首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
OBJECTIVES: CYP2A6 is the main enzyme involved in nicotine metabolism in humans. We have identified a novel allele, CYP2A6*23 (2161C>T, R203C), in individuals of Black-African descent and investigated its impact on enzyme activity and association with smoking status. METHODS: Wild-type and variant enzymes containing amino acid changes R203C (CYP2A6*23), R203S (CYP2A6*16) and V365M (CYP2A6*17) were expressed in Escherichia coli. The effect of CYP2A6*23 in vivo was examined in individuals of Black-African descent given 4 mg oral nicotine. RESULTS: CYP2A6*23 occurred at an allele frequency of 2.0% in individuals of Black-African descent (N=560 alleles, 95% confidence interval, 0.8-3.1%) and was not detected in Caucasians (N=334 alleles), Chinese (N=288 alleles) or Japanese (N=104 alleles). In vitro, CYP2A6.23 had greatly reduced activity toward nicotine C-oxidation similar to CYP2A6.17, as well as reduced coumarin 7-hydroxylation. Conversely, CYP2A6.16 did not differ in activity compared with the wild-type enzyme. The trans-3'-hydroxycotinine to cotinine ratio, a phenotypic measure of CYP2A6 activity in vivo, was lower in CYP2A6*1/*23 and CYP2A6*23/*23 individuals (mean adjusted ratio of 0.60, n=5) compared with CYP2A6*1/*1 individuals (mean adjusted ratio of 1.21, n=150) (P<0.04). CYP2A6*23 trended toward a higher allele frequency in nonsmokers (3.1%, N=9/286 alleles) compared with smokers (0.7%, N=2/274 alleles) (P=0.06). CONCLUSION: These results suggest the novel CYP2A6*23 allele impairs enzyme function in vitro and in vivo and trends toward an association with lower risk of smoking.  相似文献   

2.
The relationships between catalytic activity of cytochrome P450 2A6 (CYP2A6), polymorphism of CYP2A6 gene, gender and levels of body iron stores were analysed in a sample group of 202 apparently healthy Thais, aged 19-47 years. Eleven individuals were found to have high activity of CYP2A6, judged by the relatively large amounts (11.2-14.6 mg) of 7-hydroyxcoumarin (7-OHC) excreted 3 h following administration of 15 mg of coumarin. Ten individuals, however, did not excrete any 7-OHC. Of these 10, four were found to have no CYP2A6 gene (whole gene deletion; CYP2A6*4 allele). The frequency of the CYP2A6 alleles; *1A, *1B and *4 in the whole sample group was 52, 40 and 8% while the frequency of the CYP2A6 gene types; *1A/*1A, *1A/*1B, *1B/*1B, *1A/*4, *1B/*4, *4/*4 was 29, 41, 16, 7, 5 and 2%. Subjects having CYP2A6*1A/*1B gene-type group were found to have higher rates of coumarin 7-hydroxylation compared with those of the CYP2A6*1B/*1B and CYP2A6*1A/*4 gene types. The inter-individual variability in CYP2A6 catalytic activity was therefore attributed in part to the CYP2A6 genetic polymorphism. Variation in CYP2A6 activity in this sample group was not associated with gender but, interestingly, it did show an inverse association with plasma ferritin; an indicator of body iron stores. Higher rates of coumarin 7-hydroxylation were found in individuals with low body iron stores (plasma ferritin < 20 microg/l) compared with subjects having normal body iron store status. Subjects (n = 16) with iron overload (plasma ferritin > 300 microg/l) also tended to have elevated rates of coumarin 7-hydroxylation. These results suggest an increased CYP2A6 expression in subjects who have excessive body iron stores. Further investigations into the underlying factors that may lead to increased expression of CYP2A6 in association with abnormal body iron stores are currently in progress in our laboratory.  相似文献   

