首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant hyperthermia (MH) is an inherited autosomal dominant pharmacogenetic disorder and is the major cause of anaesthesia-induced death. Malignant hyperthermia susceptibility is usually diagnosed by the in vitro contracture test (IVCT) performed on fresh muscle biopsies exposed to caffeine and halothane, respectively. Around 50% of affected families are linked to the ryanodine receptor (RYR1) gene. The human RYR1 gene maps to chromosome 19q13.1 and encodes a protein that associates as a homotetramer and acts as a calcium-release channel from the sarcoplasmic reticulum. To date, 17 mutations have been identified in the coding region of the RYR1 gene and appear to be associated to the MH-susceptible phenotype. Here we describe a rare case of discordance between genotype (characterised by the presence of the Arg614Cys mutation in the RYR1 gene) and MH-normal typed phenotype. Although the IVCT remains a very reliable procedure for the assessment of MH status, genetic data can provide in some cases an additional aid to clinical diagnosis.  相似文献   

2.
We have previously found linkage to chromosome 1p34 in five large families with autosomal dominant non-syndromic hearing impairment (DFNA2). In all five families, the connexin31 gene ( GJB3 ), located at 1p34 and responsible for non-syndromic autosomal dominant hearing loss in two small Chinese families, has been excluded as the responsible gene. Recently, a fourth member of the KCNQ branch of the K+channel family, KCNQ4, has been cloned. KCNQ4 was mapped to chromosome 1p34 and a single mutation was found in three patients from a small French family with non-syndromic autosomal dominant hearing loss. In this study, we have analysed the KCNQ4 gene for mutations in our five DFNA2 families. Missense mutations altering conserved amino acids were found in three families and an inactivating deletion was present in a fourth family. No KCNQ4 mutation could be found in a single DFNA2 family of Indonesian origin. These results indicate that at least two and possibly three genes responsible for hearing impairment are located close together on chromosome 1p34 and suggest that KCNQ4 mutations may be a relatively frequent cause of autosomal dominant hearing loss.  相似文献   

3.
Ascending thoracic aortic aneurysms leading to type A dissections can be inherited in an autosomal dominant manner with variable age of onset and decreased penetrance, primarily in women. Three families are described with autosomal dominant inheritance of either ascending aortic aneurysms leading to type A dissections or type B dissections, and a young age of onset of aortic dissections in both men and women. Pedigree analysis suggests that a de novo mutation is responsible for the disease in one family. The discordant age of onset of aortic disease in a monozygotic twin pair in a different family indicates that environmental or stochastic factors may influence the variable expression of disease. Genetic analysis of one family excluded linkage to known loci for TAAD (TAAD1, TAAD2, FAA1, or FBN1) and sequence analysis failed to identify mutations in TGFBR2, the gene encoding transforming growth factor beta receptor type II. Thus, a novel unidentified loci may be responsible for the phenotype in these three families.  相似文献   

4.
Autosomal dominant myopathy, Paget disease of bone, and dementia constitute a unique disorder (MIM 605382). Here we describe the clinical, biochemical, radiological, and pathological characteristics of 49 affected (23 male, 26 female) individuals from four unrelated United States families. Among these affected individuals 90% have myopathy, 43% have Paget disease of bone, and 37% have premature frontotemporal dementia. EMG shows myopathic changes and muscle biopsy reveals nonspecific myopathic changes or blue-rimmed vacuoles. After candidate loci were excluded, a genome-wide screen in the large Illinois family showed linkage to chromosome 9 (maximum LOD score 3.64 with marker D9S301). Linkage analysis with a high density of chromosome 9 markers generated a maximum two-point LOD score of 9.29 for D9S1791, with a maximum multipoint LOD score of 12.24 between D9S304 and D9S1788. Subsequent evaluation of three additional families demonstrating similar clinical characteristics confirmed this locus, refined the critical region, and further delineated clinical features of this unique disorder. Hence, autosomal dominant inclusion body myopathy (HIBM), Paget disease of bone (PDB), and frontotemporal dementia (FTD) localizes to a 1.08-6.46 cM critical interval on 9p13.3-12 in the region of autosomal recessive IBM2.  相似文献   

