首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 368 毫秒
1.
It has been argued that coupling among the neural signals activated by a visual object supports binding of local features into a coherent object perception. During visual stimulation by a grating texture we studied functional coupling by calculating spectral coherence among pairs of signals recorded in the striate cortex of awake monkeys. Multiple unit activity (MUA) and local field potentials (LFP, 1-140 Hz) were extracted from seven parallel broad band recordings. Spectral coherence was dominated by high-frequency oscillations in the range 35-50 Hz and often by additional low-frequency components (0-12 Hz). Functional coupling among separate cortical sites was more stimulus specific for MUA than for LFP: MUA coherence at high and low frequencies depended highly significantly on: (i) the similarity of the preferred orientations at the two sites - the more similar the higher the coherence; (ii) the orientation of the stimulus grating - with highest coherence at half angle between the preferred orientations at the two sites; (iii) cortical distance - coherence decreases to noise levels at approximately 3 mm (MUA) and 6 mm (LFP). Coherence of fast oscillations did not depend on the degree of coaxiality of the orientation-sensitive receptive fields, whereas low frequencies showed significant dependency. This indicates that different frequency components can engage different coupling networks in the striate cortex which probably support different coding tasks. Changes in average oscillation frequency with stimulus orientation were highly significant for fast oscillations while there was no dependency for low frequencies. Finally, stimulus-related spectral power and coherence of fast oscillations were considerably higher than of low frequency components. Fast oscillations may therefore contribute more to feature binding and coding of object continuity than low-frequency components, at least for texture surfaces as analysed here.  相似文献   

2.
The local field potential (LFP) is a population measure of neuronal activity complementary to spike trains. Whereas the response properties of the spiking activity in the visual cortex have been characterized extensively, the responses of the LFP have not been well explored. No coherent picture exists about which frequency ranges exhibit feature tuning or show stimulus locked activity. Addressing this, we recorded LFP in the primary visual cortex of alert cats and calculated the tuning indices for orientation, spatial and temporal frequency. Furthermore, we quantified the locking of the power in different LFP frequency bands to the velocity profile of artificial and natural stimuli. We found that the LFP in alert animals is well tuned with similar specificity to orientation, spatial frequency and temporal frequency. Tuning to these features is most prominent in two frequency bands (8-23 Hz and 39-109 Hz). In two complementary frequency bands (23-39 Hz and above 109 Hz) the dynamics of the LFP power is locked tightly to the temporal structure of the stimulus. This locking is furthermore independent of the spatial structure of the stimulus. Together these four frequency bands cover the whole frequency range investigated. In contrast to previous studies, which often reported correlates of visual processing only in a limited frequency range of the LFP, the present results suggest that the entire frequency range of the LFP can be assigned a role in visual processing.  相似文献   

3.
Numerous reports of human electrophysiology have demonstrated gamma (30–150 Hz) frequency oscillations in the auditory cortex during listening. However, only a small number of studies in non‐human animals have provided evidence for gamma oscillations during listening. In this report, multi‐site recordings from primary auditory cortex (A1) were carried out using a 16‐channel microelectrode array in awake rats as they passively listened to tones. We addressed two fundamental questions: (i) Is passive listening associated with an increase in gamma oscillation in A1? And, if so: (ii) Are A1 gamma oscillations during passive listening coherent within local networks and/or over long distances? All sites within A1 showed a short‐latency burst of activity in the low‐gamma (30–70 Hz) and high‐gamma (90–150 Hz) bands in the local field potential (LFP). Additionally, 53% of sites within A1 also showed longer‐latency bursts of gamma oscillation that occurred episodically for up to 350 ms after tone onset, but these varied both in latency and in occurrence across trials. There was significant coherence in the low‐gamma band between spike activity and the LFP recorded with the same electrode. However, neither LFPs nor the spike activity between sites spaced at least 300 μm apart showed coherent activity in the gamma band. The experiments demonstrated that gamma oscillations are present, but not uniformly expressed, throughout A1 during passive listening and that there is strong local coherence in the spatiotemporal organization of gamma activity.  相似文献   

