 0.1 MPa/s). For all analysed materials, no significant difference in the micro-mechanical properties between top and bottom were found when measured on 2 mm thick increments 24 h after polymerization. The categories of flowable materials performed in the measured micro-mechanical properties significantly inferior when compared to the hybrid-composites, showing lower HV and E and predominantly higher creep and plastic deformation. Within the flowable RBCs, the experimental material achieved the lowest Vickers hardness, the highest modulus of elasticity, the highest creep and showed the significantly lowest elastic deformation.

Significance

The experimental flowable composite revealed the lowest shrinkage stress and shrinkage-rate values in comparison to regular methacrylate composites but intermediate micro-mechanical properties. Being at the same time more rigid (higher modulus of elasticity) and more plastic (low We/Wtot and high creep values) as the regular flowable materials, its effect on interfacial stress build-up cannot be easily predicted.  相似文献   

3.

Objectives

To test the null hypotheses that photoactive resin composites containing a Type I photoinitiator would exhibit reduced DC or increased monomer elution at substantially short curing times compared with materials based on a Type 2 ketone/amine system.

Methods

Two experimental resin composites were prepared, using either Lucirin-TPO or camphorquinone/DMAEMA. Specimens were light-cured using appropriate spectral emission that coincided with the absorption properties of each initiator using different irradiation protocols (0.5, 1, 3, 9 s at 500, 1000 and 2000 mW/cm2 for Lucirin-TPO based composites and 20 or 40 s at 1000 mW/cm2 for Lucirin-TPO and camphorquinone-based composites). Degree of conversion (DC) was measured by Raman spectroscopy, propagating radical concentrations were collected by means of electron paramagnetic resonance (EPR) and monomer leaching was characterized using high-performance liquid chromatography (HPLC).

Results

The null hypotheses were rejected, except for a single irradiation protocol (0.5 s @ 500 mW/cm2). Lucirin-TPO-based composites could cure 20 times faster and release at least 4 times less monomers in comparison to camphorquinone-based composites. At 1000 mW/cm2, and 1 s irradiation time for curing times of 1 s, Lucirin-TPO based composites displayed 10% higher DC. The difference in polymerization efficiency of Lucirin-TPO compared with camphorquinone-based resin composites were explained using EPR; the former showing a significantly greater yield of radicals which varied logarithmically with radiant exposure.

Significance

Lucirin-TPO is substantially more efficient at absorbing and converting photon energy when using a curing-light with an appropriate spectral emission and otherwise a limitation noted in several previous publications. At concentrations of 0.0134 mol/L, Lucirin-TPO-based composites require a minimum light intensity of 1000 mW/cm2 and an exposure time of 1 s to provide significantly improved DC and minimal elution compared with a conventional photoinitiator system. The use of a wide range of curing protocols in the current experiment has realized the significant potential of Lucirin-TPO and its impact for clinical applications, in replacement to materials using camphorquinone.  相似文献   

4.

Objectives

Adhesive luting of indirect restorations can be carried out employing dual- or light-curing materials. This in vitro study evaluated the degree of conversion (DC) of the materials employed in this procedure, seeking how the combination of time and power of curing applied during polymerisation, as well as the temperature of the light-curing composite, influenced the DC.

Materials and methods

One hundred and eighty onlays of different thicknesses (2 mm, 3 mm, 4 mm) were luted with three different composites: two dual-curing cements (Variolink® II and Calibra®) and a light-curing composite (Venus®). The same halogen lamp was used with three different modalities selected to provide a constant quantity of energy. The time/power combinations tested were 400 mW/cm2 for 120 s, 800 mW/cm2 for 60 s and 1200 mW/cm2 for 40 s. The light-curing composite was employed at room temperature and after preheating at 54 °C. Each sample was examined in three positions using the Micro-Raman Dilor HR LabRam spectrometer to evaluate the polymer conversion degree. The data were analysed using analysis of variance and the Student–Newman–Keuls test (p = 0.05).

