首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The death of spinal axotomised motoneurons provides a useful tool for studying neurotrophic factors which could prevent motoneuron loss in vivo. Median and ulnar nerves of newborn rats were unilaterally sectioned and topically treated with either a vehicle solution or acidic fibroblast growth factor (aFCF). aFCF treatment increased the survival of the median and ulnar spinal motoneurons, after 7 days of axotomy, from 37% to 63%. These results show that aFGF is a neurotrophic factor for newborn spinal motoneuronsand suggest that this protein is a potential therapeutic agent for preventing the death of damaged motoneurons. [Neurol Res 1995; 17: 396^399]  相似文献   

2.
To investigate the biological role of basic fibroblast growth factor (bFGF) for the development of the spinal cord we studied the in vitro and in vivo effects of this protein on survival and choline acetyltransferase (ChAT)-activity of embryonic chick and rat spinal cord neurons. In vitro, bFGF (ED50 1-2.8 ng/ml) supported the survival of embryonic neurons from the ventral part of the rat spinal cord (ventral spinal cord, vsc), including motoneurons. Addition of bFGF (100 ng/ml) increased the ChAT-activity in embryonic chick vsc cultures to 150% as compared to untreated cultures (100%). The effect of bFGF was dose-dependent. In vivo-application of bFGF resulted in a similar increase of ChAT-activity in chick spinal cord. Since bFGF stimulates the ChAT-activity of spinal cord neurons in vivo and in vitro we therefore conclude that this protein may have a physiological function for the transmitter development of cholinergic spinal cord neurons.  相似文献   

3.
Nerve injury leads to central neuroimmunologic responses that may be integral to the development and maintenance of chronic neuropathic pain in humans. Recent data have demonstrated that cytokines and growth factors may be strongly implicated in the generation of pain states at both peripheral and central nervous system sites. We utilized immunohistochemical methods to investigate this phenomenon in rat models of neuropathic pain. Specifically, we employed well-characterized models of neuropathy that result in behaviors suggestive of neuropathic pain in humans; a freeze lesion of the sciatic nerve, termed sciatic cryoneurolysis, and a chronic constriction sciatic nerve injury. We used immunohistochemistry to examine spinal localization of the cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and the growth factors, basic fibroblast growth factor (bFGF), and transforming growth factor-β1 (TGF-β) at 3, 14, and 35 days following sciatic cryoneurolysis or 6 days following chronic constriction injury as compared with normal, unoperated rats. There was minimal, diffuse cytokine/growth factor staining in lumbar spinal tissue from the normal group. However, cell profile quantification demonstrated increases in lumbar spinal IL-1β-, TNF-α- and TGF-β-like immunoreactivity (LI) in both mononeuropathy models studied. At 3 days following sciatic cryoneurolysis, intense bFGF LI was present in the ipsilateral dorsal and ventral horn. By 14 days bFGF LI was also observed in contralateral dorsal and ventral horns. In contrast, we found no obvious staining differences in lumbar spinal cord following the chronic constriction injury. This study demonstrated increased specific cytokine and growth factor-like expression in the spinal cord following peripheral nerve injuries. It also showed a differential expression of bFGF in two distinct mononeuropathy models. These results provide further evidence that central cytokine production via a neuroimmune cascade may be involved in the development and maintenance of behaviors that mimic neuropathic pain following nerve injury.  相似文献   

4.
Abstract

effect of acidic fibroblast growth factor (aFCF) was investigated on junctional communication of rat Schwann cells (SC) in culture. As measured by dye transfer, the incidence of coupling between SC was very low during the phase of proliferation and increased slowly and progressively with time under culture conditions that induced the myelinating phenotype. Treatment with aFCF alone or in combination with heparin decreased markedly coupling between SC in both culture stages. The coupling inhibition was rapid, the earliest effects being apparent 5-15 min after addition of grdwth factor, and was transient with a slower recovery of coupling at 1-3 h. The uncoupling effect of aFCF could be prevented by an inhibitor of protein-tyrosine kinase. Addition of heparin to cultures decreased the most effective aFCF concentration by 100-fold, from 100 ng ml-1 to 1 ng ml-1 The dose-response curves exhibited a characteristic windowshape. The results suggest that FGF might be involved in the regulation of the junctional communication between rat SC via tyrosine kinases. [Neurol Res 2000; 22: 685-691]  相似文献   

