首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Overexpression of ATP-binding cassette transport proteins, including P-glycoprotein (Pgp), multidrug resistance (MDR) protein (MRP-1), and breast cancer resistance protein (BCRP), is a well-characterized mechanism of MDR in tumor cells. Although the cytotoxic taxanes paclitaxel and docetaxel are substrates for Pgp-mediated efflux, the semisynthetic taxane analogue ortataxel inhibits drug efflux mediated by Pgp as well as, as we recently demonstrated, MRP-1 and BCRP. Nevertheless, ortataxel is not optimal for development as a clinical MDR modulator because of its cytotoxicity [corrected]. We sought to identify noncytotoxic taxane-based broad-spectrum modulators from a library of noncytotoxic taxane-based reversal agents (tRAs) designed by eliminating the C-13 side chain of the taxane molecule, which inhibits microtubule depolymerization. Twenty tRAs, selected based on modulation of paclitaxel cytotoxicity in Pgp-overexpressing MDA435/LCC6(mdr1) cells, were studied for modulation of retention and cytotoxicity of substrates of MRP-1 and BCRP as well as Pgp in established cell lines overexpressing each of these transporters. Four tRAs modulated MRP-1 and 17 modulated BCRP in addition to Pgp. The four broad-spectrum tRAs strongly modulated daunorubicin and mitoxantrone efflux and enhanced their cytotoxicity in cell lines overexpressing the three MDRs, decreasing IC(50) values by as much as 97% [corrected]. These tRAs, especially tRA 98006, have promise for development as clinical broad-spectrum MDR modulators and warrant more preclinical analysis to determine pharmacokinetic interactions and efficacy.  相似文献   

2.
The objectives of this study were to evaluate the potential of a polymer-lipid hybrid nanoparticle (PLN) system to enhance cellular accumulation and retention of doxorubicin (Dox), a widely used anticancer drug and an established P-glycoprotein (Pgp) substrate, in Pgp-overexpressing cancer cell lines and to explore the underlying mechanisms. Nanoparticles containing Dox complexed with a novel anionic polymer (Dox-PLN) were prepared using an ultrasound method. Two Pgp-overexpressing breast cancer cell lines (a human cell line, MDA435/LCC6/MDR1, and a mouse cell line, EMT6/AR1) were used to investigate the effect of nanoparticles on cellular uptake and retention of Dox. Endocytosis inhibition studies and fluorescence microscopic imaging were performed to elucidate the mechanisms of cellular drug uptake. Treatment of Pgp-overexpressing cell lines with Dox-PLNs resulted in significantly enhanced Dox uptake and more substantial increases in drug retention after the end of treatment compared with free Dox solutions (p < 0.05). Fluorescence microscopic images showed improved nuclear localization of Dox and uptake of lipid when the drug was delivered in the Dox-PLN form to MDA435/LCC6/MDR1 cells. Endocytosis inhibition studies revealed that phagocytosis is an important pathway in the membrane permeability of the nanoparticles. These findings suggest that some of the Dox physically associated with the nanoparticles bypass the membrane-associated Pgp when delivered as Dox-PLNs, and in this form, the drug is better retained within the Pgp-overexpressing cells than the free drug. The present study suggests a new mechanism for overcoming drug resistance in Pgp-overexpressing tumor cells using lipid-based nanoparticle formulations.  相似文献   

3.
Multidrug resistance is a major problem in successful cancer chemotherapy. Various mechanisms of resistance, such as ABC transporter-mediated drug efflux, have been discovered using established model cancer cell lines. While characterizing a drug-resistant breast cancer cell line, MCF7/AdVp3000, we found that fatty acid synthase (FASN) is overexpressed. In this study, we showed that ectopic overexpression of FASN indeed causes drug resistance and that reducing the FASN expression increased the drug sensitivity in breast cancer cell lines MCF7 and MDA-MB-468 but not in the normal mammary epithelial cell line MCF10A1. Use of FASN inhibitor, Orlistat, at low concentrations also sensitized cells with FASN overexpression to anticancer drugs. The FASN-mediated drug resistance appears to be due to a decrease in drug-induced apoptosis from an overproduction of palmitic acid by FASN. Together with previous findings of FASN as a poor prognosis marker for breast cancer patients, our results suggest that FASN overexpression is a new mechanism of drug resistance and may be an ideal target for chemosensitization in breast cancer chemotherapy.  相似文献   