Results

The dual-curing materials showed average conversion percentages close to 64%, although onlays thickness clearly influence the degree of conversion, the light-curing composite showed satisfactory results only when onlays thickness was thin, however preheating significantly improved the performance of the light-curing composite under onlays of great thickness.

Conclusions

Optimal luting of indirect restorations is clearly dependent from light source power, irradiation time and dual-cure luting cement or light-curing composite chosen. It should be calibrated for each material to acquire high DCs. Preheating of light-curing only composites allows for the materials to reach optimal conversion degrees.  相似文献   

5.

Objectives

to complement our previous work by testing the null hypotheses that with short curing times and high DC, TPO-based resin composites would exhibit (1) higher polymerization stresses and consequently display (2) higher temperature rise and (3) higher flexural modulus, flexural strength and hardness, compared to a conventional CQ-based experimental composite.

Methods

Two experimental resin composites using either Lucirin-TPO or camphorquinone/DMAEMA as photoinitiators were prepared. Light curing was carried out using spectral outputs adapted to the absorption properties of each initiator. Different irradiation protocols were selected (0.5, 1, 3, 9 s at 500, 1000 and 2000 mW/cm2 for Lucirin-TPO based composites and 20 or 40 s at 1000 mW/cm2 for Lucirin-TPO and camphorquinone-based composites). Degree of conversion (DC) was measured in real time by means of FT-NIR spectroscopy. Pulpal temperature rise (ΔT) was studied in a tooth model. Polymerization stress was monitored using the Bioman instrument. For cured specimens, flexural modulus and flexural strength were determined using a three point bending platform and Vickers hardness was determined with a microhardness indentor on samples prior to and after 24 h incubation in 75/25 ethanol/H2O. Premolars were restored with both materials and microleakage at the teeth/composite interfaces following restoration was assessed.

Results

Lucirin-TPO-based composites irradiated at radiant exposures of 3 J/cm2 and more exhibited significantly higher DCs, associated with increased flexural moduli and hardness compared to CQ-based composites. For an ultra-short irradiation time of 1 s at 1000 mW/cm2, TPO-composites displayed similar polymerization stresses compared to CQ-controls with yet a 25% increase for flexural modulus and 40% increase for hardness measured after EtOH/H2O sorption. Higher stress rates were however observed in all curing protocols compared to CQ-composites. Microleakage was similar between TPO and CQ-composites irradiated at 1000 mW/cm2 for 3 and 20 s respectively, while a significant increase was observed for TPO-composites irradiated for 1 s. ΔT measured through a 0.6 mm thick dentin layer were all below 5.5 °C; TPO-composites exhibited similar or lower values compared to controls.

Significance

The use of Lucirin-TPO in resin composites along with appropriate curing conditions may allow for a major reduction of irradiation time while improving mechanical properties. The amount of stress observed during polymerization in TPO-based composites can be similar to those using CQ and the cohesion at the restoration-tooth interface was not affected by short curing times. Contrary to other studies, we found that the temperatures increases measured during polymerization were all well below the 5.5 °C threshold for the pulp.  相似文献   

6.

Objectives

The degree and rate of photopolymerization in resin-based dental composites will significantly affect polymer network formation and resultant material properties that may determine their clinical success. This study investigates the mechanical properties, the generation of stress from polymerization, tooth cusp deflection and marginal integrity of experimental resin composites that contain different photoinitiators.

Methods

Experimental light-activated resin composites (60 vol% particulate filled in 50/50 mass% bis-GMA/TEGDMA) were formulated using a monoacylphosphine oxide (MAPO) photoinitiator and compared with a conventional camphoroquinone (CQ)-based system. Similar radiant exposure was used (18 J cm−2) for polymerization of each material although the curing protocol was varied (400 mW cm−2 for 45 s, 1500 mW cm−2 for 12 s and 3000 mW cm−2 for 6 s). Degree and rate of polymerization was calculated in real-time by near infrared spectroscopy and the generation of stress throughout polymerization measured using a cantilever beam method. Flexural strength and modulus were acquired by three-point bend tests. Standardized cavities in extract pre-molar teeth were restored with each material, the total cuspal deflection measured and post-placement marginal integrity between the tooth and restoration recorded.