5.
《Neurological research》2013,35(8):851-854
Abstract

Vasoactive intestinal peptide (VIP) is a neuropeptide which has been shown to exhibit a wide range of neurotrophic effects both in vivo and in vitro . For the purpose of clarifying the effect of VIP on spinal cord neurons, we studied the effect of VIP on neurite outgrowth of fetal rat ventral and dorsal portions of spinal cord in cultures. VIP-treated ventral spinal cord cultures (VSCC), compared with control VSCC, had a significant neurite outgrowth at 10-8, 10-6, and 10-4 M. The effect was considered to be concentration dependent. Morphological changes of the dorsal spinal cord cultures (DSCC) remained unchanged by VIP treatment. Because of their close sequence homology with VIP, PHI-27 (peptide, histidylisoleucine amide) and secretin were also examined with the same experimental conditions as was VIP. Both PHI-27 and secretin had neurite promoting effects in VSCC at 10-8 and 10-6 M, respectively. However, there were no neurite promoting effects in DSCC in both of them at any concentrations. VIP had the most potent effect on neurite outgrowth in VSCC, followed by PHI-27, and secretin in their effectiveness concentrations. Our data showing VIP, PHI-27 and secretin have neurotrophic action on VSCC and suggest that a potential therapeutic use of VIP and its related peptides in treating diseases that involve degeneration and death of spinal motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis. [Neurol Res 2001; 23: 851-854]  相似文献   

6.
Abstract

The neuroprotective effect of acidic fibroblast growth factor (aFCF) has been analysed in a rat model of seizures-associated brain damage. We report that after treatment with a convulsivant dose of Kainic acid, systemically administered aFCF prevents neuronal degeneration in specific brain areas, mainly in the hyppocampal formation. Our findings extend the potential pharmacological use of fibroblast growth factors and afford new data to understand the neurophysiology of these proteins. [Neurol Res 1994; 16: 365-369]  相似文献   

7.
We examined the localization of basic fibroblast growth factor (bFGF) in the developing embryonic and newborn rat nervous system using 2 anti-bFGF antibodies. Embryonic (E13, E14, E15, E16, E17, and E18) and newborn tissues were examined. Between E16 and E17 strong bFGF immunoreactivity (IR) was detectable in the cortex and striatum and, in addition, in almost all neurons of the brainstem, spinal cord, and spinal ganglia. In contrast, in the newborn rat bFGF-IR was found in neuronal subpopulations of brainstem nuclei, ventral spinal cord, and spinal ganglia as it is known for the respective postnatal/adult parts of the nervous system. At E16 7.0 kb and 3.7 kb bFGF mRNA were present. The identification of bFGF-responsive cells was performed using immunocytochemistry (anti-flg antibody) and 125I bFGF for binding studies. The neuronal localization of FGF-receptor suggests that bFGF mediates its effects in an autocrine or paracrine manner. At the time of strongest bFGF-staining (E16/17), proliferation of neurons is almost completed in most of the nervous system areas. Therefore, it could also be suggested from previous biological experiments that the physiological functions of bFGF could include trophic and/or differentiating effects on developing neurons rather than mitogenic effects. The change of the bFGF-staining pattern after birth could indicate a change in the physiological function of bFGF, i.e., different bFGF effects in the immature and mature nervous systems. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Motoneurons need muscle-derived neurotrophic substances for their survival during the initial phase of their development, but after maturation they lose this requirement and can survive after axotomy. This suggests that some neurotrophic substances other than target-derived ones control the survival of motoneurons in adults. Because spinal motoneurons express fibroblast growth factor-9 (FGF-9) messenger RNA, we hypothesized that FGF-9 might be an autocrine or paracrine survival factor for motoneurons. FGF-9 promoted the survival of motoneurons and upregulated the choline acetyl-transferase (ChAT) activity in the dissociated cultures of ventral half of rat E13 spinal cord. Externally added FGF-9 was more effective in low density cultures, and polyclonal blocking antibody against FGF-9 significantly lowered the ChAT activity. Our results support an autocrine or paracrine role for FGF-9 in mediating the survival of spinal motoneurons. Non-target-derived neurotrophic substances for motoneurons including FGF-9 should be important in the pathogenesis of motor neuron disorders in the adults, especially amyotrophic lateral sclerosis.  相似文献   