3.
Objective To investigate whether the antimalarial drug artemisinin affects CYP2A6 activity in healthy subjects and to compare the utility of coumarin and nicotine as in vivo probe compounds for CYP2A6. Methods Twelve healthy male Vietnamese subjects were given coumarin or nicotine in randomized sequence before and after 5 days of a repeated oral administration of artemisinin during two different treatment periods 1 month apart. Sequential blood samples were drawn at baseline 7 days prior to artemisinin treatment and on the first and fifth day of artemisinin treatment during both treatment periods. Plasma concentrations of 7-hydroxycoumarin glucuronide (7-OHCG), nicotine, cotinine and artemisinin were analysed by high-performance liquid chromatography and those of coumarin and 7-hydroxycoumarin (7-OHC) were determined by liquid chromatography-tandem mass spectrometry. Urine, collected in two time intervals on the days of coumarin intake, was treated with β-glucuronidase and analysed for 7-OHC levels. Results Artemisinin values decreased significantly to 23% [95% confidence interval (CI) 18%–28%] on the fifth day of artemisinin administration as compared with the first. The sum of renally excreted 7-OHC and 7-OHCG increased by 1.55-fold (adjusted 95% CI 1.08–2.23) in the 3- to 8-h interval compared to baseline 7 days before. The 7-OHCG/7-OHC plasma ratio increased by 1.72-fold (adjusted 95% CI 1.16–2.54) following 5 days of artemisinin intake. There was no significant change in the cotinine/nicotine AUC0–11 hr ratio between study days. Conclusion Artemisinin significantly increased the sum of renally excreted 7-OHC and 7-OHCG in one of the two collection intervals, suggesting an induction of CYP2A6. A significant increase in the 7-OHCG to 7-OHC ratio indicates artemisinin to be an inducer of glucuronidation.  相似文献   

4.
5.
Genetically variable CYP2A6 is the primary enzyme that inactivates nicotine to cotinine. Our objective was to investigate allele frequencies among five ethnic groups and to investigate the relationship between genetically slow nicotine metabolic inactivation and smoking status, cigarette consumption, age of first smoking and duration of smoking. Chinese, Japanese, Canadian Native Indian, African-North American and Caucasian DNA samples were assessed for CYP2A6 allelic frequencies (CYP2A6*1B-*12,*1x2). Adult Caucasian non-smokers (n = 224) (1-99 cigarettes/lifetime) and smokers (n = 375) (> or = 100 cigarettes/lifetime) were assessed for demographics, tobacco/drug use history and DSM-IV dependence and genotyped for CYP2A6 alleles associated with decreased nicotine metabolism (CYP2A6*2, CYP2A6*4, CYP2A6*9, CYP2A6*12). CYP2A6 allele frequencies varied substantially among the ethnic groups. The proportion of Caucasian slow nicotine inactivators was significantly lower in current, DSM-IV dependent smokers compared to non-smokers [7.0% and 12.5%, respectively, P = 0.03, odds ratio (OR) = 0.52; 95% confidence interval (CI) 0.29-0.95]; non-dependent smokers showed similar results. Daily cigarette consumption (cigarettes/day) was significantly (P = 0.003) lower for slow (21.3; 95% CI 17.4-25.2) compared to normal inactivators (28.2; 95% CI 26.4-29.9); this was observed only in DSM-IV dependent smokers. Slow inactivators had a significantly (P = 0.03) lower age of first smoking compared to normal inactivators (13.0 years of age; 95% CI 12.1-14.0 versus 14.2; 95% CI 13.8-14.6), and a trend towards smoking for a shorter duration. This study demonstrates that slow nicotine inactivators are less likely to be adult smokers (dependent or non-dependent). Slow inactivators also smoked fewer cigarettes per day and had an earlier age of first smoking (only dependent smokers).  相似文献   