Results

Generally, MAPO- exhibited a significantly higher degree of conversion (72 ± 0.8 to 82 ± 0.5%) compared with CQ-based materials (39 ± 0.7 to 65 ± 1.6%) regardless of curing protocol (p < 0.05) and MAPO-based materials exhibited less difference in conversion between curing protocols. CQ-based materials exhibited between ∼85 and 95% of the maximum rate of polymerization at <15% conversion, whereas MAPO-based RBCs did not approach the maximum rate until >50% conversion. Higher irradiance polymerization had a significant deleterious effect on the mechanical properties of CQ-based materials (p < 0.05) whereas MAPO-based materials exhibited increased strength and modulus and were less affected by the curing method. Total cuspal deflection in restored extracted teeth was higher for CQ- compared with MAPO-based materials cured at the lowest irradiance curing protocol (12.9 ± 4.0 and 8.3 ± 1.5 μm) and similar at 3000 mW cm−1 for 6 s (10.1 ± 3.5 and 9.0 ± 1.5 μm). A significant decrease in marginal integrity was observed for CQ-based RBCs cured at high irradiance for short exposure time compared with that of the MAPO-based RBC cured using a similar protocol (p = 0.037).

Significance

Polymer network formation dictates the final properties of the set composite and the use MAPO photoinitiators may provide an effective restorative material that exhibits higher curing speeds, increased degree of conversion, strength and modulus without compromise in terms of polymerization stress and marginal integrity between tooth and restoration.  相似文献   

7.

Objectives

To study hygroscopic dimensional changes in new resin-matrix composites during water sorption/desorption cycles.

Methods

Five materials were examined: a self-adhering flowable composite: Vertise® Flow (VF), a universal composite: GC Kalore (GCK), two micro-fine hybrid composites: GC Gradia Direct Anterior (GDA) and GC Gradia Direct Posterior (GDP), and a posterior restorative composite: Filtek® Silorane (FS). Five disk-shaped specimens of each material were prepared (15 mm diameter × 2 mm thickness) according to ISO 4049. The mean diameter of each specimen was measured by a custom-built laser micrometer (to a resolution of 200 nm) periodically over 150 d water immersion and 40 d recondition periods at (37 ± 1) °C. Perspex controls were used. Data analysis was performed by repeated measures ANOVA, one-way ANOVA and Tukey's post hoc test (p < 0.05).

Results

Differences in hygroscopic expansion were found for all test materials during sorption, ranging from 0.74% (±0.05) for FS to 4.82% (±0.13) for VF. The differences were significant for all materials (p < 0.001), except between GCK and GDA. The mathematical relationship between diametral expansion and square root of time was non-linear. VF exhibited significant dehydration shrinkage.

Significance

The silorane composite FS had the lowest hygroscopic expansion. The extent of compensation of polymerization shrinkage by hygroscopic expansion depends on materials, specimen dimensions and time-scale. So the clinical situation must be taken into consideration in the application of these findings.  相似文献   

8.

Objectives

To investigate the kinetic process of water diffusion and mass change in new resin-matrix composites during water sorption/desorption cycles.

Methods

Five new resin-matrix composites were investigated [Filtek® Silorane (FS), GC Gradia Direct Anterior (GDA), GC Gradia Direct Posterior (GDP), GC Kalore (GCK), Vertise® Flow (VF)]. Five disk-shaped specimens, per material (15.0 ± 0.1) mm diameter by (2.0 ± 0.1) mm, were prepared according to ISO 4049. Each disk was immersed separately in de-ionized water for 150 d and then reconditioned for 75 d; all at (37 ± 1) °C. Mass was measured at different time intervals. Perspex disks were used as control. Data analysis was done by repeated measures ANOVA, one-way ANOVA and Tukey's post hoc test (p < 0.05).