4.
The response of cat visual cortex to flicker stimuli of variable frequency   总被引:5,自引:0,他引:5  
We examined the possibility that neurons or groups of neurons along the retino-cortical transmission chain have properties of tuned oscillators. To this end, we studied the resonance properties of the retino-thalamo-cortical system of anaesthetized cats by entraining responses with flicker stimuli of variable frequency (2–50 Hz). Responses were assessed from multi-unit activity (MUA) and local field potentials (LFPs) with up to four spatially segregated electrodes placed in areas 17 and 18. MUA and LFP responses were closely related, units discharging with high preference during LFP negativity. About 300 ms after flicker onset, responses stabilized and exhibited a highly regular oscillatory patterning that was surprisingly similar at different recording sites due to precise stimulus locking. Fourier transforms of these steady state oscillations showed maximal power at the inducing frequency and consistently revealed additional peaks at harmonic frequencies. The frequency-dependent amplitude changes of the fundamental and harmonic response components suggest that the retino-cortical system is entrainable into steady state oscillations over a broad frequency range and exhibits preferences for distinct frequencies in the θ- or slow α-range, and in the β- and γ-band. Concomitant activation of the mesencephalic reticular formation increased the ability of cortical cells to follow high frequency stimulation, and enhanced dramatically the amplitude of first- and second-order harmonics in the γ-frequency range between 30 and 50 Hz. Cross-correlations computed between responses recorded simultaneously from different sites revealed pronounced synchronicity due to precise stimulus locking. These results suggest that the retino-cortical system contains broadly tuned, strongly damped oscillators which altogether exhibit at least three ranges of preferred frequencies, the relative expression of the preferences depending on the central state. These properties agree with the characteristics of oscillatory responses evoked by non-temporally modulated stimuli, and they indicate that neuronal responses along the retino-cortical transmission chain can become synchronized with precision in the millisecond range not only by intrinsic interactions, but also by temporally structured stimuli.  相似文献   

5.
Recordings from local field potentials (LFPs) are becoming increasingly common in research and clinical applications, but we still have a poor understanding of how LFP stimulus selectivity originates from the combined activity of single neurons. Here, we systematically compared the stimulus selectivity of LFP and neighboring single-unit activity (SUA) recorded in area primary visual cortex (V1) of awake primates. We demonstrate that LFP and SUA have similar stimulus preferences for orientation, direction of motion, contrast, size, temporal frequency, and even spatial phase. However, the average SUA had 50 times better signal-to-noise, 20% higher contrast sensitivity, 45% higher direction selectivity, and 15% more tuning depth than the average LFP. Low LFP frequencies (<30 Hz) were most strongly correlated with the spiking frequencies of neurons with nonlinear spatial summation and poor orientation/direction selectivity that were located near cortical current sinks (negative LFPs). In contrast, LFP gamma frequencies (>30 Hz) were correlated with a more diverse group of neurons located near cortical sources (positive LFPs). In summary, our results indicate that low- and high-frequency LFP pool signals from V1 neurons with similar stimulus preferences but different response properties and cortical depths.  相似文献   

6.
Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.  相似文献   

7.
A growing body of data suggests that information coding can be achieved not only by varying neuronal firing rate, but also by varying spike timing relative to network oscillations. In the olfactory bulb (OB) of a freely breathing anaesthetized mammal, odorant stimulation induces prominent oscillatory local field potential (LFP) activity in the beta (10–35 Hz) and gamma (40–80 Hz) ranges, which alternate during a respiratory cycle. At the same time, mitral/tufted (M/T) cells display respiration-modulated spiking patterns. Using simultaneous recordings of M/T unitary activities and LFP activity, we conducted an analysis of the temporal relationships between M/T cell spiking activity and both OB beta and gamma oscillations. We observed that M/T cells display a respiratory pattern that pre-tunes instantaneous frequencies to a gamma or beta regime. Consequently, M/T cell spikes become phase-locked to either gamma or beta LFP oscillations according to their frequency range and respiratory pattern. Our results suggest that slow respiratory dynamics pre-tune M/T cells to a preferential fast rhythm (beta or gamma) such that a spike–LFP coupling might occur when units and oscillation frequencies are in a compatible range. This double-coupling process might define two complementary beta- and gamma-neuronal assemblies along the course of a respiratory cycle.  相似文献   