6.
Determination of coumarin metabolism in Turkish population   总被引:2,自引:0,他引:2  
Cytochrome P450 2A6 is an important human hepatic P450 which activates precarcinogens and oxidizes some drug constituents such as coumarin, halothane, and the major nicotine C-oxidase. Genetic polymorphism exists in the CYP2A6 gene. CYP2A6*1 (wild type) is responsible for the 7-hydroxylation of coumarin. The point mutation (T to A) in codon 160 leads to a single amino acid substitution (Leu to His) and the resulting protein, CYP2A*2 is unable to 7-hydroxylate coumarin. Gene conversion in exons 3, 6, and 8 between the CYP2A6 and the CYP2A7 genes creates another variant, CYP2A6*3. In this study, healthy male and female Turkish volunteers (n = 50) were administered 2 mg coumarin, and urine samples were analyzed for their content of the coumarin metabolite, 7-hydroxycoumarin (7OHC), by high-performance liquid chromatography (HPLC). Genetic polymorphism for CYP2A6 was detected by using two-step polymerase chain reaction (PCR) to identify CYP2A6*1, CYP2A6*2, and CYP2A6*3 in 13 of these subjects. The percentage of the dose excreted of total 7OHC in relation to CYP2A6 genotype and excretion of nicotine/cotinine was also evaluated to demonstrate the role of CYP2A6 in nicotine metabolism. The majority of Turkish subjects (68%) excreted less than 60% of the 2-mg dose as coumarin metabolite. The allelic frequencies were detected as 0.88 for CYP2A6*1 allele; 0.12 for CYP2A6*3 allele in 13 individuals. No heterozygous and homozygous individuals were identified for the CYP2A6*2 allelic variant. Phenotyping and genotyping for drug metabolizing enzymes are of great importance in studies correlating precarcinogen activation or drug metabolism to the CYP2A6 genotype in smoking behavior when populations are investigated.  相似文献   

7.
Objective The impact of CYP2A6*21 (K476R) on in vivo nicotine metabolism and disposition was investigated.Methods A two-step allele-specific PCR assay was developed to detect the 6573A>G single nucleotide polymorphism (SNP) in CYP2A6*21. Nicotine metabolism phenotypes from a previously described intravenous labeled nicotine and cotinine infusion study [1] was used to assess the impact of CYP2A6*21. Genomic DNA samples from 222 (111 monozygotic and dizygotic twin pairs) Caucasian subjects were genotyped for CYP2A6 alleles (CYP2A6*1X2, -*1B, -*2, -*4, -*7, -*9, -*10, -*12, and -*21). The pharmacokinetic parameters were compared between individuals with no detected CYP2A6 variants (CYP2A6*1/*1, n=163) and individuals heterozygous for the CYP2A6*21 allele (CYP2A6*1/*21, n=9).Results The frequency of the CYP2A6*21 allele was found to be 2.3% in Caucasians (n=5/222 alleles, evaluated in one twin from each twin pair). In vivo pharmacokinetic parameters, such as nicotine clearance (1.32±0.37 vs. 1.18±0.20 L/min), fractional clearance of nicotine to cotinine (1.02±0.36 vs. 0.99±0.23 L/min), nicotine half-life (111±37 vs. 116±29 min), and the trans-3′-hydroxycotinine to cotinine ratio (1.92±1.0 vs. 1.55±0.58) indicated no substantial differences in nicotine metabolism between those without the variant (CYP2A6*1/*1, n=163) and those with the variant (CYP2A6*1/*21, n=9), respectively.Conclusions CYP2A6*21 does not have a detectable impact on nicotine metabolism in vivo. Our data suggest that CYP2A6*21 may not be important for future studies of nicotine metabolism and the resulting impacts on smoking behaviors.Nael Al Koudsi and Jill C. Mwenifumbo contributed equally to this work.  相似文献   

