首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhancing TRAIL-induced apoptosis by Bcl-X(L) siRNA   总被引:1,自引:0,他引:1  
We previously found that a change in the balance between mitochondrial pro- and anti-apoptotic proteins caused by ectopic expression of the Bax gene led to increased induction of apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). To investigate whether a similar effect can be elicited by down-regulating Bcl-X(L), an anti-apoptotic protein, we tested the effects of a small interfering RNA (siRNA) specific for Bcl-X(L) in TRAIL-resistant cells. The down-regulation of Bcl-X(L) by siRNA inhibited cell proliferation and sensitized TRAIL-induced apoptosis in human cancer cells with both acquired and intrinsic TRAIL resistance. Combining the Bcl-X(L) siRNA with TRAIL protein treatment resulted in an increase in the percentage of apoptotic cells and increased cleavage of caspase-8, caspase-9, caspase-3 and PARP. Furthermore, the release of cytochrome c but not Smac from mitochondria was induced by Bcl-X(L) siRNA alone, and this release was dramatically amplified by combining the Bcl-X(L) siRNA and TRAIL protein treatment. Together, our data suggest that simultaneous triggering of the death receptor and mitochondrial apoptotic pathways leads to enhanced induction of apoptosis, which makes it potentially useful for the treatment of resistant cancers.  相似文献   

2.
The mitochondrial apoptosis pathway mediates cell death through the release of various pro-apoptotic factors including cytochrome c and Smac, the second mitochondrial activator of caspases, into the cytosol. Smac was shown previously to inhibit IAP proteins and to facilitate initiation of the caspase cascade upon cytochrome c release. To investigate Smac function during apoptosis and to explore Smac as an experimental cancer therapeutic, we constructed an expression system based on a single adenoviral vector containing Smac under control of the Tet-off system supplied in cis. Conditional expression of Smac induced apoptosis in human HCT116 and DU145 carcinoma cells regardless of the loss of Bax or overexpression of Bcl-x(L). Nevertheless, apoptosis induced by Smac was associated with cytochrome c release and breakdown of the mitochondrial membrane potential. This indicates that Smac acts independently of Bax and Bcl-x(L) during initiation of apoptosis and triggers a positive feedback loop that results in Bax/Bcl-x(L)-independent activation of mitochondria. In caspase-proficient cells, Smac-induced apoptosis could be inhibited partially by cell-permeable LEHD (caspase-9 inhibitor) and DEVD (caspase-3 inhibitor) peptides. Furthermore, loss of caspase-3 expression in MCF-7 cells carrying a caspase-3 null mutation completely abrogated the sensitivity for Smac-induced apoptotic or nonapoptotic, necrosis-like cell death, while re-expression of caspase-3 conferred sensitivity. Altogether, caspase-3 but not caspase-9 activation was necessary for execution of Smac-induced cell death. Notably, Smac did not induce caspase-9 processing in the absence of caspase-3. Thus, caspase-9 processing occurs secondary to caspase-3 activation during Smac-induced apoptosis. Altogether, Smac is capable of circumventing defects in mitochondrial apoptosis signaling such as loss of Bax or overexpression of Bcl-x(L) that are frequently observed in tumor cells resistant to anticancer therapy. Consequently, Smac appears to be a promising therapeutic target in anticancer treatment.  相似文献   

3.
Bax is a crucial mediator of the mitochondrial pathway for apoptosis, and loss of this proapoptotic Bcl-2 family protein contributes to drug resistance in human cancers. We report here that the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin (THG) induces apoptosis of human colon cancer HCT116 cells through a Bax-dependent signaling pathway controlling the cytosolic release of mitochondrial apoptogenic molecules. Treating HCT116 cells with THG results in caspase-8 activation; Bid cleavage; Bax conformational change and mitochondrial translocation; the release of cytochrome c, Smac/Diablo, and Omi/HtrA2 into the cytosol; caspase-3 activation; and apoptosis. In contrast, knockout of Bax completely abrogates the full processing/activation of caspase-3 but has no effect on the processing of caspase-8 and the initial cleavage of caspase-3 to p24 fragment after THG treatment. The caspase-8-specific inhibitor z-IETD-fmk, as well as pan-caspase inhibitor z-VAD-fmk, but not the calpain inhibitor E-64d, prevents Bid cleavage, Bax conformational change, and subsequent caspase-3 processing and apoptosis. Caspase-8 processing is dependent on de novo protein synthesis; DR5 expression is strongly up-regulated by THG treatment. Moreover, the absence of Bax blocks THG-induced Omi and Smac release from mitochondria, and expression of cytosolic Omi (GFP-IETD-Omi) or Smac (GFP-IETD-Smac) restores the sensitivity of Bax-knockout HCT116 cells to apoptosis in response to THG treatment. Taken together, our results indicate that Bax-dependent Smac and Omi release plays an essential role in caspase-3 activation and apoptosis induced by THG in human colon cancer HCT116 cells.  相似文献   