Results

The water sorption (μg/mm3) after 150 d immersion ranged from 13.51 μg/mm3 (±0.40) for FS to 71.96 μg/mm3 (±0.90) for VF. The solubility ranged up to 16.95 μg/mm3 (±0.79) for VF. A significant mass reduction occurred in VF after the peak value [73.63 μg/mm3 (±0.31)] of water sorption was reached at 42 d. VF had the highest diffusion-coefficient for sorption: 5.23 × 10−9 cm2/s (±0.38) and desorption: 11.72 × 10−9 cm2/s (±0.16). Percentage sorption differences were significant for all materials (p < 0.001), except between GCK and GDP. The early correlation between mass change and square root of time was linear.

Significance

Each resin-matrix composite varied in sorption/desorption cycles which may affect clinical service. A concurrent solubility process occurred during sorption of the self-adhering composite VF. The silorane composite FS exhibited minimal sorption.  相似文献   

9.

Objectives

To evaluate the effect of prolonged exposure times on immediate and 6-month adhesive properties: degree of conversion (DC), nanoleakage (NL) and resin–dentine bond strength (μTBS) of three one-step self-etch adhesive systems (Adper Easy One [EO], Clearfil S3 Bond [CS3] and Go [GO]).

Material and methods

The adhesives were applied on exposed dentine surfaces of 90 human molars according to manufacturers’ instructions and light polymerized for 10, 20, and 40 s at 600 mW/cm2. Bonded teeth were sectioned to obtain stick-shaped specimens (0.8 mm2) and tested under tensile stress (0.5 mm/min) immediately (IM) or after 6 months of water storage. Two bonded sticks from each tooth at each storage time interval were analysed by SEM for NL evaluation. The in situ DC was evaluated by micro-Raman spectroscopy. Data were analysed by appropriate ANOVA and Tukey's test (α = 0.05).

Results

Prolonged exposure times significantly increased the DC (%) (10 s [67.4 ± 17.3]; 20 s [85.9 ± 8.9] and 40 s [85.2 ± 9.0]) and decreased the NL (%) (10 s [24.8 ± 13.2]; 20 s [13.3 ± 7.5] and 40 s [13.5 ± 9.3]) for all adhesives; however it did not increase the IM μTBS for two (EO, GO) out of the three adhesives. Furthermore, this technique did not minimize dentine bond degradation.

Conclusion

Although longer exposure times than those recommended could not prevent degradation of dentine bonds, they could increase DC within the hybrid layer and reduced NL for all adhesives tested.  相似文献   

10.

Objective

Transaminases (AST, aspartate amino transferase; ALT, alanine amino transferase) are relevant enzymes in physiology and pathology of the human organism. The aim of the present in situ study was to demonstrate the presence of these enzymes in the enamel pellicle.

Methods

Bovine enamel slabs were fixed on buccal sites of individual upper jaw splints and worn for 3, 30 and 120 min by 5 subjects to allow pellicle formation. The in situ pellicles were tested for AST and ALT. Enzyme activities were measured photometrically via determination of the products pyruvate and oxalacetate using lactate-dehydrogenase and malate-dehydrogenase, respectively.

Results

Enzymatic AST- as well as ALT-activities are present in the acquired pellicle within 3 min. The enzyme activities exposed at the pellicles’ surfaces increased slightly with the pellicle formation time (ANOVA, AST: n.s., ALT: p = 0.021). However, the two enzymes show considerable intraindividual and interindividual variability. The mean AST-activity of the pellicle amounted to 1.07 ± 0.81 mU/cm2 (ALT 1.18 ± 0.52 mU/cm2). The ALT-activity of the centrifuged saliva was 26.62 ± 11.09 mU/ml (AST 35.98 ± 29.35 mU/ml).

Conclusions

AST as well as ALT are present in the in situ pellicle layer and may contribute to the intrinsic maturation of pellicle proteins.  相似文献   

11.

Objectives

To investigate the 24 h post-cure polymerization and the effect of temperature on the post-cure polymerization of one conventional and three bulk-fill composite materials.

