首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A drug delivery system is proposed constituted of spherical placebo granules as cores with polymeric surface films containing drug. This timed release dosage form has been prepared by means of a fluidized bed coating technique using ethyl cellulose as the polymeric film and caffeine and salicylic acid as model drugs. The release of the drugs from the dosage form (a) at different drug concentrations and (b) into solutions of different pH showed that drug release was linearly related to the square root of time. Good agreement was found between the theoretical release rate of caffeine, calculated according to Higuchi's equation for a homogenous matrix using membrane permeation parameters measured on linear films, and the experimental results in the case of low drug concentrations. Deviation of the release rate from the homogenous model at high drug concentrations could be explained by crystallization of the drug from the film.  相似文献   

2.
A drug delivery system is proposed constituted of spherical placebo granules as cores with polymeric surface films containing drug. This timed release dosage form has been prepared by means of a fluidized bed coating technique using ethyl cellulose as the polymeric film and caffeine and salicylic acid as model drugs. The release of the drugs from the dosage form (a) at different drug concentrations and (b) into solutions of different pH showed that drug release was linearly related to the square root of time. Good agreement was found between the theoretical release rate of caffeine, calculated according to Higuchi's equation for a homogenous matrix using membrane permeation parameters measured on linear films, and the experimental results in the case of low drug concentrations. Deviation of the release rate from the homogenous model at high drug concentrations could be explained by crystallization of the drug from the film.  相似文献   

3.
The objective of this study was to investigate the influence of methylparaben, ibuprofen, chlorpheniramine maleate and theophylline on the thermal and mechanical properties of polymeric films of Eudragit RS 30 D. The effects of methylparaben and ibuprofen in the film coating on the rate of drug release from Eudragit RS 30 D coated beads were also studied. The physical and mechanical properties of the cast films and coated beads were investigated using thermal analysis, tensile testing, X-ray diffraction analysis and dissolution testing. The results demonstrated that the glass transition temperature of the Eudragit RS 30 D decreased with increasing levels of methylparaben, ibuprofen and chlorpheniramine maleate in the film. Theophylline exerted no influence on the thermal properties of the polymer. The higher levels of the ibuprofen and methylparaben incorporated into the film resulted in a decrease in the tensile strength of the film. The decrease in Young's modulus of Eudragit RS 30 D coated beads was attributed to an increase in the flexibility of the polymeric films when the level of methylparaben or ibuprofen in the polymeric dispersion was increased. The dissolution data demonstrated that the rate of release of the ibuprofen from coated beads was decreased by increasing the amount of ibuprofen and methylparaben in the polymeric film coating.  相似文献   

4.
PURPOSE: The purpose of this study was to use polymer blends for the coating of pellets and to study the effects of the type of coating technique (aqueous vs. organic) on drug release. METHODS: Propranolol HCl-loaded pellets were coated with blends of a water-insoluble and an enteric polymer (ethyl cellulose and Eudragit L). Drug release from the pellets as well as the mechanical properties, water uptake, and dry weight loss behavior of thin polymeric films were determined in 0.1 M HCI and phosphate buffer, pH 7.4. RESULTS: Drug release strongly depended on the type of coating technique. Interestingly, not only the slope, but also the shape of the release curves was affected, indicating changes in the underlying drug release mechanisms. The observed effects could be explained by the higher mobility of the macromolecules in organic solutions compared to aqueous dispersions, resulting in higher degrees of polymer-polymer interpenetration and, thus, tougher and less permeable film coatings. The physicochemical properties of the latter were of major importance for the control of drug release, which was governed by diffusion through the intact polymeric films and/or water-filled cracks. CONCLUSIONS: The type of coating technique strongly affects the film microstructure and, thus, the release mechanism and rate from pellets coated with polymer blends.  相似文献   