8.
Local field potential (LFP) oscillations in the granule cell layer (GCL) of the cerebellar cortex have been identified previously in the awake rat and monkey during immobility. These low-frequency oscillations are thought to be generated through local circuit interactions between Golgi cells and granule cells within the GCL. Golgi cells display rhythmic firing and pacemaking properties, and also are electrically coupled through gap junctions within the GCL. Here, we tested if gap junctions in the rat cerebellar cortex contribute to the generation of LFP oscillations in the GCL. We recorded LFP oscillations under urethane anesthesia, and examined the effects of local infusion of gap junction blockers on 5–15 Hz oscillations. Local infusion of the gap junction blockers carbenoxolone and mefloquine resulted in significant decreases in the power of oscillations over a 30-min period, but the power of oscillations was unchanged in control experiments following vehicle injections. In addition, infusion of gap junction blockers had no significant effect on multi-unit activity, suggesting that the attenuation of low-frequency oscillations was likely due to reductions in electrical coupling rather than a decreased excitability within the granule cell layer. Our results indicate that electrical coupling among the Golgi cell networks in the cerebellar cortex contributes to the local circuit mechanisms that promote the occurrence of GCL LFP slow oscillations in the anesthetized rat.  相似文献   

9.
The pedunculopontine nucleus (PPN) is a new deep brain stimulation (DBS) target for Parkinson's disease (PD), but little is known about PPN firing pattern alterations in PD. The anesthetized rat is a useful model for investigating the effects of dopamine loss on the transmission of oscillatory cortical activity through basal ganglia structures. After dopamine loss, synchronous oscillatory activity emerges in the subthalamic nucleus and substantia nigra pars reticulata in phase with cortical slow oscillations. To investigate the impact of dopamine cell lesion-induced changes in basal ganglia output on activity in the PPN, this study examines PPN spike timing with reference to motor cortex (MCx) local field potential (LFP) activity in urethane- or ketamine-anesthetized rats. Seven to ten days after unilateral 6-hydroxydopamine lesion of the medial forebrain bundle, spectral power in PPN spike trains and coherence between PPN spiking and PPN LFP activity increased in the  1 Hz range in urethane-anesthetized rats. PPN spike timing also changed from firing predominantly in phase with MCx slow oscillations in the intact urethane-anesthetized rat to firing predominantly antiphase to MCx oscillations in the hemi-parkinsonian rat. These changes were not observed in the ketamine-anesthetized preparation. These observations suggest that dopamine loss alters PPN spike timing by increasing inhibitory oscillatory input to the PPN from basal ganglia output nuclei, a phenomenon that may be relevant to motor dysfunction and PPN DBS efficacy in PD patients.  相似文献   

10.
Pallidal recordings of local field potentials (LFPs) in patients with dystonia have demonstrated semi-oscillatory activity over 3-12 Hz. Although this activity has been hypothesized to contribute to dystonia, it is unclear to what extent these LFP oscillations arise in the globus pallidus interna (GPi) and are synchronous with local neuronal discharge. We therefore recorded LFPs and neuronal activity from microelectrodes inserted into the pallidum on nine sides in six awake patients with primary dystonia during functional neurosurgery. Mean normalized LFP power over 3-12 Hz was higher in GPi than globus pallidus externa. Spike triggered averages were computed, and 11 exhibited significant features in the 3-12 Hz band, indicating that the discharges of local neurons were locked to 3-12 Hz oscillations in the LFP. All but two of these STAs were in GPi. We conclude that pallidal oscillations at 3-12 Hz are maximal in GPi, the surgical target, in patients with dystonia and that they can be synchronized to activity in local neurons. This lends support to a pathophysiological relationship between LFP activity at 3-12 Hz and dystonia.  相似文献   