4.
We have reported previously that among human prostate cancer cell lines LNCaP but not PC-3 cells undergo apoptosis after treatment with the protein kinase inhibitor staurosporine (STS). We have now further investigated this model to uncover the molecular mechanism causing resistance to STS-induced apoptosis in PC-3 cells. S-100 lysates of both cell lines showed biochemical changes typical of apoptosis after the addition of cytochrome c and dATP, suggesting that the postmitochondrial phase of apoptosis was intact. Upon addition of STS, the proapoptotic molecules Bax and Bad became predominantly mitochondrial in both cell lines. This, in turn, was followed by loss of mitochondrial transmembrane potential, translocation of cytochrome c to the cytosol, activation of caspase-9, -3, and -7, and cleavage of the apoptotic targets, DNA fragmentation factor and poly(ADP-ribose) polymerase, in LNCaP but not in PC-3 cells. Components of the mitochondrial permeability transition pore, adenine nucleotide transporter and voltage-dependent anion channel, were normally expressed in the correct subcellular fraction of both cell lines. Overexpression of the proapoptotic proteins Bax and Bad, fused to a green fluorescent protein but not of green fluorescent protein alone, induced apoptosis in >80% of PC-3 cells. These experiments suggested that a factor protecting the mitochondria of PC-3 cells mediates resistance to STS-induced apoptosis. A wide search among the antiapoptotic Bcl-2 family members was performed, and Bcl-X(L) was found to be overexpressed in PC-3 cells. Experiments down-regulating Bcl-X(L) expression by using the tyrosine kinase inhibitor genistein, sodium butyrate, or an antisense Bcl-X(L) oligonucleotide restored sensitivity to apoptosis in PC-3 cells. Thus, Bcl-X(L) overexpression is one of the mediators of resistance to STS-induced apoptosis in the prostate cancer cell line PC-3.  相似文献   

5.
MycN sensitizes neuroblastoma cells for drug-induced apoptosis   总被引:8,自引:0,他引:8  
Fulda S  Lutz W  Schwab M  Debatin KM 《Oncogene》1999,18(7):1479-1486
Amplification of the MYCN gene is found in a large proportion of neuroblastoma and considered as an adverse prognostic factor. To investigate the effect of ectopic MycN expression on the susceptibility of neuroblastoma cells to cytotoxic drugs we used a human neuroblastoma cell line harboring tetracycline-controlled expression of MycN. Neither conditional expression of MycN alone nor low drug concentrations triggered apoptosis. However, when acting in concert, MycN and cytotoxic drugs efficiently induced cell death. Apoptosis depended on mitochondrial permeability transition and activation of caspases, since the mitochondrion-specific inhibitor bongkrekic acid and the caspase inhibitor zVAD-fmk almost completely abrogated apoptosis. Loss of mitochondrial transmembrane potential and release of cytochrome c from mitochondria preceded activation of caspase-8 and caspase-3 and cleavage of PARP. CD95 expression was upregulated by treatment with cytotoxic drugs, while MycN cooperated with cytotoxic drugs to increase sensitivity to CD95-induced apoptosis and enhancing CD95-L expression. MycN overexpression and cytotoxic drugs also synergized to induce p53 and Bax protein expression, while Bcl-2 and Bcl-X(L) protein levels remained unchanged. Since amplification of MYCN is usually associated with a poor prognosis, these findings suggest that dysfunctions in apoptosis pathways may be a mechanism by which MycN-induced apoptosis of neuroblastoma cells is inhibited.  相似文献   