4.
Kinetics of P-glycoprotein-mediated efflux of paclitaxel   总被引:4,自引:0,他引:4  
Paclitaxel is a substrate of the mdr1 P-glycoprotein (Pgp). The objective of the present study was to determine the kinetics of the Pgp-mediated efflux and its contribution to the overall efflux of paclitaxel at the clinically achievable concentration range of 1 to 1500 nM. Human breast carcinoma BC19 cells that were derived from MCF7 cells by mdr1 transfection and show a >10-fold higher level of the Pgp protein were used to measure the uptake and efflux of [(3)H]paclitaxel. A computational model of intracellular paclitaxel pharmacokinetics was developed to analyze for the Pgp efflux parameters. The results show a saturable Pgp-mediated efflux in BC19 cells; the dissociation constant was 14 nM, and the maximal efflux rate was 2.8 x 10(-4) pmol/h/cell. The contribution of Pgp-mediated efflux to the total efflux decreased with increasing extracellular drug concentrations; the Pgp efflux accounted for 86 and 34% of total efflux at 1 and 1500 nM, respectively. The validity of the model was confirmed by the close agreement between the model-predicted data and the experimentally obtained data (approximately 6% deviation) describing the effect of cell density and intracellular-to-extracellular concentration gradient on the kinetics of drug accumulation and efflux. In conclusion, our results indicate that the Pgp-mediated efflux represents a major efflux mechanism of paclitaxel at the low end of the clinically observed drug concentration range, but accounts for only a minor part of the efflux at higher concentrations in BC19 cells.  相似文献   

5.
Caco-2 cells grown in the presence of 1alpha,25-di-OH vitamin D(3) (di-OH vit D(3)) were used as a model to evaluate the effects of P-glycoprotein (Pgp) efflux on CYP3A4-mediated metabolism of indinavir during intestinal absorption. Caco-2 cells grown under these conditions demonstrated significant CYP3A4 activity and maintained Pgp-mediated directional transport of indinavir. Metabolism of indinavir in the di-OH vit D(3)-treated cells correlated with the level of CYP3A activity and generated metabolites consistent with CYP3A4-mediated metabolism. During transport experiments, indinavir metabolites are selectively secreted into the apical compartment, consistent with Pgp-mediated efflux. Using formation of the most abundant metabolite, M6, as a marker for indinavir metabolism, we observed that the extent of indinavir metabolism is not significantly affected by the direction of indinavir transport or by inhibition of Pgp with cyclosporin A. However, because Pgp efflux results in higher indinavir transport in the basolateral-to-apical direction than in the apical-to-basolateral direction, the ratio of M6 produced normalized to the amount of drug transported across the monolayer was higher for apical-to-basolateral transport. Thus, Pgp efflux in a direction opposite to absorptive transport results in more metabolite produced per mole of drug that is absorbed. In summary, the results support a role of Pgp in increasing intestinal presystemic metabolism and in removal of CYP3A4-generated metabolites from the intracellular compartment.  相似文献   

6.
7.
Interaction of cytochrome P450 3A inhibitors with P-glycoprotein   总被引:5,自引:0,他引:5  
Many clinically important drug interactions occur due to inhibition of human liver cytochrome P450 3A (CYP3A) metabolism. The drug efflux pump P-glycoprotein (Pgp) can be an additional locus contributing to these drug interactions because there is overlap in drugs that are substrates for both proteins. We screened a number of CYP3A inhibitors (macrolide antibiotics, azole antifungals, and ergotpeptides) for their ability to interact with Pgp, compared with prototypical Pgp inhibitors. We used cell lines expressing human, mouse, and rat mdr1 genes. Pgp antagonism was defined by interactions of the drugs with four cell lines (LLC-PK1, L-MDR1, L-mdr1a, and L-mdr1b) using a microfluorometric calcein-AM assay and characterized for their inhibitor constant (K(i)) toward calcein-AM. The compounds were further defined for their ability to inhibit MDR1 by their effect on vinblastine accumulation into L-MDR1 cells. Representative compounds from each class of drugs were further tested as Pgp substrates, defined by the ability of human Pgp or mouse mdr1a/Pgp to transport them across a polarized kidney epithelial cell in vitro. These same compounds were administered radiolabeled in vivo to mdr1a (+/+) and (-/-) mice and the distribution of radioactivity compared. The results are summarized as follows: 1) Some drug interactions with Pgp were substrate- and/or assay-dependent. 2) Ergot alkaloids were identified as a class of MDR1/Pgp chemosensitizers. 3) The Ergot alkaloids revealed species differences in the structure-activity relationships for inhibition of Pgp. Simultaneous inhibition of Pgp by many CYP3A inhibitors contributes to human variation in the extent of drug-drug interactions.  相似文献   