Methods

A conventional composite GrandioSO (GR) and three bulk-fill composites: Tetric EvoCeram Bulk Fill (TECBF), Quixfil (QF) and X-tra fil (XF) were investigated. The samples were cured for 20 s with irradiance of 1090 mW/cm2. Composite samples were divided into two groups: the “room-temperature” group (RT, n = 5) and the “body-temperature” group (BT, n = 5) and they were stored in dark at 20 °C and 37 °C, respectively. Measurements of degree of conversion (DC) were made immediately after curing (0 h) and 24 h post-cure (24 h). To analyse the extent of post-cure DC increase, the DC values of 0 h-RT/24 h-RT and 0 h-BT/24 h-BT were compared. To analyse the difference in DC between RT and BT, the DC values of 0 h-RT/0 h-BT and 24 h-RT/24 h-BT were compared.

Results

DC increase 24 h post-cure was significant for all composites and ranged between 6.3% and 8.2% in RT and between 12.5% and 15.7% in BT. All composites demonstrated a higher DC in 24 h-BT compared to 24 h-RT. The difference was statistically significant for GR, TECBF and QF.

Conclusions

All composites demonstrated a significant post-cure effect after 24 h. Post-cure temperature increase from 20 °C to 37 °C yielded a higher post-cure DC increase.

Clinical significance

Due to the temperature effect on the final DC, studies performed at composite samples at room temperature may record more inferior properties than these attained in the oral cavity.  相似文献   

12.

Objective

The purpose of this study was to assess the degree of conversion (DC) over time, using FTIR spectroscopy for bulk-fill flowable resin composite materials compared to conventional flowable and regular resin composite materials.

Methods

Eight resin composites were investigated including flowable bulk-fill materials SureFil SDR (SDR), Venus bulk-fill (VBF), x-tra base (XB), and Filtek Bulk Fill (FBF). Conventional flowable and regular composite materials included: Venus Diamond flow (VDF), Grandioso flow (GRF), Venus Diamond (VD), and Grandioso (GR). Degree of conversion (DC) was assessed by Fourier transform infrared spectroscopy using attenuated total reflectance technique. DC was measured for samples immediately post-cure (n = 3), and after 24 h storage period at 37 °C (n = 3). Results were analysed using one-way analysis of variance (ANOVA), Bonferroni post hoc test, and independent-samples t-test at α = 0.05 significance level.

Results

Immediately post-cure, the mean DC values of the different materials were in the following order: GRF > VDF > SDR > VBF > XB > GR > FBF < VD and ranged from 34.7 to 77.1%. 24 h post-cure, DC values were in the following order: GRF > VBF > VD > SDR > VDF > GR > XB < FBF and ranged from 50.9 to 93.1%. GRF showed significantly higher DC values than all other materials at both time intervals while XB and FBF showed significantly lower values at 24 h post-cure.

Significance

The 24 h post-cure DC values of the bulk-fill composites SDR and VBF are generally comparable to those of conventional composites studied; however, the 24 h post-cure DC values of XB and FBF were lower compared to the other materials.  相似文献   

13.

Objectives

A model BisGMA/TEGDMA unfilled resin was utilized to investigate the effect of varied irradiation intensity on the photopolymerization kinetics and shrinkage stress evolution, as a means for evaluation of the reciprocity relationship.

Methods

Functional group conversion was determined by FTIR spectroscopy and polymerization shrinkage stress was obtained by a tensometer. Samples were polymerized with UV light from an EXFO Acticure with 0.1 wt% photoinitiator. A one-dimensional kinetic model was utilized to predict the conversion–dose relationship.

Results

As irradiation intensity increased, conversion decreased at a constant irradiation dose and the overall dose required to achieve full conversion increased. Methacrylate conversion ranged from 64 ± 2% at 3 mW/cm2 to 78 ± 1% at 24 mW/cm2 while the final shrinkage stress varied from 2.4 ± 0.1 MPa to 3.0 ± 0.1 MPa. The ultimate conversion and shrinkage stress levels achieved were dependent not only upon dose but also the irradiation intensity, in contrast to an idealized reciprocity relationship. A kinetic model was utilized to analyze this behavior and provide theoretical conversion profiles versus irradiation time and dose.

