首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的探讨放射治疗机房中有用束主屏蔽区的宽度的计算方法。方法按照国家标准《放射治疗机房的辐射屏蔽规范》计算出有用束主屏蔽区的宽度,与准直器角度为45°,机架角为135°时的治疗束到墙最大射野宽度比较;并在某医院加速器机房实测辐射防护。结果按照国家标准计算的有用束主屏蔽区宽度比最大射野宽度小,理论上存在射线泄露区域,实测结果也证实理论上的射线泄露区域确实存在。结论国家标准中放射治疗机房的有用束主屏蔽区的宽度计算方法及监测条件仅仅考虑机架角为90°、180°或者270°的情况,考虑的情况不足,存在防护漏洞。据此本文推导出正确的有用束主屏蔽区的宽度计算方法,并给出已建放射治疗机房的补救方法。  相似文献   

2.
目的对《放射治疗机房的辐射屏蔽规范第3部分:γ射线源放射治疗机房》(GBZ/T 201.3—2014)中的主要技术指标进行解析,为放射治疗机房的屏蔽估算和防护评价提供技术指导。方法以GBZ/T 201.3—2014标准文本为主线,结合常规γ射线源治疗机房的辐射屏蔽技术资料和屏蔽设计实例,阐释治疗机房屏蔽计算原则及屏蔽估算的考虑因素,剖析屏蔽估算方法相关技术指标。结果明确了常规γ射线源治疗机房的辐射屏蔽估算方法。60Co远距治疗机房辐射屏蔽估算中应分别针对主屏蔽区、与主屏蔽区直接相连的次屏蔽区、侧屏蔽墙、迷路外墙和机房入口考虑辐射束;后装治疗机房的屏蔽估算应考虑治疗源4π发射的γ射线对墙和室顶的直接照射及其散射辐射在机房入口处的照射;头部γ刀机房屏蔽只需考虑散射辐射,某些体部γ刀机房屏蔽还需考虑旋转照射时单个源的有用线束,两者在屏蔽计算中应尽可能利用已有实测的机房内散射辐射剂量场数据。结论 GBZ/T 201.3—2014提出的γ射线源放射治疗机房辐射屏蔽估算方法是可行的,在实际应用中应遵循屏蔽计算的基本原则,结合治疗装置的剂量学参数和治疗机房的具体物理模型以及辐射束类型等屏蔽计算影响因素,并对机房辐射屏蔽效果进行验证。  相似文献   

3.
目的根据不同类型后装放射治疗设备的放射防护要求,确定后装治疗机房合理的的屏蔽改造方案,为后装放射治疗的放射防护提供指导。方法以北京某医院2014年拟改造的192Ir后装治疗机房及其拟更新的60Co后装治疗机为研究对象,对照剂量率控制目标值,依据GBZ/T 201.1-2007、GBZ/T 201.3-2014、GBZ 121-2002和IAEA No.47等国内外技术标准核算并确定场所的屏蔽改造方案。结果针对原370 GBq192Ir后装治疗机房,估算出改造成74 GBq60Co后装治疗机房外围的辐射剂量率,据此初步确定了该后装治疗机房的屏蔽防护改造方案:1将机房北墙、东墙、南墙和室顶砼屏蔽厚度分别增加30、20、15和30 cm;2将迷路内墙增加1个半值层厚度(HVL)砼屏蔽或将机房入口防护门更新为6 mm Pb的防护门。结论结合60Co后装治疗源的辐射特性参数,在原有192Ir后装治疗机房的基础上进行局部屏蔽改造是合理可行的。  相似文献   