9.
Midkine (MK) is the product of a retinoic acid responsive gene and is a member of a new family of heparin-binding growth factors. Neurotrophic effects of MK were examined using cultured spinal cord and dorsal root ganglion (DRG) neurons derived from fetal mouse. MK, which was added to the culture medium at concentrations of 1–100 ng/ml, promoted survival of both types of neurons approximately 5-fold after 7 days in culture. For spinal cord neurons, the increased survival was reflected in an increase of choline acetyltransferase activity. MK also promoted neurite extension in spinal cord (2-fold) and DRG (1.7-fold) neurons. The survival-promoting activity of MK to these neurons was comparable to that of basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF). In spite of its significant effects on fetal neurons, MK was ineffective in sustaining survival of DRG neurons derived from postnatal mice. From these results, we conclude that MK is a neurotrophic factor to embryonic spinal cord and DRG neurons, and we propose that MK plays a significant role in embryogenesis of the nervous system. © 1993 Wiley-Liss, Inc.  相似文献   

10.
A primary culture system of nearly pure neuronal cells from 14-day-old fetal rat spinal cord has been developed by combining a preplating step, the use of a chemically defined serum-free medium, and borated polylysine-coated dishes that prevented the formation of cell aggregates. About 98% of the cells were found to be immunostained with neuron-specific enolase antibodies, confirming their neuronal nature. The cultures are composed essentially of a population of non-motoneurons and contain few motoneurons, characterized by their large size and multipolar aspect, the presence of acetylcholinesterase (AChE), and the intense immunoreaction for growth-associated protein GAP-43. Neuronal precursor cells are also present in these cultures and proliferate during the first 3 days. The addition of bovine brain basic fibroblast growth factor (bFGF) stimulates their proliferation over a period of 2 days, as determined by measurement of [125I]iododeoxyuridine incorporation and by immunocytochemical reaction after bromodeoxyuridine incorporation into nuclei. The proliferating cells were characterized as neurons by immunostaining against neuron-specific enolase. Recombinant human bFGF and bovine brain acidic FGF (aFGF) exerted similar effects. Other growth factors, including epidermal growth factor (EGF), transforming growth factor beta 1 (TGF-beta 1), and thrombin, were without effect on the proliferative activity of these neuronal cells. bFGF has no effect on the survival of motoneurons and on the fiber outgrowth of the whole neuronal population. However, bFGF affects the development of bipolar AChE-positive neurons, probably belonging to the non-motoneuron population. The data indicate that bFGF and aFGF are mitogens for neuroblasts from rat spinal cord in culture and that bFGF influences the development of a subpopulation of spinal neurons that are AChE-positive.  相似文献   

11.
We have studied effects of TRH analogue, TA-0910 (3-methyl-(s)-5,6-dihydroorotyl-L-histidyl-L-prolinamide) (from Tanabe, Osaka, Japan) on explanted ventral and dorsal spinal cord cultures from 13- and 14-day-old rat embryos. TA-0910-treated cultures had significantly increased neurite outgrowth with cultures of ventral spinal cord, but not with cultures of dorsal spinal cord. The effect was dose-dependent. A possible role for TRH in amyotrophic lateral sclerosis remains to be defined.  相似文献   