Significance

Analysis of the experimental and modeling results demonstrated that the polymerization kinetics do not and should not be expected to follow the reciprocity law behavior. As irradiation intensity is increased, the overall dose required to achieve full conversion also increased. Further, the ultimate conversion and shrinkage stress that are achieved are not dependent only upon dose but rather upon the irradiation intensity and corresponding polymerization rate.  相似文献   

14.

Objectives

To evaluate the effect of the application method on the immediate and 3-year resin-dentine bond strength (μTBS) and nanoleakage (NL) for 3 one-step self-etch adhesives (Adper Prompt L-Pop; Clearfil S3 Bond and Xeno III).

Methods

The occlusal enamel of 42 human molars were removed to expose a flat dentine surface. The adhesives were applied under inactive or active application. After light-curing (600 mW/cm2 for 10 s), composite buildups were constructed incrementally and sectioned to obtain bonded sticks (0.8 mm2) to be tested in tension immediately or after 3 years of water storage of water storage. For NL, 2 bonded sticks from each tooth at each time were coated with nail varnish, placed in silver nitrate and polished down with SiC paper. The μTBS data was submitted to a two-way repetead mesures ANOVA and Tukey's test for each adhesive (α = 0.05).

Results

The active application showed higher immediate and 3-year μTBS than the inactive application (p < 0.05). An increase in the silver nitrate deposition was seen for all conditions after 3 years; however this was more pronounced for all materials under inactive application (p < 0.05).

Conclusions

The active application improves the immediate bonding performance of the adhesive systems. Reductions of the bond strength were observed for all materials after 3 years, however reduced degradation rate was observed when the materials are applied actively in dentine.  相似文献   

15.

Objectives

To monitor the influence of the power density of the curing unit on the setting behaviour of light-cured glass-ionomer cements (LCGICs) using ultrasound measurements.

Methods

The ultrasound equipment comprised a pulser–receiver, transducers and an oscilloscope. The LCGICs used were Fuji II LC, Fuji II LC EM and Fuji Filling LC. The cements were mixed according to the manufacturer's instructions and then inserted into a transparent mould. The specimens were placed on the sample stage and cured with power densities of 0 (no irradiation), 200 or 600 mW/cm2. The transit time through the cement disk was divided by the specimen thickness and then the longitudinal ultrasound velocity (V) within the material was obtained. Analysis of variance and Tukey's Honestly Significantly Different test were used to compare the V values between the set cements.

Results

When the LCGICs were light-irradiated, each curve displayed an initial plateau at ∼1500 m/s and then rapidly increased to a second plateau at ∼2600 m/s. The rate of increase of V was retarded when the cements were light-irradiated with a power density of 200 mW/cm2 than with a power density of 600 mW/cm2. Although sonic echoes were detected from the beginning of the measurements, the rates of increase of the sonic velocity were relatively slow when the cement was not light-irradiated.

Conclusions

The ultrasound device monitored the setting processes of LCGICs accurately based on the longitudinal V. The polymerization behaviour of LCGICs was shown to be affected by the power density of the curing unit.  相似文献   

16.
17.

Objective

To investigate the correlation of the chemical interaction between model self-etching adhesives and dentine with the degree of conversion (DC) of the adhesives.

Methods

The model self-etching adhesives contained bis[2-methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA) with a mass ratio of 1/1, and 0-40% water contents, respectively. The adhesives were applied either onto the prepared dentine surface or unreactive substrates (such as glass slides), agitated for 15 s, then light-cured for 40 s. The DCs of the adhesives were determined using micro-Raman spectral and mapping analysis.

Results

The DCs of the adhesives cured on the dentine substrate were found to be significantly higher than those on the unreactive glass substrate. Moreover, the DCs of the adhesives displayed a decreasing trend as the distance from the dentine surface became greater. The chemical interaction of the acidic 2MP/HEMA adhesives with the mineral apatite in dentine was proposed to play a significant role for the observations. The chemical interaction could be validated by the spectral comparison in the phosphate regions of 1100 cm−1 and 960 cm−1 in the Raman spectra. The results also revealed a notable influence of water content on the DC of adhesives. The DCs of the adhesive at 10% water content exhibited the highest DC level for both substrates.