8.
P-glycoprotein (Pgp), a membrane transporter encoded by the MDR1 gene in human cells, mediates drug efflux from cells, and it plays a major role in causing multidrug resistance (MDR). Confocal microscopy was used to study in vitro and in vivo drug accumulation, net uptake and efflux, and MDR modulation by P-glycoprotein inhibitors in MDR1-transduced human MDA-MB-435mdr (MDR) cancer cells. The MDR cells were approximately 9-fold more resistant to the anticancer drug doxorubicin than their parental wild-type MDA-MB-435wt (WT) cells. Doxorubicin accumulation in the MDR cells was only 19% of that in the WT cells. The net uptake of doxorubicin in the nuclei of the MDR cells was 2-fold lower than that in the nuclei of the WT cells. Pgp inhibitors verapamil, cyclosporine A, or PSC833 increased doxorubicin accumulation in the MDR cells up to 79%, and it reversed drug resistance in these cells. In living animals, doxorubicin accumulation in MDA-MB-435mdr xenograft tumors was 68% of that in the wild-type tumors. Administration of verapamil, cyclosporine A, or PSC833 before doxorubicin treatment of the animals increased doxorubicin accumulation in the MDR tumors up to 94%. These studies have added direct in vitro and in vivo information on the capacity of the transporter protein Pgp to efflux doxorubicin and on the reversal of MDR by Pgp inhibitors in resistant cancer cells.  相似文献   

9.
The human multidrug resistance gene MDR1 encodes a membrane-bound transporter P-glycoprotein (Pgp) that confers the drug resistance of cancer cells by mediating an ATP-dependent drug efflux transport. We and others have reported a number of functionally significant MDR1 variants, including G1199A and G1199T, that modulate cancer drug resistance and intracellular levels of antivirals. In this report, we describe a novel G571A variant of MDR1 detected in 6.4% of leukemia patients. Because this nucleotide modification gives rise to an amino acid change from Gly to Arg at the 191 amino acid position of Pgp, we have developed and characterized the functional affect of the G571A variant in stable, recombinant cells. Using six chemotherapeutic drugs, doxorubicin HCl, daunorubicin HCl, vinblastine sulfate, vincristine sulfate, taxanes (paclitaxel), and epipodophyllotoxin (etoposide, VP-16), we found that the MDR1(571A) variant selectively reduced the degree of Pgp-mediated resistance in drug-dependent manner. Although there was a minimal effect on doxorubicin and daunorubicin, the MDR1-dependent resistance on vinblastine, vincristine, paclitaxel, and etoposide was reduced by approximately 5-fold. The increased drug sensitivity in MDR1(571A), compared with MDR1(wt), paralleled the intracellular drug levels. These data suggest that individuals with this novel MDR1 variant, the 571A genotype, may be more sensitive to the specific anticancer drugs that are Pgp substrates.  相似文献   

10.
Inhibitors of sphingolipid metabolism are frequently used to investigate the role of ceramide and other sphingolipids as intracellular signaling molecules. For example, the inhibitor of glucosylceramide synthase D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) is commonly used to deplete glycosphingolipids and increase ceramide levels. Ceramide is known to induce growth arrest and differentiation of keratinocytes, and we hypothesized that PDMP would increase ceramide levels and induce growth arrest of primary cultures of mouse epidermal keratinocytes. As expected, PDMP increased ceramide levels and decreased the incorporation of [(3)H]thymidine into DNA, but surprisingly, PDMP was found to rapidly inhibit the intracellular transport of [(3)H]thymidine. This is likely due to a direct effect on nucleoside transport by PDMP and not due to elevations in ceramide levels because increasing ceramide levels by the addition of exogenous sphingomyelinase had no effect on [(3)H]thymidine transport. Furthermore, it is unlikely that the decreased [(3)H]thymidine transport is in response to growth arrest because PDMP had no effect on the cell cycle profile of keratinocytes. These results reveal that PDMP inhibits nucleoside transport independent of effects on ceramide levels or cell growth but probably by a direct effect on the nucleoside transport apparatus. Thus, this compound may be unsuitable for investigating the role of ceramide or other sphingolipids in some cellular processes.  相似文献   