5.
Patients with pseudoachondroplasia have a skeletal dysplasia with marked short stature. The most common cause of this condition is an autosomal dominant mutation, although autosomal recessive inheritance has been reported. Linkage to 2 cartilage-specific candidate genes, type II collagen (COL2A1) and proteoglycan link protein genes (CRTL1), was tested in 9 autosomal dominant families with pseudoachondroplasia. Tight linkage to these candidate genes was excluded with LOD scores for COL2A1 of -2.45 at theta = 0.05 and for CRTL1 of -7.28 at theta = 0.001. Discordant inheritance of the disease phenotype with each of these genes was also observed. Thus, these 2 candidate genes can be excluded as the cause of disease in these families.  相似文献   

6.
Limb-girdle muscular dystrophy (LGMD) is a genetic disorder characterized by progressive weakness of pelvic and scapular girdles and great clinical variability. It is a highly heterogeneous disease with 16 identified loci: six of them autosomal dominant (AD) (LGMD1) and 10 autosomal recessive (AR) (LGMD2). The responsible genes are known for three of the AD-LGMD and for all 10 AR-LGMD. Linkage analysis excluded these 16 loci in a Brazilian-Caucasian family with 12 patients affected by AD late-onset LGMD associated with progressive fingers and toes flexion limitation. Biceps muscle biopsy from one of the patients showed a predominantly myopathic histopathological pattern, associated with rimmed vacuoles. A genomewide scan was performed which mapped a new locus for this disorder at 4p21 with a maximum two-point lod score of 6.62 for marker D4S2964. Flanking markers place this locus between D4S2947 and D4S2409, within an interval of 9 cM. We propose to classify this AD form of LGMD as LGMD1G.  相似文献   

7.
Malignant hyperthermia (MH) in man is an autosomal dominant disorder of skeletal muscle Ca(2+)-regulation. During anesthesia in predisposed individuals, it is triggered by volatile anesthetics and depolarizing muscle relaxants. In >50% of the families, MH susceptibility is linked to the gene encoding the skeletal muscle ryanodine receptor (RYR1), the calcium release channel of the sarcoplasmic reticulum, on chromosome 19q12-13.2. To date, 21 RYR1 mutations have been identified in a number of pedigrees. Four of them are also associated with central core disease (CCD), a congenital myopathy. Screening for these 21 mutations in 105 MH families including 10 CCD families phenotyped by the in vitro contracture test (IVCT) according to the European protocol revealed the following approximate distribution: 9% Arg-614-Cys, 1% Arg-614-Leu, 1% Arg-2163-Cys, 1% Val-2168-Met, 3% Thr-2206-Met and 7% Gly-2434-Arg. In one CCD family, the disease was caused by a recently reported MH mutation, Arg-2454-His. Two novel mutations, Thr-2206-Arg and Arg-2454-Cys were detected, each in a single pedigree. In the 109 individuals of the 25 families with RYR1 mutations cosegregation between genetic result and IVCT was almost perfect, only three genotypes were discordant with the IVCT phenotypes, suggesting a true sensitivity of 98.5% and a specificity of minimally 81.8% for this test. Screening of the transmembraneous region of RYR1 did not yield a new mutation confirming the cytosolic portion of the protein to be of main functional importance for disease pathogenesis.  相似文献   

8.
Abnormal hepatic copper accumulation is recognized as an inherited disorder in man, mouse, rat and dog. The major cause of hepatic copper accumulation in man is a dysfunctional ATP7B gene, causing Wilson disease (WD). Mutations in the ATP7B genes have also been demonstrated in mouse and rat. The ATP7B gene has been excluded in the much rarer human copper overload disease non-Indian childhood cirrhosis, indicating genetic heterogeneity. By investigating the common autosomal recessive copper toxicosis (CT) in Bedlington terriers, we have identified a new locus involved in progressive liver disease. We examined whether the WD gene ATP7B was also causative for CT by investigating the chromosomal co-localization of ATP7B and C04107, using fluorescence in situ hybridization (FISH). C04107 is an anonymous microsatellite marker closely linked to CT. However, BAC clones containing ATP7B and C04107 mapped to the canine chromosome regions CFA22q11 and CFA10q26, respectively, demonstrating that WD cannot be homologous to CT. The copper transport genes CTR1 and CTR2 were also excluded as candidate genes for CT since they both mapped to canine chromosome region CFA11q22. 2-22.5. A transcribed sequence identified from the C04107-containing BAC was found to be homologous to a gene expressed from human chromosome 2p13-p16, a region devoid of any positional candidate genes.   相似文献   