8.
In humans, 80% of nicotine is metabolized to the inactive metabolite cotinine by the enzyme CYP2A6, which can also activate tobacco smoke procarcinogens (e.g., 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone). Previously, we demonstrated that individuals who are nicotine-dependent and have defective CYP2A6 alleles (*2, *3) smoked fewer cigarettes; however, we recognize that the genotyping method used for the CYP2A6*3 allele gave a high false-positive rate. In the current study we used improved genotyping methods to examine the effects of the defective CYP2A6*2 and CYP2A6*4 alleles on smoking behavior. We found that those with the defective alleles (N = 14) smoked fewer cigarettes per day than those homozygous (N = 277) for wild-type alleles (19 versus 28 cigarettes per day, P <.001). In addition, we identified a duplicated form of the CYP2A6 gene, corresponding to the gene deletion CYP2A6*4 allele, developed a genotyping assay, assessed the gene copy number, and examined its prevalence in Caucasian smokers (N = 296). We observed an ascending rank order for plasma cotinine and breath carbon monoxide levels (an index of smoke inhalation) in individuals with null (CYP2A6*2 and CYP2A6*4) alleles (N = 14), those homozygous for wild-type (CYP2A6*1/*1) alleles (N = 277), and those with our newly identified CYP2A6 gene duplication (N = 5). The phenotype, as determined by plasma nicotine/cotinine ratios, had a descending rank order for these three genotype groups that did not reach significance. Although further characterization is required for the duplication gene variant, these results extend our previous findings and suggest a substantial influence of CYP2A6 genotype and phenotype on smoking behavior.  相似文献   

9.
To conduct a pharmacogenetic investigation of nicotine metabolism in twins. One hundred and thirty nine twin pairs [110 monozygotic (MZ) and 29 dizygotic (DZ)] underwent a 30-min infusion of stable isotope-labelled nicotine and its major metabolite, cotinine, followed by an 8-h in-hospital stay. Blood and urine samples were taken at regular intervals for analysis of nicotine, cotinine and metabolites by gas chromatography-mass spectrometry or liquid chromatography-mass spectrometry and subsequent characterization of pharmacokinetic and metabolism phenotypes. DNA was genotyped to confirm zygosity and for variation in the gene for the primary enzyme involved in nicotine metabolism, CYP2A6 (alleles tested: *1, *1x2, *2, *4, *7, *9 and *12). Univariate biometric analyses quantified genetic and environmental influences on each pharmacokinetic measure in the presence and absence of covariates, including measured CYP2A6 genotype. The best-fitting model identified a substantial amount of variation in the weight-adjusted rate of total clearance of nicotine attributable to additive genetic influences [59.4%, 95% confidence interval (CI)=44.7-70.7]. The majority of variation in the clearance of nicotine via the cotinine pathway was similarly genetically influenced (60.8%, 95% CI=46.9-71.5). Heritability estimates were reduced to 54.2% and 51.8%, respectively, but remained substantial after taking into account the effect of variation in CYP2A6 genotype. These results suggest the involvement of additional genetic factors (e.g. uncharacterized or novel CYP2A6 alleles as well as other genes in the metabolic pathway) that remain to be identified.  相似文献   

10.
Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted   总被引:2,自引:0,他引:2  
Generally, 70-80% of absorbed nicotine is mainly metabolized to cotinine by cytochrome P450 (CYP) 2A6. There is genetic polymorphism in the human CYP2A6 gene. Among several mutated alleles, CYP2A6*4 allele is a whole deleted type. The purpose of the present study was to clarify the metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for nicotine and its nine metabolites. Excretion levels of nicotine and its metabolites in 24 h accumulated urine after the chewing of one piece of nicotine gum were evaluated in five Japanese subjects whose CYP2A6 genotype was determined. In three subjects with CYP2A6*1A/CYP2A6*1A, CYP2A6*1A/CYP2A6*1B, and CYP2A6*1A/CYP2A6*4 (group I), nicotine was mainly excreted as cotinine, trans-3'-hydroxycotinine, and their glucuronide (approximately 60%). In contrast, in two subjects with CYP2A6*4/CYP2A6*4 (group II), trace levels of cotinine, cotinine N-glucuronide, and cotinine 1'-N-oxide were detected. Trans-3'-hydroxycotinine and its O-glucuronide were not detected. The excretion levels of nicotine itself, nicotine N-glucuronide, and nicotine 1'-N-oxide were higher than those in the other three subjects. The total excretion levels of these three compounds were approximately 95% in group II versus 35% in group I. However, the sum of the excretion levels of nicotine and all metabolites was similar among these five subjects. This is the first report of the metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted.  相似文献   