11.
Resistance to natural product chemotherapy drugs is a major obstacle to successful cancer treatment. This type of resistance is often acquired in response to drug exposure; however, the mechanisms of this adverse reaction are complex and elusive. Here, we have studied acquired resistance to Adriamycin, Vinca alkaloids, and etoposide in MCF-7 breast cancer cells, KB-3-1 epidermoid carcinoma cells, and other cancer cell lines to determine if there is an association between expression of glucosylceramide synthase, the enzyme catalyzing ceramide glycosylation to glucosylceramide, and the multidrug-resistant (MDR) phenotype. This work shows that glucosylceramide levels increase concomitantly with increased drug resistance in the KB-3-1 vinblastine-resistant sublines KB-V.01, KB-V.1, and KB-V1 (listed in order of increasing MDR). The levels of glucosylceramide synthase mRNA, glucosylceramide synthase protein, and P-glycoprotein (P-gp) also increased in parallel. Increased glucosylceramide levels were also present in Adriamycin-resistant KB-3-1 sublines KB-A.05 and KB-A1. In breast cancer, detailed analysis of MCF-7 wild-type and MCF-7-AdrR cells (Adriamycin-resistant) demonstrated enhanced glucosylceramide synthase message and protein, P-gp message and protein, and high levels of glucosylceramide in resistant cells. Similar results were seen in vincristine-resistant leukemia, etoposide-resistant melanoma, and Adriamycin-resistant colon cancer cell lines. Cell-free glucosylceramide synthase activity was higher in lysates obtained from drug-resistant cells. Lastly, glucosylceramide synthase promoter activity was 15-fold higher in MCF-7-AdrR compared with MCF-7 cells. We conclude that selection pressure for resistance to natural product chemotherapy drugs selects for enhanced ceramide metabolism through glucosylceramide synthase in addition to enhanced P-gp expression. A possible connection between glucosylceramide synthase and P-gp in drug resistance biology is suggested.  相似文献   

12.
Sitagliptin, a selective dipeptidyl peptidase 4 inhibitor recently approved for the treatment of type 2 diabetes, is excreted into the urine via active tubular secretion and glomerular filtration in humans. In this report, we demonstrate that sitagliptin is transported by human organic anion transporter hOAT3 (Km=162 microM), organic anion transporting polypeptide OATP4C1, and multidrug resistance (MDR) P-glycoprotein (Pgp), but not by human organic cation transporter 2 hOCT2, hOAT1, oligopeptide transporter hPEPT1, OATP2B1, and the multidrug resistance proteins MRP2 and MRP4. Our studies suggested that hOAT3, OATP4C1, and MDR1 Pgp might play a role in transporting sitagliptin into and out of renal proximal tubule cells, respectively. Sitagliptin did not inhibit hOAT1-mediated cidofovir uptake, but it showed weak inhibition of hOAT3-mediated cimetidine uptake (IC50=160 microM). hOAT3-mediated sitagliptin uptake was inhibited by probenecid, ibuprofen, furosemide, fenofibric acid, quinapril, indapamide, and cimetidine with IC50 values of 5.6, 3.7, 1.7, 2.2, 6.2, 11, and 79 microM, respectively. Sitagliptin did not inhibit Pgp-mediated transport of digoxin, verapamil, ritonavir, quinidine, and vinblastine. Cyclosporine A significantly inhibited Pgp-mediated transport of sitagliptin (IC50=1 microM). Our data indicate that sitagliptin is unlikely to be a perpetrator of drug-drug interactions with Pgp, hOAT1, or hOAT3 substrates at clinically relevant concentrations. Renal secretion of sitagliptin could be inhibited if coadministered with OAT3 inhibitors such as probenecid. However, the magnitude of interactions should be low, and the effects may not be clinically meaningful, due to the high safety margin of sitagliptin.  相似文献   

13.
Overcoming multidrug resistance in taxane chemotherapy.   总被引:3,自引:0,他引:3  
Paclitaxel (Taxol) and docetaxel (Taxotère) are currently two of the most important anticancer drugs in cancer chemotherapy. However, clinical treatment with these taxane agents often encounters undesirable side effects and multidrug resistance (MDR) caused by overexpression of P-glycoprotein (Pgp). Photoaffinity labeling of Pgp using photoreactive radiolabeled paclitaxel analogs along with molecular modeling has revealed a unique binding region for paclitaxel on the C-terminal half of Pgp. Highly efficient taxane-based MDR reversal agents (TRAs) have been developed. Extensive structure-activity relationship (SAR) studies have led to the development of new generation taxanes that possess 2-3 orders of magnitude higher potencies against human cancer cell lines expressing the MDR phenotype. One of these taxanes, SB-T-1 10131 (IDN5109, BAY59-8862), exhibits excellent activity against a variety of drug-sensitive and drug-resistant cancer cell lines as well as human tumor xenografts in mice. This taxane is orally active with excellent bioavailability, and is currently undergoing phase II human clinical trials. Novel taxane-antibody immunoconjugates have shown very promising results for tumor-specific delivery and release of an extremely cytotoxic taxane, wherein epidermal growth factor receptor is used as the specific antigen on the tumor surface of human squamous cancer xenograft in SCID mice.  相似文献   