11.
Correlations among simultaneously recorded signals are mostly analyzed pairwise and include temporal averaging. However, pairwise methods are not suitable for characterizing relationships among multiple channels for signals which vary temporally in an unpredictable way. Here we develop a time-resolved spatio-temporal correlation (STC) measure among simultaneously recorded signals. We demonstrate the capabilities of the method with artificial data sets and with multiple-channel recordings from striate cortex of awake monkeys. We concentrate on correlations in the gamma-frequency range (gamma: 30-90 Hz) because they were prominent in the analyzed recordings and gained high interest in the recent years due to their assumed role in associative processing, including perceptual binding. Former analyses of gamma-activities in visual cortex, using pairwise correlation methods, mostly revealed zero-delay correlation, indicating synchrony. In cat and monkey visual cortex this gamma-synchrony is restricted to 1.5-3.0 mm (half-height decline). However, our spatio-temporal correlation (STC)-method demonstrates for striate cortex from awake monkeys that gamma-synchrony is a local phenomenon of more global traveling plane waves that appear stimulus-induced at randomly varying orientations. These gamma-waves are coupled over much larger cortical distances (approximately 7 mm half-height decline) than the gamma-synchrony ranges obtained by pairwise correlation analyses from the same data. Our STC-method therefore suggests that the previously reported results of short-range and zero-delay correlations were often due to temporal averaging of traveling gamma-waves.  相似文献   

12.
The proliferation of low-cost microcomputer systems has led to the use of these systems as alternatives to expensive display devices for visual physiology and psychophysics experiments. The video displays of these systems often lack the flexibility of achieving wide linear luminance ranges and high vertical refresh rates — two parameters which may influence data acquisition. We have examined the responses of neurons and pairs of neurons in cat LGN and striate cortex to bar and sinusoidal grating stimuli generated by a conventional PC-based VGA graphics card and displayed on a NEC Multisync + color monitor with a 60 Hz vertical (display) refresh rate. Responses to these stimuli were autocorrelated and power spectral densities (PSD) were calculated, revealing that the majority of simple and complex cortical cells and nearly all LGN cells exhibited significant peaks in their autocorrelations at 16.7 ms and in the PSD at 60 Hz. Responses to identical stimuli generated with an optical bench using an incandescent light source contained no power at 60 Hz. Furthermore, cross-correlations between the spike trains of neuron-pairs were severely contaminated by peaks directly attributable to the entrainment of the two elements of the pair to the vertical refresh signal. Thus, we suggest that the use of conventional computer displays introduces a temporal artifact into neuronal spike trains in both single and multiple spike train analysis.  相似文献   

13.
Dysfunctional activity in the subthalamic nucleus (STN) is thought to underlie movement deficits of patients with Parkinson's disease. Alterations in STN firing patterns are also evident in the anesthetized rat model of Parkinson's disease, where studies show that loss of striatal dopamine and concomitant changes in the indirect pathway are associated with bursty and oscillatory firing patterns in STN output. However, the extent to which alterations in cortical activity contribute to changes in STN activity is unclear. As pyramidal neurons in the cingulate cortex project directly to the STN, cingulate output was assessed after dopamine lesion by simultaneously recording single-unit and local field potential (LFP) activities in STN and anterior cingulate cortex in control, dopamine-lesioned and non-lesioned hemispheres of urethane-anesthetized rats. Correlated oscillations were observed in cross-correlograms of spike trains from STN and cingulate layer V neurons with broad waveforms indicative of pyramidal neurons. One-2 weeks after dopamine cell lesion, firing rate, incidence of bursty and 0.3-2.5 Hz oscillatory activity of neurons and LFP power in the STN all increased significantly. In contrast, firing rate, incidence of bursty and 0.3-2.5 Hz oscillatory activity of cingulate layer V putative pyramidal neurons and power in cingulate LFPs did not differ significantly between dopamine-lesioned, non-lesioned or control hemispheres, despite significant loss of dopamine in the lesioned cingulate cortex. Data show that alterations in STN activity in the dopamine-lesioned hemisphere are not associated with alterations in neuronal activity in layer V of the anterior cingulate cortex in anesthetized rats.  相似文献   