11.
12.
AIMS: To investigate the frequencies of CYP2C19*1, CYP2C19*2 and CYP2C19*3 alleles and CYP2C19 genotypes in a Tamilian population. METHODS: The study was conducted in 112 unrelated healthy human volunteers. DNA was extracted from leucocytes and analyzed by the PCR-RFLP protocol. The PCR product was digested with restriction enzymes (SmaI and BamH1) and then separated electrophoretically using polyacrylamide gel. RESULTS: The frequencies of the CYP2C19*1, *2 and *3 alleles were 0.598 [95% confidence interval (CI) 0.507, 0.689], 0.379 (95% CI, 0.350,0.407) and 0.022 (95% CI -0.005, 0.049), respectively. The distribution of CYP2C19*1/*1,*1/*2, *1/*3, *2/*2 and *2/*3 genotypes were 0.295 (95% CI, 0.210, 0.379), 0.580 (95% CI, 0.488, 0.671), 0.027 (95% CI -0.003, 0.057), 0.080 (95% CI 0.030, 0.130) and 0.018 (95% CI -0.006, 0.042), respectively. CONCLUSIONS: The distribution of CYP2C19*1/*1 in the Tamilian population is lower than that in Caucasians, Africans and the North Indian population. The CYP2C19*1/*2 is significantly higher in Tamilians when compared with other populations. The CYP2C19*1/*3 allele, which was not reported in the North Indian and Caucasian populations has been identified in 2.7% of the Tamilian population.  相似文献   

13.
Nicotine metabolism and CYP2A6 allele frequencies in Koreans.   总被引:2,自引:0,他引:2  
CYP2A6 is a major catalyst of nicotine metabolism to cotinine. Previously, we demonstrated that the interindividual difference in nicotine metabolism is related to a genetic polymorphism of the CYP2A6 gene in Japanese. To clarify the ethnic differences in nicotine metabolism and frequencies of CYP2A6 alleles, we studied nicotine metabolism and the CYP2A6 genotype in 209 Koreans. The cotinine/nicotine ratio of the plasma concentration 2 h after chewing one piece of nicotine gum was calculated as an index of nicotine metabolism. The genotypes of CYP2A6 gene (CYP2A6*1A, CYP2A6*1B, CYP2A6*2, CYP2A6*3, CYP2A6*4 and CYP2A6*5) were determined by polymerase chain reaction (PCR)-restriction fragment length polymorphism or allele specific (AS)-PCR. There were ethnic differences in the allele frequencies of CYP2A6*1A, CYP2A6*1B, CYP2A6*4 and CYP2A6*5 between Koreans (45.7%, 42.8%, 11.0% and 0.5%, respectively) and Japanese (42.4%, 37.5%, 20.1% and 0%, respectively, our previous data). Similar to the Japanese, no CYP2A6*2 and CYP2A6*3 alleles were found in Koreans. The homozygotes of the CYP2A6*4 allele (four subjects) were completely deficient in cotinine formation, being consistent with the data among Japanese. The heterozygotes of CYP2A6*4 tended to possess a lower metabolic ratio (CYP2A6*1A/CYP2A6*4, 4.79 +/- 3.17; CYP2A6*1B/CYP2A6*4, 7.43 +/- 4.97) than that in subjects without the allele (CYP2A6*1A/CYP2A6*1A, 7.42 +/- 6.56; CYP2A6*1A/CYP2A6*1B, 9.85 +/- 16.12; CYP2A6*1B/CYP2A6*1B, 11.33 +/- 9.33). The subjects who possess the CYP2A6*1B allele appeared to show higher capabilities of cotinine formation. It was confirmed that the interindividual difference in nicotine metabolism was closely related to the genetic polymorphism of CYP2A6. The probit plot of the metabolic ratios in Koreans (8.73 +/- 11.88) was shifted to a higher ratio than that in the Japanese (3.78 +/- 3.09). In each genotype group, the Korean subjects revealed significantly higher metabolic ratios than the Japanese subjects. The ethnic difference in cotinine formation might be due to environmental and/or diet factors as well as genetic factors.  相似文献   

