首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously reported that aquaporin 4 (AQP4) has a neuroimmunological function via astrocytes and microglial cells involving osteopontin. AQP4 is a water channel localized in the endofoot of astrocytes in the brain, and its expression is upregulated after a stab wound to the mouse brain or the injection of methylmercury in common marmosets. In this study, the correlation between the expression of AQP4 and the expression of glial fibrillary acidic protein (GFAP) or tenascin‐C (TN‐C) in reactive astrocytes was examined in primary cultures and brain tissues of AQP4‐deficient mice (AQP4/KO). In the absence of a stab wound to the brain or of any stimulation of the cells, the expressions of both GFAP and TN‐C were lower in astrocytes from AQP4/KO mice than in those from wild‐type (WT) mice. High levels of GFAP and TN‐C expression were observed in activated astrocytes after a stab wound to the brain in WT mice; however, the expressions of GFAP and TN‐C were insignificant in AQP4/KO mice. Furthermore, lipopolysaccharide (LPS) stimulation activated primary culture of astrocytes and upregulated GFAP and TN‐C expression in cells from WT mice, whereas the expressions of GFAP and TN‐C were slightly upregulated in cells from AQP4/KO mice. Moreover, the stimulation of primary culture of astrocytes with LPS also upregulated inflammatory cytokines in cells from WT mice, whereas modest increases were observed in cells from AQP4/KO mice. These results suggest that AQP4 expression accelerates GFAP and TN‐C expression in activated astrocytes induced by a stab wound in the mouse brain and LPS‐stimulated primary culture of astrocytes. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
During injury to the central nervous system (CNS), astrocytes and microglia proliferate and migrate around the lesion sites. Recently, it has been reported that one of the water channels, aquaporin-4 (AQP4) is seemed to have a role in astroglial migration and glial scar formation caused by brain injury, although its molecular mechanism is largely unknown. In the present study, we examined the expression profiles in wild-type (WT) and AQP4-deficient (AQP4/KO) mice after a stab wound to the cerebral cortex. Three days after the stab wound, AQP4 expression was observed in activated microglia around the lesion site as well as in astrocytes. A microarray analysis revealed that 444 genes around the lesion site were upregulated 3 days after the wounding in WT mice. Surprisingly, most of these up-regulations were significantly attenuated in AQP4/KO mice. Real-time RT-PCR and immunofluorescence showed that osteopontin (OPN) expression around the lesion site was much lower in AQP4/KO mice than in WT mice. Moreover, the up-regulation of pro-inflammatory cytokines was significantly attenuated in AQP4/KO mice. Taken together, these results suggest that AQP4 plays an important role in immunological function in concert with OPN under pathological conditions in the CNS.  相似文献   

3.
Insult to the central nervous system (CNS) induces many changes, including altered neurotransmitter expression, activation of astrocytes and microglia, neurogenesis and cell death. Cytokines and growth factors are candidates to be involved in astrocyte and microglial activation, and the up-regulation of glial fibrillary acidic protein (GFAP) is associated with brain damage. One of these candidates is leukemia inhibitory factor (LIF), a pro-inflammatory cytokine that is induced in astrocytes by brain damage or seizure. LIF also regulates expression of both neuropeptide Y (NPY) and galanin following peripheral nerve injury. To test the hypothesis that LIF regulates astrocyte, microglial and neuropeptide responses to a mild insult, we used a low-dose pilocarpine model to induce a brief seizure in LIF knock-out (KO) mice. Compared to wild type mice, the LIF KO mouse displays reduced astrocyte and microglial activation in the hippocampus. In addition, LIF KO mice display dramatically altered NPY, but not galanin, expression in response to injury. Thus, LIF is required for normal glial responses to brain damage, and, as in the periphery, LIF regulates NPY expression in the CNS.  相似文献   