12.
Vasoactive intestinal peptide (VIP) is a neuropeptide which has been shown to exhibit a wide range of neurotrophic effects both in vivo and in vitro. For the purpose of clarifying the effect of VIP on spinal cord neurons, we studied the effect of VIP on neurite outgrowth of fetal rat ventral and dorsal portions of spinal cord in cultures. VIP-treated ventral spinal cord cultures (VSCC), compared with control VSCC, had a significant neurite outgrowth at 10(-8), 10(-6), and 10(-4) M. The effect was considered to be concentration dependent. Morphological changes of the dorsal spinal cord cultures (DSCC) remained unchanged by VIP treatment. Because of their close sequence homology with VIP, PHI-27 (peptide, histidylisoleucine amide) and secretin were also examined with the same experimental conditions as was VIP. Both PHI-27 and secretin had neurite promoting effects in VSCC at 10(-8) and 10(-6) M, respectively. However, there were no neurite promoting effects in DSCC in both of them at any concentrations. VIP had the most potent effect on neurite outgrowth in VSCC, followed by PHI-27, and secretin in their effectiveness concentrations. Our data showing VIP, PHI-27 and secretin have neurotrophic action on VSCC and suggest that a potential therapeutic use of VIP and its related peptides in treating diseases that involve degeneration and death of spinal motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis.  相似文献   

13.
Northern blot analysis was used to demonstrate high levels of hippocampus-derived neurotrophic factor/neurotrophin-3 (HDNF/NT-3) mRNA in the embryonic day (E) 13 - 14 and 15 - 16 spinal cord. The level decreased at E18 - 19 and remained the same until postnatal day (P) 1, after which it decreased further to a level below the detection limit in the adult. In situ hybridization revealed that the NT-3 mRNA detected in the developing spinal cord was derived from motoneurons and the decrease seen at E18 - 19 was caused by a reduction in the number of motoneurons expressing NT-3 mRNA. The distribution of NT-3 mRNA-expressing cells in the E15 spinal cord was very similar to the distribution of cells expressing choline acetyltransferase or nerve growth factor receptor (NGFR) mRNA. Moreover, a striking similarity between the developmentally regulated expression of NT-3 and NGFR mRNA was noted in spinal cord motoneurons. A subpopulation of all neurons in the dorsal root ganglia expressed brain-derived neurotrophic factor (BDNF) mRNA from E13, the earliest time examined, to adulthood. These results are consistent with a trophic role of NT-3 for proprioceptive sensory neurons innervating the ventral horn, and imply a local action of BDNF for developing sensory neurons within the dorsal root ganglia.  相似文献   

14.
15.
Human neural precursors are considered to have widespread therapeutic possibilities on account of their ability to provide large numbers of cells whilst retaining multipotentiality. Application to human demyelinating diseases requires improved understanding of the signalling requirements underlying the generation of human oligodendrocytes from immature cell populations. In this study, we compare and contrast the capacity of neural precursors derived from the developing human and rodent spinal cord to generate oligodendrocytes. We show that the developing human spinal cord (6-12 weeks of gestation) displays a comparable ventrodorsal gradient of oligodendrocyte differentiation potential to the embryonic rodent spinal cord. In contrast, fibroblast growth factor 2 (FGF-2) expanded human neural precursors derived from both isolated ventral or dorsal cultures show a reduced capacity to generate oligodendrocytes, whereas comparable rodent cultures demonstrate a marked increase in oligodendrocyte formation following FGF-2 treatment. In addition, we provide evidence that candidate growth factors suggested from rodent studies, including FGF-2 and platelet-derived growth factor (PDGF) do not stimulate proliferation of human oligodendrocyte lineage cells. Finally, we show that the in vivo environment of the acutely demyelinating adult rat spinal cord is insufficient to stimulate the differentiation of immature human spinal cord cells to oligodendrocytes. These results provide further evidence for inter-species difference in the capacity of neural precursors to generate oligodendrocytes.  相似文献   