14.
Camptothecin derivatives are powerful anticancer drugs because of their ability to trap topoisomerase I (Top1)-DNA cleavage complexes. However, they exhibit clinical limitations due to the instability of their α-hydroxylactone six-membered E-ring structure. In addition, they exhibit bone marrow and intestinal toxicity, especially in adults, and are drug efflux substrates. Here, we report a novel Top1 inhibitor, Genz-644282. We show that Genz-644282 and its metabolites induce Top1 cleavage at similar, as well as unique genomic positions, compared with camptothecin. The compound also induces protein-linked DNA breaks and Top1-DNA cleavage complexes that persist longer after compound removal than camptothecin. Concentration-dependent and persistent γH2AX formation was readily observed in cells treated with Genz-644282, and was present in greater than 50% of the cell population following 24 hours compound exposure. The compound shows partial cross-resistance in cell lines resistant to camptothecin. These cell lines include the human prostate DU145RC0.1 and the leukemic CEM/C2 cells. Limited cross-resistance to Genz-644282 was also found in the Top1 knockdown colon cancer (HCT116) and breast cancer (MCF7) cell lines and in human adenocarcinoma cells (KB31/KBV1) that overexpress (P-glycoprotein, ABCB1), a member of the ATP-binding cassette family of cell surface transport proteins known to confer MDR. Together, our results provide the first molecular and cellular characterization of Genz-644282 and its clinically relevant metabolites.  相似文献   

15.
The efflux of drugs by the multidrug transporter P-glycoprotein (Pgp; ABCB1) is one of the principal means by which cancer cells evade chemotherapy and exhibit multidrug resistance. Mechanistic studies of Pgp-mediated transport, however, transcend the importance of this protein per se as they help us understand the transport pathway of the ATP-binding cassette proteins in general. The ATP-binding cassette proteins comprise one of the largest protein families, are central to cellular physiology, and constitute important drug targets. The functional unit of Pgp consists of two nucleotide-binding domains (NBD) and two transmembrane domains that are involved in the transport of drug substrates. Early studies postulated that conformational changes as a result of ATP hydrolysis were transmitted to the transmembrane domains bringing about drug transport. More recent structural and biochemical studies on the other hand suggested that ATP binds at the interface of the two NBDs and induces the formation of a closed dimer, and it has been hypothesized that this dimerization and subsequent ATP hydrolysis powers transport. Based on the mutational and biochemical work on Pgp and structural studies with isolated NBDs, we review proposed schemes for the catalytic cycle of ATP hydrolysis and the transport pathway.  相似文献   

16.
17.
The influence of free and N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-bound adriamycin (ADR) on the induction of multidrug resistance in the A2780 human ovarian carcinoma cell line was studied in vitro. It was found that chronic exposure to free ADR led to an increase in resistance to ADR and Taxol and overexpression of the MDR1 gene. No significant changes in the expression of the MRP gene were found during adaptation to free ADR. In addition to MDR1 gene-encoded multidrug resistance, a significant increase in the resistance against ADR was found before the overexpression of the MDR1 gene was measurable. This non-P-glycoprotein resistance does not appear to be connected with MRP gene-encoded resistance. During adaptation to free ADR, changes in cellular metabolism such as increased rate of glucose uptake, oxidation and glycolysis were detected. Adapted sensitive A2780 cells expressed the MDR1 gene and possessed almost the same decreased sensitivity toward ADR as the ADR-resistant human ovarian carcinoma A2780/AD cells. However, they significantly differed in proliferation rate, cellular metabolism and MRP gene expression. On the contrary, multidrug resistance was not induced after repeated exposure of sensitive A2780 cells to HPMA copolymer-bound adriamycin. The cells did not express the MDR1 gene, the expression of the MRP gene was partially inhibited, and the resistance against Taxol was decreased. Differences were also observed in metabolic changes. In summary, the data indicate that, contrary to free ADR, HPMA copolymer-bound ADR does not induce multidrug resistance in A2780 cell culture after repeated exposure.  相似文献   