4.
AimsNaltrexone is a mu opioid receptor (MOR) antagonist used to treat drug dependence in patients. Previous reports indicated that MOR antagonists reduced neurodegeneration and inflammation after brain injury. The purpose of this study was to evaluate the neuroprotective effect of naltrexone in cell culture and a mouse model of traumatic brain injury (TBI).MethodsThe neuroprotective effect of naltrexone was examined in primary cortical neurons co‐cultured with BV2 microglia. Controlled cortical impact (CCI) was delivered to the left cerebral cortex of adult male MOR wild‐type (WT) and knockout (KO) mice. Naltrexone was given daily for 4 days, starting from day 2 after lesioning. Locomotor activity was evaluated on day 5 after the CCI. Brain tissues were collected for immunostaining, Western, and qPCR analysis.ResultsGlutamate reduced MAP2 immunoreactivity (‐ir), while increased IBA1‐ir in neuron/BV2 co‐culture; both responses were antagonized by naltrexone. TBI significantly reduced locomotor activity and increased the expression of IBA1, iNOS, and CD4 in the lesioned cortex. Naltrexone significantly and equally antagonized the motor deficits and expression of IBA1 and iNOS in WT and KO mice. TBI‐mediated CD4 protein production was attenuated by naltrexone in WT mice, but not in KO mice.ConclusionNaltrexone reduced TBI‐mediated neurodegeneration and inflammation in MOR WT and KO mice. The protective effect of naltrexone involves non‐MOR and MOR mechanisms.  相似文献   

5.
Tenascin-C is an extracellular matrix glycoprotein with trophic and repulsive properties on neuronal cells, involved in migratory processes of immature neurons. Previous reports demonstrated that this molecule is produced and secreted by astrocytes, in vitro after activation by bFGF or in vivo after CNS lesion. In injured brain the expression of tenascin-C has been correlated with the glial reaction since it was observed in regions suffering a dramatic glial proliferation and hypertrophy. In this report we show that the treatment of cultured hippocampal astrocytes with tenascin-C results in an increased fibronectin and NCAM immunoreactivities. In addition, treated astrocytes form longer extensions than control ones. The number of cells as well as the levels of GFAP mRNA and protein immunoreactivity are not modified after tenascin-C treatment. The present changes may, therefore, be related to the modification of the adhesive properties of astrocytes to the substrate. These observations are compatible with the hypothesis that tenascin-C may contribute to the glial scarring process. GLIA 20:231–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
7.
Traumatic brain injury (TBI) is a major cause of death and disability. The underlying pathophysiology is characterized by secondary processes including neuronal death and gliosis. To elucidate the role of the NG2 proteoglycan we investigated the response of NG2‐knockout mice (NG2‐KO) to TBI. Seven days after TBI behavioral analysis, brain damage volumetry and assessment of blood brain barrier integrity demonstrated an exacerbated response of NG2‐KO compared to wild‐type (WT) mice. Reactive astrocytes and expression of the reactive astrocyte and neurotoxicity marker Lcn2 (Lipocalin‐2) were increased in the perilesional brain tissue of NG2‐KO mice. In addition, microglia/macrophages with activated morphology were increased in number and mRNA expression of the M2 marker Arg1 (Arginase 1) was enhanced in NG2‐KO mice. While TBI‐induced expression of pro‐inflammatory cytokine genes was unchanged between genotypes, PCR array screening revealed a marked TBI‐induced up‐regulation of the C‐X‐C motif chemokine 13 gene Cxcl13 in NG2‐KO mice. CXCL13, known to attract immune cells to the inflamed brain, was expressed by activated perilesional microglia/macrophages seven days after TBI. Thirty days after TBI, NG2‐KO mice still exhibited more pronounced neurological deficits than WT mice, up‐regulation of Cxcl13, enhanced CD45+ leukocyte infiltration and a relative increase of activated Iba‐1+/CD45+ microglia/macrophages. Our study demonstrates that lack of NG2 exacerbates the neurological outcome after TBI and associates with abnormal activation of astrocytes, microglia/macrophages and increased leukocyte recruitment to the injured brain. These findings suggest that NG2 may counteract neurological deficits and adverse glial responses in TBI. GLIA 2016;64:507–523  相似文献   

8.
In response to injury and degeneration, astrocytes hypertrophy, extend processes, and increase production of glial fibrillary acidic protein (GFAP), an intermediate filament protein located within their cytoplasm. The present study tested the hypothesis that GFAP expression alters the vulnerability of neurons to excitotoxic and metabolic insult induced by 3-nitroproprionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II activity or the excitotoxin quinolinic acid (QA). In this respect, adult GFAP knockout mice (KO) and wild-type control mice (WT) received unilateral intrastriatal injections of 3-NP (200 nmol/microl) or QA (100 nmol/microl) and were killed 1, 2, or 4 weeks later. Lesion volume and neuronal counts were quantified using unbiased stereologic principles. For both QA and 3-NP lesions, a significant decrease in lesion volume and an increase in striatal projection neurons were seen in GFAP KO mice compared with WT mice. Enzyme-linked immunoassay analysis revealed increased basal levels of glial cell derived neurotrophic factor (GDNF) relative to WT mice. In contrast, no differences were observed in the expression of ciliary neurotrophic factor or nerve growth factor. These data strongly suggest that the expression of GFAP is implicated with the production of GDNF to a degree that confers neuroprotection after an excitotoxic or metabolic insult.  相似文献   