5.
We previously reported that sodium citrate (Na citrate), which is a high order salt in the Hofmeister's series, greatly suppressed particle agglomeration in fluidized bed coating (Pharm. Res., 16 (1999), 1616-1620). In this paper, we studied the effects of Na citrate concentration on the particle agglomeration in fluidized bed coating and on the structure of coated film on the particles. Spherical granules made of crystalline cellulose (Celphere) containing phenacetin were coated in a fluidized bed with the aqueous coating solution of hydroxypropylmethyl cellulose (HPMC) containing Na citrate at various concentrations. The particle diameter and drug release profile of coated particles, and the physical properties, i.e. tensile strength, elongation percentage at break, porosity and pore size distribution, of the HPMC cast film were investigated. The particle agglomeration was suppressed with the increasing Na citrate concentration. It is considered that the increase in the suppression effect was caused by the salting-out effect of the increased Na citrate. In the HPMC cast film system, the tensile strength and elongation percentage decreased and the porosity and cumulative pore volume increased with an increase in Na citrate concentration. It is considered that the increase in the porosity by adding Na citrate resulted from a phase separation due to the salting-out during the film forming process. The drug release rate from coated particles also increased with the increasing Na citrate concentration. It can be concluded that the increase in the release rate was due to the increase in porosity of the HPMC coated film caused by the increased Na citrate concentration.  相似文献   

6.
目的 研究多索茶碱脉冲控释微丸的制备工艺,并考察其释药性能。方法 以微晶纤维素为骨架材料采用挤出滚圆法制备载药丸芯,通过流化床包衣法分别覆上交联羧甲基纤维素钠作为溶胀层、乙基纤维素和羟丙甲纤维素作为控释层制备多索茶碱脉冲微丸,通过单因素考察筛选丸芯、溶胀层、控释层的处方组成对体外释药性能的影响。结果 以微晶纤维素、羧甲基淀粉钠和乳糖为添加剂可制得性能良好的高载药微丸。随着溶胀层厚度的增加,药物释放时滞变短,速率显著增加;随着控释层包衣厚度的增加,时滞延长,释药减慢;控释层中羟丙甲纤维素用量或分子量增加,时滞缩短;控释层中增塑剂用量增加,时滞延长。结论 所得包衣微丸具有良好的脉冲释药性能,有广阔的应用前景。  相似文献   

7.
布洛芬包衣缓释颗粒释药动力学及体内外相关性研究   总被引:7,自引:0,他引:7  
赵甘霖  王鸿辰 《药学学报》1995,30(4):291-297
在研制出布洛芬速释处方的基础上,用乙基纤维素为材料对颗粒进行包衣,考察其体外释药动力学,并观察了颗粒大小、包衣厚度、pH值和压力诸因素对释药速率的影响。结果表明,包衣量较少时,释药过程更符合Higuchi方程;包衣量较大时,更符合零级动力学。在相同包衣量条件下,释药速率随颗粒的增大而减慢;当颗粒大小相同时,则随着包衣量增大释药速率减慢;释药速率随pH值的降低而显著减慢;包衣颗粒压片后,释药速率增大。经7名健康志愿受试者实验表明,体内外相关性显著。  相似文献   

8.
The aim of this study was to compare the performance of microparticles and their release properties after coating by chitosan and gelatin, respectively. All of the poly(epsilon-caprolactone) (PCL) microparticles were prepared by the hot-melt encapsulation method and indomethacin was selected as a model drug to be encapsulated. All of the coated microparticles retained their spherical shape irrespective of the type of coating material, and the particle size of coated microparticles was similar to the uncoated ones. The indomethacin encapsulation efficiency was in the range of 8.65 +/- 0.08 % - 8.81 +/- 0.04% for uncoated microparticles and 8.22 +/- 0.04% - 8.68 +/- 0.08% for coated microparticles. The release of indomethacin from uncoated microparticles followed a two-exponential release profile, where indomethacin was rapidly released within 4 h during the first release phase, after that approximately 20% of the drug was continuously and slowly released for up to 24 h in the second phase. The similar release profile was observed from coated microparticles irrespective of the times of coating and the types of coating material. Both the natural coating materials, chitosan and gelatin, efficiently reduced the initial burst release and the first phase of drug release, but did not alter the second phase of drug release. In other words, chitosan and gelatin could be used to protect the drug on the surface of microparticles from immediately contacting with the release medium and both possessed the same feature in the delay of drug release.  相似文献   