14.
AIMS: To study the influence of the CYP2D6*10 allele on the disposition of debrisoquine and nortriptyline. METHODS: The pharmacokinetics of debrisoquine and nortriptyline and their main metabolites were determined in ten Koreans with the CYP2D6*1/*1 (n = 5) and CYP2D6*1/*10 (n = 5) genotypes after single oral doses of 20 mg debrisoquine and 25 mg nortriptyline, respectively. The data were compared with previously published findings from 21 Caucasians with 0, one, two, three, four or 13 functional CYP2D6 genes. RESULTS: The AUC0-8 of 4-hydroxydebrisoquine was significantly lower in Koreans with CYP2D6*1/*10 genotype compared with CYP2D6*1/*1[95% confidence interval (CI) for the ratio between means 1.17, 1.85]. No other genotype-related differences were found in the plasma kinetics of nortriptyline and debrisoquine, or their hydroxy metabolites. The AUCnortriptyline/AUC10-hydroxynortriptyline ratio did not differ between the *1/*1 and *1/*10 genotype groups (95% CI for the ratio of means 0.60, 1.26). Similarly, there was no difference between these genotypes with respect to the AUCdebrisoquine/AUC4-hydroxydebrisoquine ratio (95% CI for the ratio of mean values 0.38, 1.46). Both Korean genotype groups had similar AUCs and parent compound/metabolite AUC ratios of debrisoquine and nortriptyline to Caucasians with two functional CYP2D6 genes. CONCLUSIONS: Heterozygosity for CYP2D6*10 decreases the CYP2D6-dependent elimination of nortriptyline and debrisoquine to only a limited degree. Further studies in subjects homozygous for CYP2D6*10 are required to elucidate fully the pharmacokinetic consequences of this CYP2D6 genotype in Orientals.  相似文献   

15.
Human CYP2A6 is responsible for the metabolism of nicotine and its genetic polymorphisms affect smoking behavior and risk of lung cancer. In the present study, we identified a novel type of CYP2A6 gene duplication that is created through an unequal crossover event with the CYP2A7 gene at 5.2 to 5.6 kilobases downstream from the stop codon. The novel duplication type of CYP2A6 was found in African Americans (n = 176) at an allele frequency of 1.7%, but was not found in European-American (n = 187), Korean (n = 209), or Japanese (n = 184) populations. The plasma cotinine/nicotine ratio in subjects possessing the novel CYP2A6 gene duplication with the CYP2A6*1 allele (10.8 +/- 7.0, n = 4) was 1.4-fold higher than that in homozygotes of the wild type (8.0 +/- 5.0, n = 87), although the difference was not statistically significant. The findings in the present study suggested that the novel duplicated CYP2A6 allele, which is specific for African Americans, would increase nicotine metabolism and may affect smoking behavior.  相似文献   

16.
In the present study, we aimed to investigate the effect of CYP3A4*18 genotype on the pharmacokinetics of zolpidem in healthy Chinese Hui volunteers.Blood samples were collected from volunteers for CYP3A4 genotyping using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. A pharmacokinetic study was then carried out in three groups with CYP3A4*1/*1 (n = 6), CYP3A4*1/*18 (n = 6) and CYP3A4*18/*18 (n = 6) genotypes. Plasma levels of zolpidem were determined by HPLC-FLD method before and after a single oral dose of 10 mg zolpidem tartrate tablet. Significant differences were observed in the pharmacokinetic parameters of zolpidem among the three genotype groups (P<0.05). Compared with the CYP3A4*1/*1 group, the Cmax of zolpidem in *1/*18 and *18/*18 groups (mean, 95% CI) was 0.89 (0.65–1.12) and 0.57 (0.47–0.66), respectively, and the AUC0t in the *1/*18 and *18/*18 groups (mean, 95% CI) was 0.74 (0.22–1.26) and 0.61 (0.24–0.98), respectively. There was a significant trend towards lower Cmax and AUC0t values of zolpidem in individuals with more CYP3A*18 alleles, suggesting a gene-dosage effect.The study demonstrated that the CYP3A4*18 allele played an important role in the pharmacokinetics of the zolpidem after oral administration.  相似文献   