9.
The functional role of astrocytes exerted via their intermediate protein glial fibrillary acidic protein (GFAP) in CNS infections was studied in Staphylococcus aureus-induced brain abscess. Compared to wild type (WT) mice, GFAP(0/0) mice developed larger and more poorly demarcated inflammatory lesions paralleled by a significantly increased intracerebral bacterial load, a diffuse leukocytic infiltration of the contralateral hemisphere, purulent ventriculitis, vasculitis, and severe brain edema. These observations were correlated with the lack of a bordering function of activated astrocytes that strongly upregulated their GFAP expression in the abscess surrounding of WT mice. Clinically important, this lack of restriction of inflammation markedly aggravated the course of disease with manifestation of seizures and a severe weight loss in GFAP(0/0) mice. These data were paralleled by observations in the model of Toxoplasma encephalitis (TE) during which the intracerebral parasitic load was significantly increased. Moreover, tachyzoite-induced tissue necrosis was exclusively found in the brains of GFAP(0/0) mice in chronic TE. Collectively, these findings delineate a host defense function of astrocytes via restricting pathogenic spread and multiplication within the CNS, thereby contributing to the protection of the highly vulnerable brain parenchyma.  相似文献   

10.
11.
Astroglial type‐1 cannabinoid (CB1) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so‐called tripartite synapse formed by pre‐ and post‐synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock‐out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)‐containing astrocytes (GFAP‐CB1‐KO mice) and also generated genetic rescue mice to re‐express CB1 receptors exclusively in astrocytes (GFAP‐CB1‐RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock‐out (CB1‐KO) mice and wild‐type (CB1‐WT) littermates were intra‐hippocampally injected with an adeno‐associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP‐CB1‐KO and ‐WT mice, respectively. Furthermore, double immunogold (for CB1) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1‐WT, GFAP‐CB1‐RS and GFAPhrGFP‐CB1‐WT mice. Only non‐specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.  相似文献   

12.
Abstract

Aim: Thalidomide is one of the first line therapies in cancer pain management. Previous study has shown that thalidomide decreases the expression of tumor necrosis factor alpha in the mouse spinal cord. However, the exact cellular and molecular mechanism underlying the effect of thalidomide remains unclear. Here, we investigated the effect of thalidomide on the expression level of NF-κB as well as glial fibrillary acidic protein (GFAP) in the spinal cord astrocyte in a mice model.

Materials and methods: MC57G fibrosarcoma cells were intramedullary injected into the right femurs of C57/BL mice to induce behaviors related to bone cancer pain. Postoperative thalidomide was administered intraperitoneally to the mice at dose of 100?mg/kg/day for 7?days. The effect of thalidomide on pain hypersensitivity was checked by behavioral testing. The expression levels of NF-κB and GFAP in spinal cord were evaluated by using Western blotting and Immunohistochemistry.

Results: Compared with the controls, the tumor-bearing mice showed substantial pain-related behaviors. Furthermore, the expression levels of both NF-κB and GFAP increased significantly in the spinal cord astrocytes of the tumor-bearing mice. Treating the tumor-bearing mice with thalidomide results in a dramatic reduction in pain behaviors and a significant decrease of NF-κB and GFAP expressions.

Conclusions: Thalidomide alleviates the pain behaviors probably by down-regulating the expression of NF-κB and GFAP.  相似文献   

13.
Inflammation is an essential component for glial scar formation. However, the upstream mediator(s) that triggers the process has not been identified. Previously, we showed that the expression of CD36, an inflammatory mediator, occurs in a subset of astcotyes in the peri-infarct area where the glial scar forms. This study investigates a role for CD36 in astrocyte activation and glial scar formation in stroke. We observed that the expression of CD36 and glial fibrillary acidic protein (GFAP) coincided in control and injured astrocytes and in the brain. Furthermore, GFAP expression was attenuated in CD36 small interfering RNA transfected astrocytes or in the brain of CD36 knockout (KO) mice, suggesting its involvement in GFAP expression. Using an in-vitro model of wound healing, we found that CD36 deficiency attenuated the proliferation of astrocytes and delayed closure of the wound gap. Furthermore, stroke-induced GFAP expression and scar formation were significantly attenuated in the CD36 KO mice compared with wild type. These findings identify CD36 as a novel mediator for injury-induced astrogliosis and scar formation. Targeting CD36 may serve as a potential strategy to reduce glial scar formation in stroke.  相似文献   