9.
Wilson disease (WD) is an autosomal recessive disorder resulting from mutations in the ATP7B gene, with over 600 mutations described. Identification of mutations has made genetic diagnosis of WD feasible in many countries. The heterogeneity of ATP7B mutants is, however, yet to be identified in the Indian population. We analyzed the mutational pattern of WD in a large region of Western India. We studied patients (n = 52) for ATP7B gene mutations in a cohort of families with WD and also in first‐degree relatives (n = 126). All 21 exon–intron boundaries of the WD gene were amplified and directly sequenced. We identified 36 different disease‐causing mutations (31 exonic and five intronic splice site variants). Fourteen novel mutations were identified. Exons 2, 8, 13, 14, and 18 accounted for the majority of mutations (86.4%). A previously recognized mutation, p.C271*, and the novel mutation p.E122fs, were the most common mutations with allelic frequencies of 20.2% and 10.6%, respectively. Frequent homozygous mutations (58.9%) and disease severity assessments allowed analysis of genotype–phenotype correlations. Our study significantly adds to the emerging data from other parts of India suggesting that p.C271* may be the most frequent mutation across India, and may harbor a moderate to severely disabling phenotype with limited variability.  相似文献   

10.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant neuromuscular disorder associated with an expansion of CTG trinucleotide repeats in the 3'-untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. The RNA gain-of-function hypothesis proposes that mutant DMPK mRNA alters the function and localization of alternative splicing regulators, which are critical for normal RNA processing. Previously, we found alternative splicing variants of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1), which excluded exon 22, in skeletal muscle of DM1 patients. In the present study, we analyzed the molecular mechanisms responsible for the splicing dysregulation of SERCA1. Five 'YGCU(U/G)Y' motifs that could potentially serve as Muscleblind-like 1, (MBNL1)-binding motifs, are included downstream from the SERCA1 exon 22. Exon trapping experiments showed that MBNL1 acts on the 'YGCU(U/G)Y' motif, and positively regulates exon 22 splicing. Of the five MBNL1 motifs in intron 22, the second and third sites were important for regulation of exon 22 splicing, but the other three binding sites were not required. Overexpression of the CUG repeat expansion of DMPK mRNA resulted in exclusion of exon 22 of SERCA1. These results suggest that sequestration of MBNL1 into the CUG repeat expansion of DMPK mRNA could cause the exclusion of SERCA1 exon 22, and the expression of this aberrant splicing form of SERCA1 could affect the regulation of Ca(2+) concentration of sarcoplasmic reticulum in DM patients.  相似文献   

11.
Spectrum of novel ATP2A2 mutations in patients with Darier's disease.   总被引:3,自引:0,他引:3  
Darier's disease (DD) is an autosomal dominantly inherited skin disorder characterized by loss of adhesion between epidermal cells (acantholysis) and abnormal keratinization. Recently, we identified ATP2A2 encoding the sarco/endoplasmic reticulum Ca(2+)ATPase isoform 2 as the defective gene in DD. Now we report a spectrum of ATP2A2 mutations in 19 families and six sporadic cases with DD and investigate genotype-phenotype correlations. All 21 exons and flanking intron boundaries were amplified and screened for mutations by conformation-sensitive gel electrophoresis and direct sequencing. We identified 24 novel mutations that are scattered throughout the ATP2A2 gene. Two families shared an identical mutation on a common disease-associated haplotype, suggesting inheritance from a common ancestor. The majority of the mutations (54%; 13/24) led to a premature termination codon which further supports the proposal that haploin-sufficiency is a common molecular mechanism for DD. Thirty-eight per cent of mutations (9/24) result in non-conservative amino acid substitutions at highly conserved positions. Two mutations predict mutated polypeptides lacking or carrying additional amino acids. Marked inter- and intrafamilial phenotypic variability of the disease was observed. These results illustrate the considerable diversity of ATP2A2 mutations causing DD and suggest that additional factors are important contributors to the clinical phenotype.  相似文献   

12.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by a combination of neurological symptoms and hamartomatous growths, and caused by mutations in the TSC1 and TSC2 genes. Overall, TSC2 mutations are associated with a more severe disease phenotype. We identified the c.3598C>T (R1200W) change in the TSC2 gene in seven different families. The clinical phenotypes in the families were mild, characterized by mild skin lesions, remitting epilepsy and a lack of severe mental retardation or major organ involvement. Functional analysis of the TSC2 R1200W variant, and four other TSC2 missense variants associated with a mild TSC phenotype, confirmed that the changes disrupted the TSC1-TSC2 function. Interestingly however, in each case, the TSC1-TSC2 interaction was not affected by the amino acid substitution.  相似文献   