6.
Cancer cells express different levels of apoptosis-promoting Bax protein. The present study evaluated whether induction of Bax initiates apoptosis and whether Bax overexpression enhances apoptosis induced by several chemotherapeutic agents in DLD-1 colon cancer cells, which originally express a high level of endogenous Bax protein and a low level of Bcl-2 protein. To investigate these two points, parental DLD-1 cells were transfected with the Tet-On Bax induction system ( pTet-On and pTRE-Bax plasmids), and stable transduced cells were obtained. Induction of Bax by the Tet-On system initiated cytochrome c release from mitochondria, caspase-3 activation, and apoptosis to some extent in DLD-1 cells. Apoptosis induced by a chemotherapeutic agent, 5-fluorouracil, mitomycin C, paclitaxel, doxorubicin, or cisplatin, was enhanced by Bax overexpression. These findings suggest that Bax -overexpression-based gene therapy combined with chemotherapy would be effective in the treatment of colon cancer.  相似文献   

7.
Cancer cells express different levels of apoptosis-promoting Bax protein. The present study evaluated whether induction of Bax initiates apoptosis and whether Bax overexpression enhances apoptosis induced by several chemotherapeutic agents in DLD-1 colon cancer cells, which originally express a high level of endogenous Bax protein and a low level of Bcl-2 protein. To investigate these two points, parental DLD-1 cells were transfected with the Tet-On Bax induction system (pTet-On and pTRE-Bax plasmids), and stable transduced cells were obtained. Induction of Bax by the Tet-On system initiated cytochrome c release from mitochondria, caspase-3 activation, and apoptosis to some extent in DLD-1 cells. Apoptosis induced by a chemotherapeutic agent, 5-fluorouracil, mitomycin C, paclitaxel, doxorubicin, or cisplatin, was enhanced by Bax overexpression. These findings suggest that Bax-overexpression-based gene therapy combined with chemotherapy would be effective in the treatment of colon cancer.  相似文献   

8.
Wang QF  Chen JC  Hsieh SJ  Cheng CC  Hsu SL 《Cancer letters》2002,183(2):169-178
Herbal medicines are increasingly being utilized to treat a wide variety of disease processes. Gypenosides (Gyp) are triterpenoid saponins contained in an extract from Gynostemma pentaphyllum Makino and reported to induce apoptosis in human hepatoma cells. However, the molecular mechanism underlying the Gyp-induced apoptotic process is unclear. In this study, we found that Gyp induced apoptosis in human hepatoma Huh-7, Hep3B and HA22T cell lines as evidenced by morphological changes, 4',6'-diamidino-2-phenylindole staining and in situ terminal transferase-mediated dUTP-fluorescensin nick end-labeling assay. Our data demonstrated that Gyp-induced apoptotic cell death was accompanied by up-regulation of Bax, Bak and Bcl-X(L), and down-regulation of Bcl-2 and Bad, while it had no effect on the level of Bag-1 protein. Moreover, Gyp treatment caused the release of mitochondrial cytochrome c to cytosol and sequential activation of caspases, including caspase-1, -9 and -3, then leading to cleavage of poly-ADP-ribose polymerase. Furthermore, the Gyp-induced apoptosis was markedly blocked by the broad-spectrum caspase inhibitor, z-VAD-fmk. Taken together, these results suggest that treatment of human hepatoma cells with Gyp induced apoptosis through the up-regulation of Bax and Bak, and down-regulation of Bcl-2, release of mitochondrial cytochrome c and activation of caspase cascade.  相似文献   

9.
Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis   总被引:11,自引:0,他引:11  
Kim JH  Liu L  Lee SO  Kim YT  You KR  Kim DG 《Cancer research》2005,65(14):6312-6320
Cholangiocarcinomas are intrahepatic bile duct carcinomas that are known to have a poor prognosis. Sesquiterpene lactone parthenolide, which is the principal active component in medicinal plants, has been used to treat tumors. Parthenolide effectively induced apoptosis in all four cholangiocarcinoma cell lines in a dose-dependent manner. However, the sarcomatous SCK cells were more sensitive to parthenolide than the other adenomatous cholangiocarcinoma cells. Therefore, this study investigated whether or not the expression of p53, the Fas/Fas ligand (FasL), Bcl-2/Bcl-X(L) determines the enhanced drug susceptibility of SCK cells. The results showed that Bcl-2 family molecules, such as Bid, Bak, and Bax, are involved in the parthenolide-induced apoptosis and that the defective expression of Bcl-X(L) might contribute to the higher parthenolide sensitivity in the SCK cells than in the other adenomatous cholangiocarcinoma cells. SCK cells, which stably express Bcl-X(L), were resistant to parthenolide, whereas Bcl-X(L)-positive Choi-CK cells transfected with the antisense Bcl-X(L) showed a higher parthenolide sensitivity than the vector control cells. Molecular dissection revealed that Bcl-X(L) inhibited the translocation of Bax to the mitochondria, decreased the generation of intracellular reactive oxygen species, reduced the mitochondrial transmembrane potential (deltapsi(m)), decreased the release of cytochrome c, decreased the cleavage of poly(ADP-ribose) polymerase, and eventually inhibited apoptotic cell death. These results suggest that parthenolide effectively induces oxidative stress-mediated apoptosis, and that the susceptibility to parthenolide in cholangiocarcinoma cells might be modulated by Bcl-X(L) expression in association with Bax translocation to the mitochondria.  相似文献   