4.
目的对医科达生产的6、10、15 MV高剂量率医用电子加速器机房的主要屏蔽体防护核算进行探讨。方法根据《放射治疗机房的辐射屏蔽规范第2部分:电子直线加速器放射治疗机房》(GBZ/T 201.2-2011)等提供的有关方法进行防护核算。结果 10 MV 2200 cGy/min和15 MV 600 cGy/min X射线对某一加速器治疗室主屏蔽(如北墙)厚度应分别为2590、2624 mm;对副屏蔽(如南墙)厚度应分别为1240、1138 mm;散射角20°时,10、15 MV X射线经患者一次散射对北墙主屏蔽直接相连的次屏蔽区(厚度1840 mm)的周围剂量当量率分别为4.89、3.05μSv/h;防护门应至少为110 mm含硼5%聚乙烯(内层)和17 mm Pb(外层)。结论对医科达生产的6、10、15 MV高剂量率某医用电子加速器机房,周围墙体和顶板主屏蔽防护可只对X射线15 MV 600 cGy/min进行核实;副屏蔽只对X射线10 MV2200 cGy/min进行核实(应注意患者一次散射散射角的影响,可适当调整至30°);防护门屏蔽核算则对15 MV 600cGy/min治疗状态下进行防护核算;不需要对6、10、15 MV 3种治疗模式逐一核算。  相似文献   

5.
目的 探究加速器机房入口辐射剂量,指导机房入口防护检测。方法 利用FLUKA程序构建加速器机头及机房模型,模拟加速器在10 MV和600 cGy/min条件下,比较不同机架角度、照射条件和迷路情况下机房入口内侧的辐射剂量率。结果 不同迷路内墙厚度和机架角条件下,有水箱时入口剂量率明显大于无水箱情况。迷路内墙厚度为1 800 mm,机架角为90°时入口剂量率最大。迷路内墙厚度为1 000 mm,机架角为0°和180°时,入口剂量率明显大于其他情况。迷路内墙为1.80 m、机架角为90°、有水箱、迷路内入口宽为1 400~2 200 mm时,机房入口处剂量率在(82.26±48.95)~(314.09±96.34)μSv/h。结论 加速器机房入口处的剂量主要来自于有用线束在患者体表的散射和泄漏辐射,入口剂量率随迷路内口宽度递增。在入口防护检测时,机架角度的选取要考虑迷路内墙厚度,在不明确情况下对4个角度进行检测,保证检测结果的全面和准确。  相似文献   

6.
目的基于"辐射防护最优化"原则,探讨将原加速器机房改建为射波刀机房的防护改造设计方案。方法收集该机房的基础资料,按照国家标准及医院剂量率控制水平要求,通过理论计算结合项目现场情况给出合理的改造方案。结果在保持机房原有主体屏蔽的基础上,原副屏蔽墙、迷路内墙以及迷路外墙部分墙体需增加屏蔽厚度,主屏蔽墙和室顶无需改造,预计按照改造方案施工后,机房放射防护效果可满足国家标准及医院剂量率控制水平要求。结论在原加速器机房基础上进行局部屏蔽改造为射波刀设备所用,可有效节约场地和资金,但应注意机房局部屏蔽的优化问题,此外改造方案在考虑经济成本前提下还应充分考虑周围环境、空间利用、建筑承重、施工难度等多方面因素。  相似文献   

7.
目的 调查医疗机构相关从业人员对《放射治疗机房的辐射屏蔽规范第2部分:电子直线加速器放射治疗机房》(GBZ/T 201.2—2011)的了解情况以及该标准实施、应用情况并收集相关的问题和建议,评估标准的科学性、规范性和时效性,为该标准的进一步修订和实施提供科学依据。方法 对全国22个省开展医用电子直线加速器放射治疗的医疗机构相关从业人员进行线上问卷调查,问卷内容主要包括GBZ/T 201.2—2011知晓情况、培训情况、应用情况和修订建议,收集问卷并分析调查结果。结果 340名相关从业人员填写了问卷,66.80%的参与人员为物理师。79.11%的人员了解该标准,56.18%的人员参加过该标准培训,但调查结果显示从业人员对标准内容掌握程度不高,标准培训和宣贯力度不足;83.24%的人员认为该标准得到普遍应用,17.60%的人员认为该标准需要修订,76.76%的调查对象认为需要增加示例,88.82%认为对于10 MV X射线加速器机房要考虑中子屏蔽。结论 该标准在放射治疗防护领域基本得到了普及,随着放疗技术的发展,标准应及时修订增加计算示例和考虑10 MV X射线加速器机房要考虑中子屏蔽。...  相似文献   