9.
A new approach to developing a drug-polymer mixed coat for highly water-soluble diltiazem pellets was investigated at different coating levels. Drug layering and the coating procedures were performed using a bottom spray fluidized bed coater. Drug pellets were coated with Eudragit NE40 (NE40) alone and in combination with diltiazem and hydrophilic cellulose derivatives. Dissolution studies revealed that incorporation of hydrophilic substances such as methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), and the drug itself considerably increased the release rates. The release from mixed polymer coatings was fast compared to pellets coated with NE40 only. The major portion of the drug was released in about 2 hours in case of MC and NE40 mixed coat compared to hours from coated pellets containing HPMC or diltiazem. Incorporation of 15% to 25% drug with respect to the polymer coat helped to achieve a drug-release profile at a desirable rate over a 12 hour period. Moreover, the test formulation comprising 25% diltiazem with respect to 7% NE40 had a dissolution profile that matched the commercial product, Herbesser SR capsules. The release of diltiazem from the coated pellets was slightly affected by the pH of dissolution media.  相似文献   

10.
A new approach to developing a drug-polymer mixed coat for highly water-soluble diltiazem pellets was investigated at different coating levels. Drug layering and the coating procedures were performed using a bottom spray fluidized bed coater. Drug pellets were coated with Eudragit NE40 (NE40) alone and in combination with diltiazem and hydrophilic cellulose derivatives. Dissolution studies revealed that incorporation of hydrophilic substances such as methylcellulose (MC), hydroxypropyl methylcellulose (HPMC), and the drug itself considerably increased the release rates. The release from mixed polymer coatings was fast compared to pellets coated with NE40 only. The major portion of the drug was released in about 2 hours in case of MC and NE40 mixed coat compared to hours from coated pellets containing HPMC or diltiazem. Incorporation of 15% to 25% drug with respect to the polymer coat helped to achieve a drug-release profile at a desirable rate over a 12 hour period. Moreover, the test formulation comprising 25% diltiazem with respect to 7% NE40 had a dissolution profile that matched the commercial product, Herbesser SR capsules. The release of diltiazem from the coated pellets was slightly affected by the pH of dissolution media.  相似文献   

11.
Combination of adsorption by porous CaCO(3) microparticles and encapsulation by polyelectrolyte multilayers via the layer-by-layer (LbL) self-assembly was proposed for sustained drug release. Firstly, porous calcium carbonate microparticles with an average diameter of 5 microm were prepared for loading a model drug, ibuprofen (IBU). Adsorption of IBU into the pores was characterized by ultraviolet (UV), infrared (IR), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) experiment and X-ray diffraction (XRD). The adsorbed IBU amount Gamma was 45.1mg/g for one-time adsorption and increased with increasing adsorption times. Finally, multilayer films of protamine sulfate (PRO) and sodium poly(styrene sulfonate) (PSS) were formed on the IBU-loaded CaCO(3) microparticles by the layer-by-layer self-assembly. Amorphous IBU loaded in the pores of the CaCO(3) microparticles had a rapider release in the gastric fluid and a slower release in the intestinal fluid, compared with the bare IBU crystals. Polyelectrolyte multilayers assembled on the drug-loaded particles by the LbL reduced the release rate in both fluids. In this work, polymer/inorganic hybrid core-shell microcapsules were fabricated for controlled release of poorly water-soluble drugs. The porous inorganic particles are useful to load drugs in amorphous state and the polyelectrolyte multilayer films coated on the particle assuage the initial burst release.  相似文献   