14.
Concurrent recordings of average evoked potentials (AEP) and multiple unit activity (MUA) in monkey primary cortex to the syllable /da/, low-frequency tones, and clicks were performed. The AEP in response to the syllable consisted of a periodic alternation superimposed upon slower phasic deflections. All components inverted across the superior temporal plane, indicating their auditory cortical origin. The periodic activity was phase-locked to the syllable's fundamental frequency at a latency of approximately 11 msec. MUA displayed a similar pattern of periodic activity, but with a shorter interval between stimulus and response peaks. This phase-locked MUA occurred only at regions of AEP polarity inversion. Phase-locked activity was also observed in the cortical AEP to 100 and 250 Hz, but not to 500 Hz tonal stimulation. MUA phase-locked to the stimulus frequency only occurred at 100 Hz. Both the periodic and slow components of the AEP were volume-conducted to the dorsal cortical surface. This finding suggests the possibility that similar cortical responses to speech sounds can be recorded from the human scalp.  相似文献   

15.
Purpose: The origin of bilateral synchronous spike‐and‐wave discharges (SWDs) that underlie absence seizures has been widely debated. Studies in genetic rodent models suggest that SWDs originate from a restricted region in the somatosensory cortex. The properties of this initiation site remain unknown. Our goal was to characterize the interictal, preictal and ictal neuronal activity in the primary and secondary cortical regions (S1, S2) and in the adjacent insular cortex (IC) in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Methods: We performed electroencephalography (EEG) recordings in combination with multisite local field potential (LFP) and single cell juxtacellular recordings, and cortical electrical stimulations, in freely moving rats and those under neurolept‐anesthesia. Key Findings: The onset of the SWDs was preceded by 5–9 Hz field potential oscillations, which were detected earlier in S2 and IC than in S1. Sustained SWDs could be triggered by a 2‐s train of 7‐Hz electrical stimuli at a lower current intensity in S2 than in S1. In S2 and IC, subsets of neurons displayed rhythmic firing (5–9 Hz) in between seizures. S2 and IC layers V and VI neurons fired during the same time window, whereas in S1 layer VI, neurons fired before layer V neurons. Just before the spike component of each SW complex, short‐lasting high‐frequency oscillations consistently occurred in IC ~20 msec before S1. Significance: Our findings demonstrate that the S2/IC cortical areas are a critical component of the macro‐network that is responsible for the generation of absence‐related SWDs.  相似文献   

16.
The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network.  相似文献   

17.
To examine the spatiotemporal distribution of discriminable information about reach-to-grasp movements in the primary motor cortex upper extremity representation, we implanted four microelectrode arrays in the anterior bank and lip of the central sulcus in each of two monkeys. We used linear discriminant analysis to compare information, quantified as decoding accuracy, contained in various neurophysiological signals. For all signal types, decoding accuracy increased immediately after the movement cue, peaked around movement onset, and declined during the static hold. Spike recordings and local field potential (LFP) time domain amplitude provided more discriminable information than LFP frequency domain power. Discriminable information on movement type was distributed evenly across recording sites by LFP amplitude and 1-4 Hz power but unevenly by 100-170 Hz power and spike recordings. These latter two signal types provided higher decoding accuracies closer to the hemispheric surface than deep in the anterior bank and also provided accuracies that varied along the central sulcus. This variation in the distribution of movement-type information may be related to differences in the rostral versus caudal regions of the primary motor cortex and to its underlying somatotopic organization. The even distribution of information by LFP amplitude and 1-4 Hz power compared with the more localized distribution by 100-170 Hz power and spikes suggest that these different neurophysiological signals reflect different underlying processes that distribute information through the motor cortex during reach-to-grasp movements.  相似文献   