16.
Numerous purified growth factors as well as yet-unidentified neurotrophic activities within mesencephalic glia support the survival of dopaminergic neurons. To further characterize the functional role of these multiple growth factor influences in dopaminergic cell development, various purified growth factors as well as mesencephalic glial-conditioned medium (CM) were screened for effects on dopaminergic cell survival and glial numbers in serum-free low density cultures of the dissociated embryonic day (E) 15 and E17 rat mesencephalon. In E15 mesencephalic cultures, dopaminergic cell survival increased with brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), basic fibroblast growth factor (bFGF), transforming growth factor α (TGFα), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor-BB (PDGF-BB), and interleukin-6 (IL-6). bFGF, TGFα, PDGF, and IL-6 also stimulated glial proliferation as demonstrated by autoradiographic labeling for 3H-thymidine. Moreover, CM derived from the mesencephalic glial cell line Mes42 completely prevented the death of E15 dopaminergic neurons within the initial days of cultivation. In E17 mesencephalic cultures, survival-promoting effects on dopaminergic neurons were present with BDNF, GDNF, and bFGF. TGFα, IGF-1, PDGF-BB, and IL-6 stimulated glial proliferation but did not affect dopaminergic cell survival. Similarly, mesencephalic glial-CM completely failed to support the survival of E17 dopaminergic neurons. These observations demonstrate that during embryonic development, dopaminergic cell survival sequentially depends on distinct sets of growth factors. The concomitant loss of sensitivity of developing dopaminergic neurons for mesencephalic glial-CM as well as TGFα, IGF-1, PDGF-BB, and IL-6 further provides evidence that these growth factors indirectly affect early dopaminergic neurons through glial-mediated processes and suggests a crucial role of glia during the initial stages of neuronal development. J. Neurosci. Res. 51:508–516, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
《Neurological research》2013,35(5):468-472
Abstract

Olmesartan is a novel compound which has been shown to exhibit various neuropharmacological effects. For the purpose of clarifying the effect of Olmesartan on spinal motor neurons, we studied the following tests. We studied the effect in vitro of Olmesartan on neurite outgrowth and choline acetyltransferase (ChAT) activity in primary explant cultures of ventral spinal cord (VSCC) of fetal rats. Olmesartan-treated VSCC, compared with control VSCC, had a significant neurite outgrowth and increased activity of ChAT. The effect was dose-related in neurite outgrowth. However, there was no relationship between activity of ChAT and given doses of Olmesartan. We examined in vivo the effect of Olmesartan on axotomized spinal motor neuron death in the rat spinal cord. After post-natal unilateral section of sciatic nerve, there was approximately a 50% survival of motor neurons in the fourth lumbar segment. In comparison with vehicle, intraperitoneal injection of Olmesartan for consecutive 14 days reduced spinal motor neuron death. There was no relationship between number of surviving neurons and doses of Olmesartan. These in vitro and in vivo studies showed that Olmesartan has a neurotrophic effect on spinal motor neurons. Our data suggest a potential therapeutic use of Olmesartan in treating diseases that involve degeneration and death of motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis. [Neurol Res 2002; 24: 468-472]  相似文献   