8.
目的掌握螺旋断层放射治疗机房的辐射水平,制订合理可行的辐射屏蔽与防护设计方案,为TOMO装置临床应用的辐射安全提供保障。方法以某医院的1台Tomotherapy Hi-Art螺旋断层放射治疗装置为研究对象,依据设备的性能参数,参照NCRP No.151报告和GBZ/T 201.2等技术标准以及AAPM No.148中相应的质量控制细则,确定TOMO机房的屏蔽与安全防护设计规划,并评估其防护效果。结果 TOMO机房屏蔽方案为:东、西防护墙和室顶为95cm重晶石;南墙为70cm重晶石;迷路内外墙分别为(70~30)cm重晶石和(30~70)cm重晶石;防护门为8mm铅。机房外围辐射水平估算结果表明,南墙外设备夹层通道的辐射剂量率最高为8.89μGy/h,其次为机房地下电缆沟处(3.25μGy/h);防护门外最高为1.6μGy/h。推算出机房外围放射工作人员所受年剂量最高为0.27mSv,公众可能受到的最高剂量均不高于0.03mSv/a。结论 TOMO装置治疗机房可主要考虑对泄漏辐射的屏蔽设计,同时应根据装置实际的照射参数、工作负荷和治疗机房的场所条件进行相应的防护效果分析。  相似文献   

9.
目的探讨某15 MV医用电子加速器机房放射防护设计的科学性,提出具体的防护建议和改进措施,从而保障放射治疗职业人员和公众的辐射安全。方法依据国内外相关技术规范和标准,对机房屏蔽及排风设计进行复核、计算,将计算结果与设计内容进行比较分析。结果机房墙体的屏蔽计算厚度(混凝土)为:西墙1300 mm、北主墙2400 mm、北副墙1200 mm、迷路口后东墙1200 mm、迷路墙后东墙1300 mm、南主墙2700 mm、南副墙1400 mm、机房顶2900 mm、机房副顶1600 mm;南、北主防护墙和主防护顶计算宽度分别为3500 mm、3700 mm;机房通风次数为0.06次/h。结论机房北主墙、北副墙、东墙的屏蔽厚度和主墙的屏蔽宽度符合标准要求,机房南主墙、南副墙、西墙、机房顶、机房副顶的屏蔽厚度和通风换气次数达不到标准要求。  相似文献   

10.
目的 对3款带有自屏蔽结构的加速器机房布局和屏蔽防护进行分析,为优化自屏蔽加速器机房屏蔽防护设计提供依据。方法 采用MC模拟和经验公式计算相结合的方法,对比分析3款自屏蔽加速器机房主屏蔽区透射剂量率和次屏蔽区散射剂量率等辐射防护水平。结果 MC模拟和经验公式计算结果均显示Unity MR Linac次屏蔽区散射线剂量率明显高于主屏蔽区主射束透射剂量率,最高可达后者的5倍;Unity MR Linac和TOMO横断面散射剂量率明显高于矢状面。结论 自屏蔽结构的外形、材料及厚度差异,增加了机房屏蔽计算及防护设计的复杂性,应改进屏蔽计算方法,实现新型放疗机房辐射防护最优化。  相似文献   

11.
目的 对45 MV医用电子加速器机房主要屏蔽体进行防护核算。方法 根据RADIATION PROTECTION FOR PARTICLE ACCELERATOR FACILITIES.NCRP REPORT No.144等提供的屏蔽核算参数和《建设项目职业病危害放射防护评价规范第2部分:放射治疗装置》(GBZ/T 220.2-2009)等有关方法进行防护核算。结果 加速器治疗室的防护设计与核算结果基本一致,加速器室设计厚度的类比分析结果低于应达到的防护要求。结论 加速器治疗室的防护设计符合要求,加速器室的防护设计不符合要求。  相似文献   