13.
Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura inherited with an autosomal dominant pattern. Here, we report the genetic analysis of four families and one sporadic case with hemiplegic migraine (HM) in whom we searched for mutations in the three genes associated with the disease CACNA1A, ATP1A2 and SCN1A. Two novel amino acid changes p.Arg65Trp and p.Tyr9Asn, in the Na,K-adenosine triphosphatase (ATPase) alpha-2 subunit encoded by the ATP1A2 gene, were found in one FHM family and in the sporadic case, respectively. These mutations are peculiar for their location in the extreme N-terminus, an uncommon mutation target in this protein. Low frequency of migraine attacks in all our mutant patients with low complexity of the associated aura symptoms in the sporadic case is also observed. Besides the two novel mutations, the data here reported confirm the involvement of ATP1A2 gene in the sporadic form of HM, while the negative results on the other families tested for all genes known in HM strengthen the hypothesis of the existence of at least another locus involved in FHM.  相似文献   

14.
A locus for spondylocarpotarsal synostosis syndrome at chromosome 3p14   总被引:3,自引:0,他引:3  
Spondylocarpotarsal synostosis syndrome is a rare autosomal recessive disorder characterised by vertebral fusions, frequently manifesting as an unsegmented vertebral bar, as well as fusions of the carpal and tarsal bones.

In a study of three consanguineous families and one non-consanguineous family, linkage analysis was used to establish the chromosomal location of the disease gene. Linkage analysis localised the disease gene to chromosome 3p14. A maximum lod score of 6.49 (q = 0) was obtained for the marker at locus D3S3532 on chromosome 3p. Recombination mapping narrowed the linked region to the 5.7 cM genetic interval between the markers at loci D3S3724 and D3S1300. A common region of homozygosity was found between the markers at loci D3S3724 and D3S1300, defining a physical interval of approximately 4 million base pairs likely to contain the disease gene.

Identification of the gene responsible for this disorder will provide insight into the genes that play a role in the formation of the vertebral column and joints.

  相似文献   

15.
Stormorken syndrome is a rare autosomal dominant disorder characterized by a phenotype that includes miosis, thrombocytopenia/thrombocytopathy with bleeding time diathesis, intellectual disability, mild hypocalcemia, muscle fatigue, asplenia, and ichthyosis. Using targeted sequencing and whole‐exome sequencing, we identified the c.910C > T transition in a STIM1 allele (p.R304W) only in patients and not in their unaffected family members. STIM1 encodes stromal interaction molecule 1 protein (STIM1), which is a finely tuned endoplasmic reticulum Ca2+ sensor. The effect of the mutation on the structure of STIM1 was investigated by molecular modeling, and its effect on function was explored by calcium imaging experiments. Results obtained from calcium imaging experiments using transfected cells together with fibroblasts from one patient are in agreement with impairment of calcium homeostasis. We show that the STIM1 p.R304W variant may affect the conformation of the inhibitory helix and unlock the inhibitory state of STIM1. The p.R304W mutation causes a gain of function effect associated with an increase in both resting Ca2+ levels and store‐operated calcium entry. Our study provides evidence that Stormorken syndrome may result from a single‐gene defect, which is consistent with Mendelian‐dominant inheritance.  相似文献   

16.
Ellis-van Creveld syndrome (EVC) is a relatively rare, usually non-lethal, autosomal recessive skeletal dysplasia characterized by short stature, polydactyly, cardiac and renal anomalies. Linkage analysis has localized the disease gene to chromosome 4p16, with the markers at loci D4S827 and D4S3135 defining the centromeric and telomeric limits of the linked interval, respectively. There has been long-term speculation that asphyxiating thoracic dystrophy (ATD) and the short-rib polydactyly syndromes (SRP) represent the severe end of the EVC disease spectrum. We performed linkage analysis using markers from the EVC region in seven families manifesting either ATD or SRP type III. In two of the families, one segregating ATD and one SRP kindred, linkage of the phenotype to the EVC region was excluded. In the other five families linkage of the phenotype to the EVC region could not be excluded, but the families were too small for linkage to the region to be established. The exclusion of the EVC region in ATD and SRP III families suggests that locus heterogeneity exists within the short-rib dysplasia (with and without polydactyly) group of disorders.  相似文献   