10.
目的:探讨δ-生育三烯酚诱导人肝癌HepG2细胞凋亡的作用机制.方法:应用MTT法检测δ-生育三烯酚对人肝癌HepG2细胞增殖的影响,应用高内涵活细胞成像系统检测δ-生育三烯酚对人肝癌HepG2细胞凋亡率、细胞周期以及线粒体膜电位的影响,Western印迹法检测δ-生育三烯酚对人肝癌HepG2细胞凋亡相关蛋白(如caspase-3、caspase-8、caspase-9、Bcl-2、Bax、tBid和cytochrome C)表达的影响.结果:δ-生育三烯酚呈浓度依赖性地抑制肝癌HepG2细胞生长并诱导其凋亡,其机制为δ-生育三烯酚降低线粒体膜电位,并诱导cytochrome C从线粒体释放到细胞质中,调控Bcl-2家族蛋白表达(如上调Bax及tBid蛋白的表达,下调Bcl-2蛋白的表达),继而引起caspase-3、caspase-8和caspase-9的活化,最终导致肝癌 HepG2细胞凋亡.结论:δ-生育三烯酚可能通过线粒体途径及膜死亡受体途径共同诱导人肝癌细胞 HepG2凋亡.  相似文献   

11.
The cyclin-dependent kinase inhibitor p27Kip1 has been implicated as a drug resistance factor in tumor cells grown as spheroids or confluent monolayers. Here, we show that p27Kip1 overexpression also induces resistance to drug-induced apoptosis and cytotoxicity in human leukemic cells growing in suspension. The anti-apoptotic effect of p27Kip1 is not restricted to DNA-damaging agents but extends to the tubulin poison vinblastin, agonistic anti-Fas antibodies and macromolecule synthesis inhibitors. To further identify at which level this protein interferes with the cell death pathway, we investigated its influence on caspase activation and mitochondrial changes. Exposure of mock-transfected U937 cells to 50 microm etoposide activates procaspase-3 and the long isoform of procaspase-2 and induces mitochondrial potential decrease and cytochrome c release from mitochondria to the cytosol. All these events are prevented by p27Kip1 overexpression. p27Kip1 does not modulate Bcl-2, Bcl-X(L), Mcl-1 and Bax protein level in leukemic cells but suppresses Mcl-1 expression decrease observed in mock-transfected U937 cells undergoing etoposide-induced cell death. We conclude that p27Kip1 prevents cell death upstream of the final pathway common to many apoptotic stimuli that involves cytochrome c release from mitochondria and activation of downstream caspases.  相似文献   

12.
It has been reported that expression of Bax by Tet-On system induces apoptosis in Jurkat cells. The parental Jurkat cells have mutation of Bax gene and do not express Bax protein. Wild-type Bax-bearing cells express endogenous Bax protein and it is still unclear whether overexpression of Bax alone can sufficiently induce apoptosis in these cells in the absence of any cytotoxic stimulus. To investigate this, wild-type Bax-bearing K562 cells were transfected with Tet-On Bax-inducible system (pTet-On and pTRE-Bax plasmids), and Bax-inducible stable cell lines were established. Overexpression of Bax in wild-type Bax-bearing K562 cells without any cyctotoxic signal resulted in increase of apoptotic cells, caspase-3 activation, mitochondrial release of cytochrome c, and mitochondrial membrane potential change. Western blotting and confocal microscopy revealed that overexpression of Bax was detected in mitochondria. A pancaspase inhibitor, zVAD-fmk, which has no effect on mitochondrial cytochrome c release and mitochondrial membrane potential change inhibited the apoptotic events in the presence of overexpressed Bax in mitochondria. These findings suggest that Bax protein, when present above a threshold level, is sufficient to trigger an apoptosis cascade, and its initiation requires simultaneous caspase activation probably not mediated by mitochondrial cytochrome c release and mitochondrial membrane potential change in K562 cells.  相似文献   