12.
The high initial burst release of a highly water-soluble drug from poly (D,L-lactide-co-glycolide) (PLGA) microparticles prepared by the multiple emulsion (w/o/w) solvent extraction/evaporation method was reduced by coating with an additional polymeric PLGA layer. Coating with high encapsulation efficiency was performed by dispersing the core microparticles in peanut oil and subsequently in an organic polymer solution, followed by emulsification in the aqueous solution. Hardening of an additional polymeric layer occurred by oil/solvent extraction. Peanut oil was used to cover the surface of core microparticles and, therefore, reduced or prevented the rapid erosion of core microparticles surface. A low initial burst was obtained, accompanied by high encapsulation efficiency and continuous sustained release over several weeks. Reduction in burst release after coating was independent of the amount of oil. Either freshly prepared (wet) or dried (dry) core microparticles were used. A significant initial burst was reduced when ethyl acetate was used as a solvent instead of methylene chloride for polymer coating. Multiparticle encapsulation within the polymeric layer increased as the size of the core microparticles decreased (< 50 µm), resulting in lowest the initial burst. The initial burst could be controlled well by the coating level, which could be varied by varying the amount of polymer solution, used for coating.  相似文献   

13.
BACKGROUND AND THE PURPOSE OF THE STUDY: Multiparticulates by powder layering process have advantages of the uniform distribution of the binder solution, easy-to-clean pan and the possibility of applying the successive functional film coating using the same equipment. This study relates to a multiparticulate formulation comprising pellets with a multilayer of pectin-ethyl cellulose on non pareil seeds by powder layering technology. The pellets were prepared to target ketoprofen in colon based on the microbial enzyme dependent drug release mechanism. METHODS: Multiparticulate formulation by powder layering technology was prepared by conventional pan coating process to evaluate the effect of 59% methoxylated pectin and 45 cps ethyl cellulose on coating label. The formulations were tagged with (99m)Tc-DTPA, a tracer in gamma scintigraphy study to evaluate the transit behavior of drug loaded pellets and compared with uncoated pellets to evaluate its specific release. RESULTS: The transit behavior and scintigraphy image clearly indicates that the formulation can delay the drug release prior to colon. In albino rabbit, the coated pellets released drug in the colon indicating that site specificity has been achieved with pectin/ethyl cellulose coating at 1:2 ratio with 20% coating label. MAJOR CONCLUSION: Formulation containing pectin and ethyl cellulose with suitable coating label may be suitable as a coating formulation for colon delivery of ketoprofen and can be successfully evaluated by gamma scintigraphy method.  相似文献   

14.
The effect of the molecular weight of ethyl cellulose on the drug release properties of mixed films of ethyl cellulose and hydroxypropyl methylcellulose has been studied by coating spherical granules with a film and measuring the release of a water-soluble model drug substance. Drug release was found to decrease with increasing molecular weight and on the addition of plasticizer. diethyl phthalate, to the films prepared from the low molecular weight grades. At molecular weights in excess of 35.000 (equivalent to a grade with a nominal viscosity of 20 mPas) the addition of a plasticizer had no effect on drug release. The results have been correlated with the mechanical properties of films prepared from the various molecular weight grades of ethyl cellulose, the rapid release with the low molecular weight grades being caused by the presence of cracks and flaws in the film.  相似文献   

15.
Modified-release drug spheroids coated with an aqueous mixture of high-viscosity hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) were formulated. The preparation of core drug spheroids and the coating procedures were performed using the rotary processor and a bottom-spray fluidized bed, respectively. Dissolution studies indicated that incorporation of suitable additives, such as poly(vinylpyrrolidone) (PVP) and poly(ethylene glycol) 400 (PEG) improved the flexibility and integrity of the coat layer by retarding the drug release. An increase in coating levels applied generally retarded the release rate of the drug. However, the ratio of HPMC to NaCMC in the mixed, plasticized polymeric coat played a more dominant role in determining the dissolution T50% values. The optimal ratio of HPMC to NaCMC for prolonged drug release was found to be 3:1, whereas an increase in the amount of NaCMC in the mixed polymer coat only increased drug release. The synergistic viscosity effect of HPMC and NaCMC in retarding drug release rate was greater in distilled water than in dissolution media of pH 1 and 7.2. Cross-sectional view of the scanning electron micrograph showed that all of the coated spheroids exhibited a well-fused, continuous, and distinct layer of coating film. The drug release kinetics followed a biexponential first-order kinetic model.  相似文献   