14.
There is some controversy in the literature whether carbonic anhydrase occurs in astrocytes, as well as in oligodendrocytes and myelin, in the mammalian brain. In the present study this issue was addressed by double immunostaining for carbonic anhydrase and two astrocytic "markers" in the brains of normal mice and two dysmyelinating mutants, jimpy and shiverer. In the brains of young mice, carbonic anhydrase and glutamine synthetase were colocalized in astrocytes in the cortical gray matter. In gray matter of the adult mouse brain, it was possible to immunostain both carbonic anhydrase and glial fibrillary acidic protein (GFAP) in the same cells. However, in contrast to the findings in gray matter, in and near subcortical white matter carbonic anhydrase could be detected only in oligodendrocytes and myelinated fibers. In the brains of jimpy mice, virtually all the carbonic-anhydrase-positive cells were also GFAP positive, even in regions normally occupied by white matter. In the brains of young and adult shiverer mice, carbonic anhydrase was localized in astrocytes in the gray matter, but in and near the tracts normally occupied by white matter carbonic anhydrase could be detected only in oligodendrocytes and their abundant processes. The findings confirmed the oligodendrocyte-myelin unit to be the primary locus of carbonic anhydrase in the normal mouse brain and showed the astrocytes in gray matter normally to be a secondary locus of carbonic anhydrase. The immunostaining in the jimpy mouse brain suggested further that reactive astrocytes, in particular, might be rich in carbonic anhydrase.  相似文献   

15.
Traumatic brain injury (TBI) is accompanied by inflammatory infiltrates and CNS tissue response. The astrocytosis associated with TBI has been proposed to have both beneficial and detrimental effects on surviving neural tissue. We recently observed prominent astrocytic expression of YKL‐40/chitinase 3‐like protein 1 (CHI3L1) associated with severity of brain injury. The physiological role of CHI3L1 in the CNS is unknown; however, its distribution at the perimeter of contusions and temporal course of expression suggested that in TBI it might be an important component of the astrocytic response to modulate CNS inflammation. To address this hypothesis, we used serially sectioned brains to quantitatively compare the neuropathological outcomes of TBI produced by controlled cortical impact in wild type (WT) and chi3l1 knockout (KO) mice where the murine YKL‐40 homologue, breast regression protein 39 (BRP‐39/CHI3l1), had been homozygously disrupted. At 21 days post‐injury, chi3l1 KO mice displayed greater astrocytosis (increased GFAP staining) in the hemispheres ipsilateral and contralateral to impact compared with WT mice. Similarly, Iba1 expression as a measure of microglial/macrophage response was significantly increased in chi3l1 KO compared with WT in the hemisphere contralateral to impact. We conclude that astrocytic expression of CHI3L1 limits the extent of both astrocytic and microglial/macrophage facets of neuroinflammation and suggests a novel potential therapeutic target for modulating neuroinflammation.  相似文献   

16.
17.
Tenascin C induces a quiescent phenotype in cultured adult human astrocytes   总被引:1,自引:0,他引:1  
Astrocytic scar formation occurs subsequent to brain and spinal cord injury and impedes repair. The exact mechanisms of scar formation have yet to be elucidated but it is known that astrocytes within the scar have a different antigenic phenotype from normal or reactive astrocytes. Astrocyte cell culture offers a suitable system to identify factors that induce the scar phenotype as well as factors that reverse this process and that may help identify therapeutic strategies to treat astrogliosis. However, when placed in standard culture conditions, astrocytes become activated/reactive and express molecules characteristic of scar tissue in vivo. In the present study, we made use of this phenomenon to identify culture conditions that change the activated phenotype of cultured astrocytes into one characteristic of normal quiescent astrocytes. In particular, we examined the effect of extracellular matrix (ECM) proteins found in the human brain, on the phenotype of human adult astrocytes. Significantly fewer astrocytes expressed scar properties when grown on tenascin-C (TN-C) than those cultured on other ECM proteins or poly-L-lysine-coated dishes. TN-C also significantly reduced the proliferation rate of the astrocytes in vitro. In addition, further manipulation of culture conditions induced partial astrocyte reactivation. Our findings suggest that astrocytes grown on TN-C revert to a quiescent, nonactivated state that is partially reversible. This raises the possibility that therapeutic strategies aimed at manipulating TN-C levels during CNS injury may help reduce astrocytic scarring.  相似文献   