13.
Zhang S  Ong CN  Shen HM 《Cancer letters》2004,211(2):175-188
Parthenolide is a sesquiterpene lactone responsible for the bioactivities of Feverfew. Besides its potent anti-inflammatory effect, this compound has recently been reported to induce apoptosis in cancer cells, possibly through mitochondrial dysfunction. In the present study, we attempted to examine parthenolide-mediated cell death signaling pathway by focusing on the involvement of Bcl-2 family members. Using a human colorectal cancer cell line COLO205, we first demonstrated that parthenolide acted through the cell death receptor pathway to activate caspase 8. Following caspase 8 activation, Bid, a proapoptotic Bcl-2 member, was cleaved and this cleavage then triggered Bax conformational changes and Bax translocation from cytosol to mitochondrial membrane. Meanwhile, another proapoptotic protein, Bak, was up-regulated and oligomerized on the mitochondrial membrane. All these alterations were found to be prerequisite for the subsequent release of proapopototic mitochondrial proteins, including cytochrome c and Samc, in parthenolide-treated cells. Moreover, selective inhibition of caspase 8 activity by a synthetic caspase inhibitor (IETD-FMK) or overexpression of a viral protein (CrmA) suppressed the cleavage of Bid, conformational changes of Bax, cytochrome c release, and apoptosis. Therefore, the proapoptotic Bcl-2 family members are important mediators relaying the cell death signaling elicited by parthenolide from caspase 8 to downstream effector caspases such as caspase 3, and eventually to cell death.  相似文献   

14.
The adenine deoxynucleosides cladribine (2CdA) and fludarabine (FAraA) are DNA-damaging agents that interfere with DNA repair and induce apoptosis in nonproliferating lymphoid cells. Although both drugs are clinically used for the treatment of indolent lymphoproliferative diseases, the pathways of apoptosis induction remain largely unknown. In the present work, we demonstrate that both drugs induce apoptosis independently of death receptor signaling but activate the mitochondrial cell death pathway. To dissect the signaling pathways, we employed Jurkat cells either deficient for FADD or caspase-8 or overexpressing Bcl-2. In Bcl-2 overexpressing cells, apoptosis and cytochrome c release were blocked whereas processing of caspase-9, -3 and -8 was partially inhibited. In contrast, neither the deficiency of FADD or caspase-8 nor the interference with death receptor signaling by neutralizing anti-CD95/Fas antibodies affected cell death. Inhibitor experiments revealed that caspase-8 is processed by caspase-3-like caspases. Moreover, cytochrome c release and processing of caspase-9 and -3 occurred to an equal extent in wild-type FADD -/- and caspase-8 -/- Jurkat cells. Likewise, apoptosis induction by cladribine or fludarabine was not hampered upon inhibition of caspase-8 in MOLT-3 and MOLT-4 cells or overexpression of a dominant-negative FADD mutant in BJAB cells. Thus, we conclude that apoptosis induced by nucleoside analogues is independent from death receptor signaling as well as from a proposed direct effect on APAF-1, but rather follows the mitochondrial signaling pathway of cytochrome c release and subsequent processing of caspase-9 and -3.  相似文献   