12.
目的 根据辐射防护基本原则及相关法规标准,对某医院10MV医用电子加速器机房屏蔽设计进行核实和计算,并验证放射防护效果,以实现放射防护最优化。方法 采用GBZ/T 201.2-2011中的计算方法对某医院放疗中心10MV加速器机房屏蔽设计进行核实与计算,利用防护检测设备对其工作场所辐射水平进行防护效果验证检测,并对比分析计算结果与验证检测结果。结果 主屏蔽墙和室顶主屏蔽计算结果(分别为1.52 μSv/h、2.93 μSv/h)与防护效果验证检测结果(最大分别为1.25 μSv/h、2.8 μSv/h)接近,其余副屏蔽墙(顶)计算结果(最大为1.19 μSv/h)大于防护效果验证检测结果(最大0.23 μSv/h);防护门外计算结果(0.33 μSv/h)略小于检测结果(最大为0.60μSv/h)。结论 医用电子加速器屏蔽计算结果与防护效果验证检测结果基本相符,建设单位应按照国家有关标准设计,保证施工质量,并加强放射防护效果验证,确保放射工作人员和相关公众的健康与安全。  相似文献   

13.
目的 研究赛博刀机房的屏蔽估算方法,为赛博刀机房屏蔽设计与评价提供技术依据。方法 采用NCRP151号报告中放疗机房屏蔽的计算方法,对某一典型赛博刀机房关注点的剂量水平进行了估算,并参照最新颁布的《放射治疗机房的辐射屏蔽规范》GBZ/T201.1-2007中提出的治疗机房辐射屏蔽的剂量参考控制水平,对赛博刀机房防护效果进行评价。结果 该机房屏蔽满足放射治疗机房外控制区放射工作人员剂量控制水平的要求,但不满足剂量当量率控制水平的要求;赛博刀因其自身治疗技术特点,防护设计时应重视泄漏辐射和有用束的剂量叠加。结论 对于赛博刀机房的屏蔽设计与评价,若只考虑累积剂量控制水平的要求,则必须考虑泄漏辐射和有用束的剂量叠加作用;若同时考虑剂量率控制水平的要求,可忽略泄漏辐射,累积剂量将远小于控制目标值。  相似文献   

14.
目的 按国家标准对广东省11台医用电子直线加速器机房屏蔽防护效果进行评价。方法 对加速器机房控制室操作处和机房外30 cm处环境X-γ辐射剂量率进行监测,并与机房辐射剂量率设计值进行比较。结果 各加速器机房监测符合国家辐射防护要求。结论 定期对加速器机房进行屏蔽防护监测,是确保辐射安全的简单有效方法。  相似文献   

15.
目的 对医用电子加速器机房辐射屏蔽厚度的两种计算方法进行比较。方法 依据国家相关标准和规范,对医用电子加速器机房的辐射屏蔽厚度分别采用周工作负荷和焦点最大输出剂量率进行核算。结果 两种计算方法得出的结果虽有差异,但均满足放射防护要求,其中以焦点最大输出剂量率计算的结果导致防护过度。结论 以防护最优化原则,采用周工作负荷计算医用电子加速器机房的辐射屏蔽厚度是达到既安全又经济的目的。  相似文献   

16.
对10 MV常规治疗模式和6 MV高剂量输出非均整(FFF)治疗模式下医用直线加速器机房外关注点剂量率水平进行计算和现场监测。结果显示,不同治疗模式对机房周边辐射水平有较大影响,主束方向应重点关注加速器功率,防护门区域应重点关注加速器等中心最大剂量率;在进行加速器机房防护设计时,应做好选址、布局、分区、防护和管理,做好机房的屏蔽设计,确保防护门、屏蔽墙施工的可靠性。  相似文献   