17.
AIMS: Previously, we determined the phenotyping of in vivo nicotine metabolism and the genotyping of the CYP2A6 gene (CYP2A6*1 A, CYP2A6*1B, CYP2A6*2, CYP2A6*3, CYP2A6*4 and CYP2A6*5 ) in 92 Japanese and 209 Koreans. In the study, we found one Korean and four Japanese subjects genotyped as CYP2A6*1B/CYP2A6*4 who revealed impaired nicotine metabolism, although other many heterozygotes of CYP2A6*4 demonstrated normal nicotine metabolism (CYP2A6*4 is a whole deletion type). After our previous report, several CYP2A6 alleles, CYP2A6*6 (R128Q), CYP2A6*7 (I471T), and CYP2A6*8 (R485L), have been reported. The purpose of the present study was to clarify whether the impaired nicotine metabolism can be ascribed to these CYP2A6 alleles. Furthermore, we also determined whether the subjects possessing CYP2A6*1x2 (duplication) reveal higher nicotine metabolism. METHODS: Genotyping of CYP2A6 alleles, CYP2A6*6, CYP2A6*7, CYP2A6*8, and CYP2A6*1x2 was determined by PCR. RESULTS: The five poor metabolizers were re-genotyped as CYP2A6*7/CYP2A6*4, suggesting that a single nucleotide polymorphism (SNP) causing I471T decreases nicotine metabolism in vivo. Furthermore, we found that two subjects out of five with a lower potency of nicotine metabolism possessed SNPs of CYP2A6*7 and CYP2A6*8 simultaneously. The novel allele was termed CYP2A6*10. In the 92 Japanese and 209 Koreans, the CYP2A6*6 allele was not found. The allele frequencies of CYP2A6*7, CYP2A6*8, and CYP2A6*10 were 6.5%, 2.2%, and 1.1%, respectively, in Japanese, and 3.6%, 1.4%, and 0.5%, respectively, in Koreans. The CYP2A6*1x2 allele was found in only one Korean subject (0.5%) whose nicotine metabolic potency was not very high. CONCLUSIONS: It was clarified that the impaired in vivo nicotine metabolism was caused by CYP2A6*7 and CYP2A6*10 alleles.  相似文献   

18.
AIMS: The primary aim of the study was to investigate the possible effect of the CYP2C8*3 allele and of grapefruit juice on the pharmacokinetics of repaglinide. Furthermore, the impact of a single dose of grapefruit juice on the pharmacokinetics of repaglinide in relation to dose. METHODS: Thirty-six healthy male subjects, genotyped for CYP2C8*3 (11 genotyped as CYP2C8*1/*3, one as CYP2C8*3/*3 and 24 as CYP2C8*1/*1), participated in a randomized, cross-over trial. In the two phases, the subjects drank 300 mL water or 300 mL grapefruit juice, in randomized order, 2 h before administration of a single dose of either 0.25 mg or 2 mg repaglinide. RESULTS: Neither the mean AUC(0-infinity) (geometric mean ratio: 1.01; 95% CI: 0.93-1.1, P = 0.88) nor the mean C(max) (geometric mean ratio: 1.05; 95% CI: 0.94-1.2, P = 0.35) of repaglinide were statistically significantly different in the group carrying the CYP2C8*3 mutant allele compared with wild-types. Grapefruit juice caused a 19% decrease in the geometric mean ratio of the 3-hydroxyquinidine to quinidine ratio (difference: 0.81; 95% CI: 0.75-0.87, P < 0.0001), which was used as an index of CYP3A4 activity, and an increase in the mean AUC(0-infinity) of repaglinide (geometric mean ratio: 1.13; 95% CI: 1.04-1.2, P = 0.0048), but had no statistically significant effect on the t(1/2). There was no statistically significant difference in blood glucose concentration in subjects who had or had not ingested grapefruit juice. The effect was more pronounced at the low dose of repaglinide (0.25 mg) than at the therapeutic dose of 2 mg. CONCLUSIONS: The pharmacokinetics of repaglinide in subjects carrying the CYP2C8*3 mutant allele did not differ significantly from those in the wild-types. Grapefruit juice increased the bioavailability of repaglinide, suggesting significant intestinal elimination of the drug which was assumed to be primarily mediated by CYP3A4 in the gut.  相似文献   