15.
The effects of reactive oxygen species (ROS) on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in solid cancers have yet to be clearly defined. In this study, we found that the classic uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone (CCCP), induced a reduction in DeltaPsim and generation of ROS. This uncoupling effect enhanced TRAIL-induced apoptosis in TRAIL-resistant human colon carcinoma cell lines (RKO, HT29, and HCT8). Sensitization was inhibited by benzyloxycarbonyl-valine-alanine-aspartate fluoromethylketone, indicating the requirement for caspase activation. CCCP per se did not induce apoptosis or release of proapoptotic factors from mitochondria. Generation of ROS by CCCP was responsible for TRAIL-induced Bax and caspase activation because scavenging ROS completely abrogated apical caspase-8 activation and further downstream events leading to cell death. Overexpression of Bcl-2 did not prevent the initial loss of DeltaPsim and ROS generation following CCCP treatment, but did prevent cell death following TRAIL and CCCP exposure. Uncoupling of mitochondria also facilitated TRAIL-induced release of proapoptotic factors. X-linked inhibitor of apoptosis overexpression abrogated TRAIL-induced apoptosis in the presence of CCCP and decreased initiator procaspase-8 processing, indicating that additional processing of caspase-8 required initiation of a mitochondrial amplification loop via effector caspases. Of interest, depletion of caspase-9 in RKO cells did not protect cells from TRAIL/CCCP-induced apoptosis, indicating that apoptosis occurred via a caspase-9-independent pathway. Data suggest that in the presence of mitochondrial-derived ROS, TRAIL induced mitochondrial release of Smac/DIABLO and inactivation of X-linked inhibitor of apoptosis through caspase-9-independent activation of caspase 3.  相似文献   

16.
Choi BH  Kim W  Wang QC  Kim DC  Tan SN  Yong JW  Kim KT  Yoon HS 《Cancer letters》2008,261(1):37-45
Here, we demonstrate that kinetin riboside (KR), a cytokinin analog, induces apoptosis in HeLa and mouse melanoma B16F-10 cells. KR disrupted the mitochondrial membrane potential and induced the release of cytochrome c and activation of caspase-3. Bad were upregulated while Bcl-2 was down-regulated under KR exposure. A tumor growth in mice was dramatically suppressed by KR. In contrast, human skin fibroblast CCL-116 and bovine primary fibroblast cells show resistances to KR and no significant changes in Bad, Bcl-X(L,) and cleaved PARP were observed. Our data suggest that KR selectively induces apoptosis in cancer cells through the classical mitochondria dependent apoptosis pathway.  相似文献   

17.
We demonstrate that PS-341, a small molecule inhibitor of the proteasome, markedly sensitizes resistant prostate, colon, and bladder cancer cells to TNF-like apoptosis-inducing ligand (TRAIL)-induced apoptosis irrespective of Bcl-xL overexpression. PS-341 treatment by itself does not affect the levels of Bax, Bak, caspases 3 and 8, c-Flip or FADD, but elevates levels of TRAIL receptors DR4 and DR5. This increase in receptor protein levels is associated with the ubiquitination of the DR5 protein. When PS-341 is combined with TRAIL, the levels of activated caspase 8 and cleaved Bid are substantially increased. In Bax-negative TRAIL-resistant HC-4 colon cancer cells, the combination of PS-341 and TRAIL overcomes the block to activation of the mitochondrial pathway and causes SMAC and cytochrome c release followed by apoptosis. Similarly, murine embryonic fibroblasts lacking Bax undergo apoptosis when exposed to the combination of PS-341 and TRAIL; however, fibroblasts lacking Bak are significantly resistant. Taken together, these findings indicate that PS-341 enhances TRAIL-induced apoptosis by increasing the cleavage of caspase 8, causing Bak-dependent release of mitochondrial proapoptotic proteins.  相似文献   

18.
To evaluate whether overexpression of Bax, an apoptosis-promoting gene, sensitizes KATOIII gastric cancer cells to apoptosis induced by chemotherapeutic agents, three stable cell lines of KATOIII transfected with Bax (KATOIII-Bax), Bcl-2 (KATOIII-Bcl-2), or control pCI-neo expression vector (KATOIII-pCI-neo) were established. The cells were treated with paclitaxel, 5-fluorouracil, or doxorubicin, and the apoptotic response was measured. Our results showed that the sensitivity of the KATOIII-Bax cells to chemotherapeutic agents was enhanced compared with that of the KATOIII-pCI-neo cells, and the KATOIII-Bcl-2 cells were more resistant to these agents. Western blotting revealed that cytochrome c level in the cytosol fraction of the KATOIII-Bax cells was higher than that of the KATOIII-pCI-neo cells. Significant increase of cytochrome c level in the cytosol fraction of the KATOIII-Bax cells was detected 24 h after exposure to chemotherapeutic agents, when apoptotic cells were less than 10%. The cytochrome c level in the cytosol fraction of the KATOIII-Bax cells was higher than that of the KATOIII-pCI-neo cells at all time points examined after exposure to chemotherapeutic agents. Marked activation of caspase-3 in the KATOIII-Bax cells was observed 48 h and 72 h after exposure to chemotherapeutic agents compared with that in the KATOIII-pCI-neo cells. Consistently, zVAD-fmk, a pancaspase inhibitor, repressed the paclitaxel-induced apoptosis. In addition, Bcl-2 overexpression strongly blocked KATOIII cell apoptosis by inhibiting the cytochrome c release from mitochondria and caspase-3 activation. These findings suggest that cytochrome c release is a major mechanism of apoptotic response and Bax overexpression sensitizes KATOIII cells to chemotherapeutic agent-induced apoptosis through enhancing the release of cytochrome c from mitochondria.  相似文献   