Conclusions

Interaction with dentine dramatically improved the degree of conversion of self-etching adhesives. Our ability to chemically characterise the a/d interface including in situ detection of the DC distribution is very important in understanding self-etching adhesive bonding under in vivo conditions.  相似文献   

18.

Objectives

This work is concerned with the study of the sorption and desorption process of water, ethanol or ethanol/water solution 50% (v/v) or 75% (v/v) by the dental resins prepared by light curing of Bis-GMA, Bis-EMA, UDMA, TEGDMA or D3MA.

Methods

A thin resin disc is placed in a bath of time to obtain the sorption curve mt = f(t). Then the liquid is desorbed until a constant mass for the disc is reached and the desorption curve is recorded. These experimental curves help in the determination of the sorbed/desorbed liquid amount at equilibrium, the percentage of the extracted mass of unreacted monomer known as “solubility”, and the sorption/desorption diffusion coefficient which expresses correspondingly the rate of the liquid sorption/desorption.

Results

The highest liquid uptake by dental resins was 13.3 wt% ethanol for Bis-GMA-resin, 12.0 wt% ethanol for UDMA-resin, 10.10 wt% ethanol/water solution for TEGDMA-resin, 7.34 wt% ethanol for D3MA-resin and 6.61 wt% ethanol for Bis-EMA-resin. The diffusion coefficient for all resins was higher in water than in ethanol/water solution or ethanol. Bis-GMA-resin showed the highest diffusion coefficient (11.01 × 10−8 cm2 s−1) followed by Bis-EMA-resin (7.43 × 10−8 cm2 s−1), UDMA-resin (6.88 × 10−8 cm2 s−1), D3MA-resin (6.22 × 10−8 cm2 s−1) and finally by TEGDMA-resin (1.52 × 10−8 cm2 s−1).

Significance

All studied dental resins, except TEGDMA-resin, absorbed higher amount of pure ethanol than water or ethanol water solution. TEGDMA-resin absorbed higher amount of ethanol/water solution (50/50 or 75/25 (v/v)) than water or ethanol. For all studied dental resins the diffusion coefficient was higher in water than in ethanol/water solution or ethanol.  相似文献   

19.

Objectives

The aim of this study was to evaluate the degree of conversion (DC), rate of polymerization (Rpmax), Knoop hardness (KHN) and bond strength between tooth/restoration of composite resins containing different photo-initiators photo-activated by different light-curing units (LCUs).

Materials and methods

A mixture of BisGMA, UDMA, BisEMA and TEGDMA was prepared along with the following photo-initiators: camphorquinone (CQ), phenyl-propanedione (PPD) or the association (CQ/PPD) and 65 wt% of silanated filler particles. The LCUs included a halogen lamp XL 2500 and two LEDs: UltraBlueIS and UltraLume5. The conversion profiles during photo-polymerization were investigated using middle-infrared spectroscopy (mid-IR). Bond strength was evaluated using push-out test in ninety teeth with prepared cavities. Before the push-out test, Knoop hardness (KH) was verified in the top and at the base of the restorations.

Results

PPD obtained lower Rpmax values, regardless of the LCU used. It also provided a greater bond strength than CQ when the LEDs LCUs were used. The degree of conversion after 40 s of irradiation was the same for all composite resins, except PPD photo-activated for XL 2500, which showed lower DC values than CQ and CQ/PPD. In the top and at the base of the restorations, PPD showed the lowest KH values when photo-activated with XL 2500. XL 2500 produced higher KH values than UltraBlueIS when used with CQ or CQ/PPD photo-initiators.

Conclusion

Because it increased the bond strength without compromising the properties of composite resins when photo-activated by an LED, PPD can be used as an alternative photo-initiator.  相似文献   

20.

Objective

To study the plasma treatment effects on deactivation effectiveness of oral bacteria.

Methods

A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria.

Results

The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 s for S. mutans and within 5 min for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280 nm and 260 nm, respectively.

Conclusion

The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号