18.
The effect of neurotrophic factors on neuropeptide Y (NPY) expression was studied in adult rat dispersed dorsal root ganglion (DRG) cultures. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), acidic fibroblast growth factor (aFGF) or basic FGF was included in the culture medium during incubation for 72 h. In untreated cultures, around 18% of all neurones (visualized by antibodies to PGP 9.5) expressed NPY-like immunoreactivity (LI). In contrast, in vivo uninjured neurones do not contain detectable levels of NPY-LI. In the immunohistochemical analysis aFGF increased the percentage of NPY-immunoreactive (-IR) neurones 1.8-fold, while NGF, BDNF or bFGF had no significant effect on NPY expression. When the effect of these growth factors was monitored with non-radioactive in situ hybridization, both aFGF and bFGF caused a significant increase (2.25- and 1.8-fold, respectively), whereas, again, NGF and BDNF had no effect. The results also showed an effect of cell density on NPY expression, whereby fewer neurones expressed NPY in high than in low density cultures. This difference was seen in untreated as well as growth factor-treated cultures. The present results support the hypothesis that DRG neurones in culture are in an axotomized state, since they express NPY to about the same extent as axotomized DRG neurones in vivo. Surprisingly, two growth factors of the FGF family enhance NPY expression in DRG neurones, which is in apparent contrast to a published in vivo study [Ji, R.-R., Zhang, Q., Pettersson, R.F., H?kfelt, T., 1996. aFGF, bFGF and NGF differentially regulate neuropeptide expression in dorsal root ganglia after axotomy and induce autotomy. Reg. Pept. 66, 179-189.]. Finally, NPY expression was also influenced by cell density.  相似文献   

19.
We studied trophic effects of angiotensin II, vasopressin, cholecystokinin, and oxytocin on explanted ventral spinal cord cultures from 13- and 14-day-old rat embryos. There was a significant neurite promoting effect of the spinal cord cultures by using angiotensin II, vasopressin, and cholecystokinin. Cholecystokinin had the most potent effect at any concentrations. The minimum effective concentration was 10(-8) M in angiotensin II and vasopressin and 10(-12) M in cholecystokinin, respectively. The effect of angiotensin II and vasopressin was dependent on concentrations. However, the rate and grade of neurite appearance did not correlate with the concentrations of cholecystokinin. Oxytocin had no neurotrophic effect at any concentrations. Our results demonstrated that angiotensin II, vasopressin and cholecystokinin have neurotrophic effects on the ventral spinal cord in cultures, and may be candidates for therapeutic trials of amyotrophic lateral sclerosis.  相似文献   

20.
In many regions of the rat central nervous system, oligodendrocytes develop from migratory A2B5+ precursor cells. In the rat spinal cord, during early embryonic development the capacity for oligodendrogenesis appears to be restricted to ventral regions of the spinal cord, while cultures of postnatal rat spinal cord contain a distinct population of A2B5+ astrocyte precursors. To determine if, as in other regions of the CNS, spinal cord A2B5+ cells give rise directly to oligodendrocytes and astrocytes, the initial distribution, and subsequent dispersion, proliferation, and differentiation of spinal cord A2B5+ cells have been examined in both explant and dissociated cell cultures. Spinal cord oligodendrocytes develop from A2B5+ cells. At E14, A2B5+ cells are restricted to ventral regions of the spinal cord and as development proceeds they become more uniformly distributed throughout the spinal cord. In explant cultures, greater than 95% of the explants that contain oligodendrocytes also contain A2B5+ cells and a proportion of mature oligodendrocytes retain detectable A2B5 immunoreactivity briefly on their surface. The maturation of spinal cord oligodendrocyte precursors occurs in a number of distinct stages characterized by the expression of O4 immunoreactivity, which first appears at E16, and GC immunoreactivity, which first appears at E18. As spinal cord oligodendrocyte precursors acquire O4 immunoreactivity they appear to lose the ability to proliferate in response to PDGF but retain the ability to proliferate in response to bFGF, suggesting that the control of proliferation of oligodendrocyte precursors is, in part, dependent on their maturational state. In the presence of high serum, spinal cord A2B5+ cells fail to develop in isolated E14 dorsal spinal cord cultures, while in ventral cultures they subsequently differentiate into A2B5+ astrocytes suggesting that A2B5+ astrocyte precursors are also initially ventrally located. Unlike oligodendrocyte differentiation, however, the differentiation of spinal cord A2B5+ cells into astrocytes is delayed in early embryonic-derived cultures compared to those from older animals. These observations suggest that local influences may regulate the timing of spinal cord A2B5+ astrocyte development, but not spinal cord oligodendrocyte development. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号