18.
The involvement of the multidrug resistance (MDR) mediated by ABC transporter proteins P-glycoprotein (Pgp) and multidrug resistance-associated protein-1 (MRP1) overexpressions in patients with chronic myeloid leukemia (CML) are not completely understood. Pgp and MRP1 expressions and activity were analyzed in samples from 158 patients with chronic myeloid leukemia (CML). Using flow cytometry, Pgp expression was more frequently observed in early chronic (P = 0.00) and in advanced (P = 0.02) CML phases when it was compared to MRP1 expression. Variation of MDR expression and activity were observed during the CML evolution in patients previously treated with interferon and imatinib. In the K562-Lucena cell line, Pgp positive, imatinib caused an enhancing in Pgp expression at protein and mRNA levels, whereas in the Pgp negative cell line, this drug was capable of decreasing MDR1/Pgp mRNA levels. Our result emphasizes the importance of understanding the different aspects of MDR status in patients with CML when they are under investigation in determining imatinib resistance.  相似文献   

19.
P-glycoprotein (Pgp), an active drug transporter expressed in enterocytes, can reduce intestinal absorption of drugs. Until now, interleukin-2 (IL2) has been reported as a Pgp modulator only in vitro. The present study examines the effects in vivo of IL2 after chronic treatment on intestinal Pgp protein expression and activity. This work also describes the effects of IL2 on the oral bioavailability of a Pgp substrate (digoxin) and of a Pgp/CYP3A cosubstrate (saquinavir). Human recombinant interleukin-2 (rIL2), administered to mice at 9 million international units/kg by intraperitoneal route twice daily for 4 days, led to a decrease in intestinal Pgp protein expression evaluated by Western blot with C219 antibody. In an in vitro everted gut sac model, rIL2 pretreatment decreased the Pgp-mediated transport of rhodamine 123 across mouse intestine by 37%. Moreover, rIL2 pretreatment markedly raised the area under the curve of orally administered digoxin from 3.5 +/- 0.5 to 9.7 +/- 1.5 mg min l(-1) as a consequence of the reduction in intestinal Pgp activity. rIL2 treatment increased saquinavir bioavailability from 2.5 to 4.5%, showing that first-pass metabolism is not affected and that Pgp by itself has only a moderate effect on saquinavir oral bioavailability. In conclusion, rIL2 pretreatment reduces intestinal Pgp protein expression and activity in mice. However, the effect of such a treatment on drug bioavailability depends on the extent of their metabolism by CYP3A.  相似文献   

20.
Multidrug resistance (MDR), mediated by P-glycoprotein (Pgp) has been identified as altering the disposition of structurally diverse compounds. Previous in vitro studies in bovine brain microvascular endothelial cells and MCF/Adr [Adriamycin (doxorubicin)-resistant human breast cancer] cells displayed that the transport of enaminone anticonvulsants was influenced by Pgp. Therefore the objectives of this study was to further evaluate the influence of Pgp on the pharmacokinetics and tissue distribution of the enaminone analogs. mdr1ab (+/+) and mdr1ab (-/-) male mice (20 +/- 5 g) were administered DM5 (methyl 4-[(4'-chlorophenyl)amino]-6-methyl-2-oxo-3-cyclohexene-1-carboxylate) or DM44 (12.5 mg/kg, i.v.). Cohorts (n = 3) were sacrificed over a 12-h period, and samples were analyzed by a validated UV-high performance liquid chromatography assay method. Population analysis was used to estimate pharmacokinetic parameters and partition coefficients were determined for tissues. The clearance (0.51 versus 0.33 l/h/kg) and V(d) (1.25 versus 0.93 l/kg) of DM5 were found to be higher (p < 0.05), however the area under the curve (26.1 versus 38.2 microg/ml. h) was lower (p < 0.05) in mdr1a/1b (-/-) versus mdr1a/1b (+/+) mice, respectively. Similar findings were observed for DM44. Tissues known to express Pgp such as the heart, liver, lung, and brain displayed 2-fold or higher tissue levels in mdr1a/1b (-/-) versus mdr1a/1b (+/+) mice. These results strongly suggest that Pgp may influence enaminone tissue distribution and pharmacokinetics and may play a significant role in the effective treatment of epilepsy with these analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号