19.
Human CYP2A6 catalyzes the metabolism of nicotine, cotinine, and coumarin as well as some pharmaceutical drugs. CYP2A6 is highly expressed in liver and, also, in brain and steroid-related tissues. In this study, we investigated the inhibitory effects of neurotransmitters and steroid hormones on CYP2A6 activity. We found that coumarin 7-hydroxylation and cotinine 3'-hydroxylation by recombinant CYP2A6 expressed in baculovirus-infected insect cells were competitively inhibited by tryptamine (both K(i) = 0.2 microM), serotonin (K(i) = 252 microM and 167 microM), dopamine (K(i) = 49 microM and 22 microM), and histamine (K(i) = 428 microM and 359 microM). Cotinine formation from nicotine was inhibited by tryptamine (K(i) = 0.7 microM, competitive), serotonin (K(i) = 272 microM, noncompetitive), dopamine, noradrenaline, and adrenaline (K(i) = 11 microM, 54 microM, and 81 microM, uncompetitive). Estrogens (K(i) = 0.6-3.8 microM), androgens (K(i) = 60-149 microM), and corticosterone (K(i) = 36 microM) also inhibited cotinine formation, but coumarin 7-hydroxylation and cotinine 3'-hydroxylation did not. Nicotine-Delta(5'(1'))-iminium ion formation from nicotine was not affected by these steroid hormones, indicating that the inhibition of cotinine formation was due to the inhibitory effects on aldehyde oxidase. The nicotine-Delta(5'(1'))-iminium ion formation was competitively inhibited by tryptamine (K(i) = 0.3 microM), serotonin (K(i) = 316 microM), dopamine (K(i) = 66 microM), and histamine (K(i) = 209 microM). Thus, we found that some neurotransmitters inhibit CYP2A6 activity, being related with inter- and intraindividual differences in CYP2A6-dependent metabolism. The inhibitory effects of steroid hormones on aldehyde oxidase may also contribute to interindividual differences in nicotine metabolism.  相似文献   

20.
Alcohol dehydrogenase (ADH) is a genetically polymorphic dimeric enzyme that is responsible for the metabolism of alcohol. ADH3 gene encodes for the gamma subunit of dimeric ADH and has an important role in the function of the enzyme. The aim of this study was to determine the frequencies of ADH3 alleles and genotypes in a healthy Turkish population sample. Genotypic assay was carried out in 102 unrelated volunteers. DNA samples were genotyped for the ADH3*2 allele. The ADH3*1 and ADH3*2 allele frequencies were determined as 0.66 (95% confidence interval [CI] = 0.57-0.75) and 0.34 (95% CI = 0.25-0.43), respectively. The genotype frequencies of ADH3*1/*1, *1/*2, and *2/*2 were 39% (95% CI = 30-49), 54% (95% CI = 44-64), and 7% (95% CI = 2-12), respectively. According to our results, the frequencies of variant ADH3 alleles and genotypes are similar to that in the other Caucasian populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号