16.
Modified-release drug spheroids coated with an aqueous mixture of high-viscosity hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) were formulated. The preparation of core drug spheroids and the coating procedures were performed using the rotary processor and a bottom-spray fluidized bed, respectively. Dissolution studies indicated that incorporation of suitable additives, such as poly(vinylpyrrolidone) (PVP) and poly(ethylene glycol) 400 (PEG) improved the flexibility and integrity of the coat layer by retarding the drug release. An increase in coating levels applied generally retarded the release rate of the drug. However, the ratio of HPMC to NaCMC in the mixed, plasticized polymeric coat played a more dominant role in determining the dissolution T50% values. The optimal ratio of HPMC to NaCMC for prolonged drug release was found to be 3:1, whereas an increase in the amount of NaCMC in the mixed polymer coat only increased drug release. The synergistic viscosity effect of HPMC and NaCMC in retarding drug release rate was greater in distilled water than in dissolution media of pH 1 and 7.2. Cross-sectional view of the scanning electron micrograph showed that all of the coated spheroids exhibited a well-fused, continuous, and distinct layer of coating film. The drug release kinetics followed a biexponential first-order kinetic model.  相似文献   

17.
目的制备布洛芬缓释微丸。方法以药用糖丸为母核,欧巴代为粘合剂和包衣材料,采用包衣造粒机撒粉上药及流化床包衣的工艺制备布洛芬缓释微丸。结果制得的微丸均匀圆整,体外释放度测定结果表明,该微丸符合2005年版《中国药典(二部)》布洛芬缓释胶囊的质量要求。结论采用药用糖丸撒粉上药及流化床包衣的工艺可制备布洛芬缓释微丸。  相似文献   

18.
The major aims of this work were to study the effect of the molecular weight (Mw) of ethyl cellulose (EC) on the drug release profile from metoprolol succinate pellets coated with films comprising EC and hydroxypropyl cellulose (HPC) with a weight ratio of 70:30, and to understand the mechanisms behind the different release profiles. A broad range of Mws was used, and the kinetics of drug release and HPC leaching followed. The higher the Mw of EC, the slower the HPC leaching and the drug release processes. Drug release occurred by diffusion through the pores created in the coating by the HPC leaching. A novel method was used to explain the differences in the release profiles: the effective diffusion coefficient (De) of the drug in the coating film was determined using a mechanistic model and compared to the amount of HPC leached. A linear dependence was found between De and the amount of HPC leached and, importantly, the value of the proportionality constant decreased with increasing Mw of EC. This suggests that the Mw of EC affects the drug release profile by affecting the phase separated microstructure of the coating and the hindrance it imparts to drug diffusion.  相似文献   

19.
扑尔敏缓释微丸的制备及释药动力学研究   总被引:4,自引:0,他引:4  
应用沸腾包衣工艺经处方、工艺筛选、改变微丸粒径、包衣厚度、膜材料种类及配比等,得到了体外具较理想释药行为的扑尔敏控释微丸。释药动力学研究表明,其前50%和后50%药物的释放分别符合零级和一级动力学过程。  相似文献   

20.
The aim of this work was to evaluate the potentiality to control the drug release of a new architecture of microparticles organized at the nanoscopic scale by assembling polymeric nanocapsules at the surface of drug-loaded xerogels. Xerogel was prepared by sol-gel method using sodium diclofenac, as hydrophilic drug model, and coated by spray-drying. After coating, the surface areas decreased from 82 to 28 m(2)/g, the encapsulation efficiency was 71% and SEM analysis showed irregular microparticles coated by the nanocapsules. Formulation showed satisfactory gastro-resistance presenting drug release lower than 3% (60 min) in acid medium. In water, the pure drug dissolved 92% after 5 min, uncoated drug-loaded xerogel released 60% and nanocapsule coated drug-loaded xerogel 36%. After 60 min, uncoated drug-loaded xerogel released 82% and nanocapsule coated drug-loaded xerogel 62%. In conclusion, the new system was able to control the release of the hydrophilic drug model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号