17.
目的 研究不同照射条件下医用加速器机房周围环境X射线辐射水平。方法 参考《建设项目职业病危害放射防护评价规范第2部分:放射治疗装置》(GBZ/T 220.2-2009)以Synergy型10 MV加速器为研究对象,使用451B电离室型X、γ剂量率仪,分为等中心处放置模体组和无模体组,分别在四种不同的机架角度(0°、90°、180°、270°)测量机房四周屏蔽墙及防护门处周围剂量当量率,并对检测结果进行分析。结果 等中心放置模体组中,机架90°时,西墙外X射线周围剂量当量率大于其他角度;270°时,东墙外X射线周围剂量当量率最大;机架270°时防护门处周围剂量当量率高于其它角度的检测结果,差异有统计学意义;同不放置模体组比较,放置模体组防护门处周围剂量当量率明显增高,且270°时剂量率是不放置模体的1.5倍,但四周屏蔽墙周围剂量当量率却无显著差别。结论 医用加速器机房四周屏蔽墙及防护门口X射线辐射水平随机架角度的变化而不同;检测门口辐射水平时,应设置模体。  相似文献   

18.
目的 对国产SL-IC放射治疗模拟机的性能进行质量控制,以保证诊断及定位的准确性,并对模拟机房的屏蔽防护进行评价。方法 依据GBZ130-2002医用X射线诊断卫生防护标准和GBZ138-2002医用X射线诊断卫生防护监测规范进行质控检测与评价。结果 SL-IC放射治疗模拟机均达到质控技术要求。其机房防护屏蔽检测:工作场所及邻近环境辐射水平均小于0.5μGy/h。结论 国产SL-IC放射治疗模拟机的性能指标符合质控技术要求,机房屏蔽防护符合GBZ130-2002医用X射线诊断卫生防护标准的要求。  相似文献   

19.
目的掌握放射治疗场所改造和设备更新有关的职业病危害因素,确定合理的放射防护设计方案。方法以北京大学人民医院拟改造的放射治疗场所及其拟安装的Truebeam加速器、Clinac加速器和192Ir后装治疗机为研究对象,依据GBZ/T 201.1-2007、GBZ 121-2002、NCRP No.151和IAEA No.47等国内外技术标准核算场所屏蔽,识别可能产生的职业病危害因素并拟订场所防护屏蔽与安全设施设计方案。结果放射治疗场所需要防护的职业病危害因素主要来源于治疗设备产生的贯穿辐射和辐射所致的有害气体。在保持场所原有主体屏蔽的基础上,按照加速器和后装治疗机的防护性能和设置要求初步拟订场所的局部屏蔽与防护改造方案;由此方案估算出场所外围辐射水平不高于剂量率控制值,相应关注位置工作人员所受年有效剂量低于2.0 m Sv,公众所受年有效剂量低于0.1 m Sv;场所的通风设计满足国家标准规定的换气率,安全防护设施满足防止潜在照射的控制要求。结论在原有放射治疗场所基础上进行局部屏蔽改造,可有效节约场地和资金,并更有把握对职业病危害因素进行防护,但应注意场所局部屏蔽的优化问题。  相似文献   

20.
一座Varian 2100 C/D型加速器工作场所的放射防护效果评价   总被引:1,自引:0,他引:1  
目的 对一座Varian 2100 C/D型加速器放射治疗工作场所的放射防护效果进行评价。方法 对加速器机房放射防护、加速器自身放射防护以及感生放射性等进行现场测量,根据测量结果对放射工作人员的年受照剂量进行估算,从而对该工作场所的放射防护效果进行评价。结果 该加速器放射治疗工作场所机房屏蔽设施外的最高辐射剂量率为2.5μSv/h;加速器泄漏辐射水平和治疗头处的感生放射性水平低于国家限值;放射工作人员的全身年当量剂量约为4.54 mSv。结论 该加速器放射治疗工作场所放射防护效果达到了相关国家标准要求;高能量加速器感生放射性对工作人员的剂量贡献不容忽视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号