18.
We recently identified a cDNA encoding a human brain specific trypsinogen (trypsinogen IV). In order to test whether trypsinogen IV is involved in CNS diseases of, or injury response in, mammalian brain, a mouse model was developed in which the human trypsinogen IV was expressed specifically in neurons. Immunocytochemical analysis of the brains of transgenic mice revealed a striking enhancement of glial fibrillar acidic protein (GFAP) expression in astrocytes. This remarkable astrocytic reaction was detected in the brains of mice as young as 2 months and did not diminish in the older animals we tested. However, we did not find gross evidence for neurodegeneration, nor for reactive microglial cells. The long-term survival of these animals should provide a model with which to study the mechanism of nerve-astroglia interactions. In addition, the possible participation of trypsin IV in the metabolism of the Alzheimer precursor protein (APP) was investigated by immunostaining brains from transgenic mice with β-amyloid (βA4) antibodies. Immunocytochemical staining of brains from one year old transgenic mice revealed an intense intracellular βA4-like signal in neurons. GLIA 22:338–347, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Although activation of spinal glia has been implicated in the development of pathological pain, the mechanisms underlying glial activation are not fully understood. One such mechanism may be triggered by reaction to neuroactive substances released from central axons of sensory afferents. The vanilloid receptor TRPV1, a nonselective cation channel in nociceptive sensory afferents, mediates the release of neurotransmitters, such as glutamate and CGRP in the dorsal horn, which can subsequently activate glia. To test the hypothesis that activation of spinal glia is mediated, at least in part, by TRPV1, we studied the expression of markers for microglia (ionized calcium-binding adapter molecule 1, Iba1) and astrocytes (glial fibrillary acidic protein, GFAP) in the spinal cord of TRPV1 knockout mice (KO) vs. wild-type mice (WT) in models of acute (intraplantar capsaicin), inflammatory (adjuvant-induced arthritis, AIA), and neuropathic pain (partial sciatic nerve ligation, PSNL). We found that (i) naïve KO mice had denser immunostaining for both Iba1 and GFAP than naive WT mice; (ii) the immunostaining for Iba1 increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 7–14 days after AIA or PSNL, and was significantly greater in WT than in KO mice 3 days after capsaicin, 7–14 days after AIA, and 7 days after PSNL; and iii) the immunostaining for GFAP increased significantly in treated mice, compared to naïve mice, 3 days after capsaicin and 14–21 days after AIA or PSNL, and was significantly greater in WT than in KO mice 14 days after AIA or PSNL. Our results suggest that TRPV1 plays a role in the activation of spinal glia in mice with nociceptive, inflammatory, and neuropathic pain.  相似文献   

20.
Serotonin (5-HT) can induce a release of intraglial S-100B and produce a change in glial morphology. Because S-100B can inhibit polymerization of glial fibrillary acidic protein (GFAP), we hypothesize that glial reactivity may reflect the loss of intraglial S-100B. Adult male transgenic S-100B homozygous knockout (-/-) mice (KO) and wild-type CD-1 (WT) mice were studied. S-100B-immunoreactivity (IR) was seen in the brain tissue of WT (CD-1) but not S-100B KO (-/-) mice. GFAP-IR was seen in both WT (CD-1) and S-100B KO (-/-) glia cells, but S-100B KO (-/-) GFAP-IR cells appeared larger, darker, and more branched than in WT (CD-1). To compare the response of GFAP-IR cells to 5-HT in S-100B KO (-/-) and WT (CD-1) mice, we injected animals with para-chloroamphetamine (PCA) over 2 days (5 and 10 mg/ml). PCA is a potent 5-HT releaser which can induce gliosis in the rodent brain. In WT (CD-1) mice, the size, branching, and density of GFAP-IR cells were significantly increased after PCA injections. No increase in GFAP-IR activation was seen in the S-100B KO (-/-) after PCA injections. Cell-specific densitometry (set at a threshold of 0-150 based on a scale of 255) in these animals statistically showed an increase in GFAP-IR after PCA injections in WT (CD-1) but not S-100B KO (-/-) mice. These results are consistent with the hypothesis that 5-HT may modulate glial morphology by inducing a release of intracellular S-100B, and this pathway is inoperable in the S-100B KO (-/-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号