18.
OBJECTIVES: It is known that the high-frequency oscillations (above 400 Hz) of the somatosensory evoked potentials (SEPs) diminish during sleep while the N20 persists (Neurology 38 (1988) 64; Electroenceph clin Neurophysiol 70 (1988) 126; Electroenceph clin Neurophysiol 100 (1996) 189). We investigated possible differential effects of sleep on the 600 Hz SEPs at the thalamus and cortex. METHODS: SEPs from 10 subjects were recorded using 64 channels following electric stimulation at the wrist during awake state and sleep stages II, IV and REM. Dipole source analysis was applied to separate brain-stem, thalamic and cortical activity in the low-frequency (20-450 Hz) and the high-frequency (450-750 Hz) part of the signal. RESULTS: The low-frequency SEPs showed a non-significant increase of the latency of the N20 and a bifid change of the waveform in 3 subjects. The high-frequency SEPs showed a significant decrease of their amplitude at the level of the thalamus and cortex but not at the brain-stem. This decrease in amplitude at the thalamus and cortex were significantly correlated. There was no effect on the latency of the signal. In addition, at the cortex, differential effects on early and late parts of the 600 Hz oscillations were found by time-frequency analysis using a wavelet transformation. CONCLUSIONS: Sleep dependent decrease of the high-frequency SEPs were first observed at the thalamus pointing to the known function of the reticular thalamic nucleus regulating arousal. The results presented here provide further evidence for a thalamic origin of the 600 Hz oscillations. In addition, on the basis of the differential effects on early (up to the N20 peak) and late (between 20 and 25 ms) parts of the signal, at least one intracortical generator of these oscillations is proposed. In general, the high-frequency SEPs (600 Hz oscillations) are supposed to reflect activity of a somatosensory arousal system.  相似文献   

19.
To further clarify the neural mechanisms underlying the cortical encoding of speech sounds, we have recorded multiple unit activity (MUA) in the primary auditory cortex (A1) and thalamocortical (TC) radiations of an awake monkey to 3 consonant-vowel syllables, /da/, /ba/ and /ta/, that vary in their consonant place of articulation and voice onset time (VOT). In addition, we have examined the responses to the syllables' isolated formants and formant pairs. Response features are related to the cortical tonotopic organization, as determined by examining the responses to selected pure tones. MUA patterns that differentially reflect the spectral characteristics of the steady-state formant frequencies and formant transition onset frequencies underlying consonant place of articulation occur at sites with similarly differentiated tone responses. Whereas the detailed spectral characteristics of the speech sounds are reflected in low frequency cortical regions, both low and high frequency areas generate responses that reflect their temporal characteristics of fundamental frequency and VOT. Formant interactions modulate the responses to the whole syllables. These interactions may sharpen response differences that reflect consonant place of articulation. Response features noted in A1 also occur in TC fibers. Thus, differences in the encoding of speech sounds between the thalamic and cortical levels may include further opportunities for formant interactions within auditory cortex. One effect could be to heighten response contrast between complex stimuli with subtle acoustical differences.  相似文献   

20.
Learning to recognize and filter familiar, irrelevant sensory stimuli eases the computational burden on the cerebral cortex. Inhibition is a candidate mechanism in this filtration process, and oscillations in the cortical local field potential (LFP) serve as markers of the engagement of different inhibitory neurons. We show here that LFP oscillatory activity in visual cortex is profoundly altered as male and female mice learn to recognize an oriented grating stimulus—low-frequency (∼15 Hz peak) power sharply increases, whereas high-frequency (∼65 Hz peak) power decreases. These changes report recognition of the familiar pattern as they disappear when the stimulus is rotated to a novel orientation. Two-photon imaging of neuronal activity reveals that parvalbumin-expressing inhibitory neurons disengage with familiar stimuli and reactivate to novelty, whereas somatostatin-expressing inhibitory neurons show opposing activity patterns. We propose a model in which the balance of two interacting interneuron circuits shifts as novel stimuli become familiar.SIGNIFICANCE STATEMENT Habituation, familiarity, and novelty detection are fundamental cognitive processes that enable organisms to adaptively filter meaningless stimuli and focus attention on potentially important elements of their environment. We have shown that this process can be studied fruitfully in the mouse primary visual cortex by using simple grating stimuli for which novelty and familiarity are defined by orientation and by measuring stimulus-evoked and continuous local field potentials. Altered event-related and spontaneous potentials, and deficient habituation, are well-documented features of several neurodevelopmental psychiatric disorders. The paradigm described here will be valuable to interrogate the origins of these signals and the meaning of their disruption more deeply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号