19.
PURPOSE: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that induces apoptosis in multiple tumor cell types while sparing most normal cells. We determined the effect of ectopic Bcl-2 expression on TRAIL-induced apoptosis and whether the small molecule Bcl-2 inhibitor, HA14-1, could increase TRAIL sensitivity. EXPERIMENTAL DESIGN: SW480 human colon cancer cells were stably transfected with the PC3-Bcl-2 plasmid or vector alone. Cells were incubated with recombinant human TRAIL +/- HA14-1 or caspase-9 inhibitor (Z-LEHD-FMK). Apoptosis was analyzed by Annexin V-fluorescein isothiocyanate labeling and DNA fragmentation factor 45 (DFF45) cleavage. Clonigenic survival was also studied. Caspase activation was determined by immunoblotting or colorimetric assay. The cytosolic expression of Bid, Bax, and XIAP and release of cytochrome c and Smac/DIABLO were determined by immunoblotting. RESULTS: Bcl-2 overexpression partially protected SW480 cells from a dose-dependent induction of apoptosis by TRAIL, as did a caspase-9 inhibitor, and increased their clonogenic survival. Bcl-2 overexpression attenuated TRAIL-induced cleavage of caspase-8, indicating its activation upstream and downstream of mitochondria, as well as cleavage of Bid and caspase-3. Bcl-2 inhibited TRAIL-induced Bax translocation, cytosolic release of cytochrome c and Smac/DIABLO, and the downstream cleavage of XIAP and DFF45. Coadministration of HA14-1 and TRAIL increased apoptosis in SW480/Bcl-2 cells by restoring Bax redistribution and cytochrome c release. CONCLUSIONS: Bcl-2 confers apoptosis resistance to TRAIL by inhibiting a mitochondrial amplification step and by inactivating downstream XIAP in SW480 cells. HA14-1 reversed Bcl-2-mediated TRAIL resistance, suggesting a novel strategy for increasing TRAIL sensitivity in Bcl-2-overexpressing colon cancers.  相似文献   

20.
Curcumin, an active ingredient of turmeric (Curcuma longa), inhibits proliferation and induces apoptosis in cancer cells, but the sequence of events leading to cell death is poorly defined. The objective of this study was to examine the molecular mechanisms by which multidomain pro-apoptotic Bcl-2 family members Bax and Bak regulate curcumin-induced apoptosis using mouse embryonic fibroblasts (MEFs) deficient in Bax, Bak or both genes. Curcumin treatment resulted an increase in the protein levels of both Bax and Bak, and mitochondrial translocation and activation of Bax in MEFs to trigger drop in mitochondrial membrane potential, cytosolic release of apoptogenic molecules [cytochrome c and second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis protein-binding protein with low isoelectric point], activation of caspase-9 and caspase-3 and ultimately apoptosis. Furthermore, MEFs derived from Bax and Bak double-knockout (DKO) mice exhibited even greater protection against curcumin-induced release of cytochrome c and Smac, activation of caspase-3 and caspase-9 and induction of apoptosis compared with wild-type MEFs or single-knockout Bax(-/-) or Bak(-/-) MEFs. Interestingly, curcumin treatment also caused an increase in the protein level of apoptosis protease-activating factor-1 in wild-type MEFs. Smac N7 peptide enhanced curcumin-induced apoptosis, whereas Smac siRNA inhibited the effects of curcumin on apoptosis. Mature form of Smac sensitized Bax and Bak DKO MEFs to undergo apoptosis by acting downstream of mitochondria. The present study demonstrates the role of Bax and Bak as a critical regulator of curcumin-induced apoptosis and over-expression of Smac as interventional approaches to deal with Bax- and/or Bak-deficient chemoresistant cancers for curcumin-based therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号