17.
Darier's disease (DD) is an autosomal dominant skin disorder characterized clinically by multiple keratotic papules, and histologically by focal loss of adhesion between epidermal cells (acantholysis) and by abnormal keratinization. Variant forms of cutaneous phenotype, sometimes familial, have been described. Associated neuropsychiatric features, including mental handicap, schizophrenia, bipolar disorder and epilepsy, have also been reported. The cause of DD was shown recently to be mutation in the ATP2A2 gene at 12q24.1, which encodes the sarco-endoplasmic reticulum calcium ATPase type 2 (SERCA2). Here, we show that while both common isoforms of SERCA2 are expressed in the cytoplasm of cultured keratinocytes and fibroblasts, in adult skin sections only the longer isoform, SERCA2b, was expressed abundantly in epidermal structures. Extended mutation analysis in European DD patients using single-strand conformation polymorphism and/or direct sequencing identified 40 different patient-specific mutations in 47 families. The majority (23/40) were likely to result in nonsense-mediated RNA decay. The remaining 17 were missense mutations distributed throughout the protein and were associated significantly with atypical clinical features. The clearest association was with the familial haemorrhagic variant where all four families tested had a missense mutation. Three of the families (one Scottish family and two unrelated Italian families) exhibited the same N767S substitution in the M5 transmembrane domain, and a fourth family, from Sweden, had a C268F substitution in the M3 transmembrane domain. Neuropsychiatric features did not appear to be associated with a specific class of mutation and may be an intrinsic, but inconsistent, effect of defective ATP2A2 expression.  相似文献   

18.
Auriculo-condylar syndrome (ACS), an autosomal dominant disorder of first and second pharyngeal arches, is characterized by malformed ears ('question mark ears'), prominent cheeks, microstomia, abnormal temporomandibular joint, and mandibular condyle hypoplasia. Penetrance seems to be complete, but there is high inter- and intra-familial phenotypic variation, with no evidence of genetic heterogeneity. We herein describe a new multigeneration family with 11 affected individuals (F1), in whom we confirm intra-familial clinical variability. Facial asymmetry, a clinical feature not highlighted in other ACS reports, was highly prevalent among the patients reported here. The gene responsible for ACS is still unknown and its identification will certainly contribute to the understanding of human craniofacial development. No chromosomal rearrangements have been associated with ACS, thus mapping and positional cloning is the best approach to identify this disease gene. To map the ACS gene, we conducted linkage analysis in two large ACS families, F1 and F2 (F2; reported elsewhere). Through segregation analysis, we first excluded three known loci associated with disorders of first and second pharyngeal arches (Treacher Collins syndrome, oculo-auriculo-vertebral spectrum, and Townes-Brocks syndrome). Next, we performed a wide genome search and we observed evidence of linkage to 1p21.1-q23.3 in F2 (LOD max 3.01 at theta=0). Interestingly, this locus was not linked to the phenotype segregating in F1. Therefore, our results led to the mapping of a first locus of ACS (ACS1) and also showed evidence for genetic heterogeneity, suggesting that there are at least two loci responsible for this phenotype.  相似文献   

19.
Familial hemiplegic migraine is a rare autosomal dominant subtype of migraine with aura. Three genes have been identified, all involved in ion transport. There is considerable clinical variation associated with FHM mutations. Genotype–phenotype correlation studies are needed, but are challenging mainly because the number of carriers of individual mutations is low. One exception is the recurrent T666M mutation in the FHM1 CACNA1A gene that was identified in almost one-third of FHM families and showed variable associated clinical features and severity, both within and among FHM families. Similar studies in the FHM2 ATP1A2 gene have not been performed because of the low number of carriers with individual mutations. Here we report on the recurrence of ATP1A2 mutations M731T and T376M that affect sodium–potassium pump functioning in two Portuguese FHM families. Considerably increasing the number of mutation carriers with these mutations indicated a clear genotype–phenotype correlation: both mutations are associated with pure FHM. In addition, we show that recurrent mutations for ATP1A2 are more frequent than previously thought, which has implications for genotype–phenotype correlations and genetic testing.  相似文献   

20.
Oculopharyngeal muscular dystrophy (OPMD) is a late onset autosomal dominant muscle disorder. The OPMD-locus has been mapped to chromosome 14q11.2-q13. The polyadenylate binding protein nuclear 1 (PABPN1; PABP2) gene has been identified as the mutated gene. The mutation consists of a short meiotically stable trinucleotide repeat in the first exon of PABPN1 gene. We have investigated Dutch OPMD patients from four unrelated families and identified a new mutation in two of the four families. Instead of a repeat expansion we found a duplication in the first exon of the PABPN1 gene (c.27_28ins12, p.11_12insAAAA). The identification of this new mutation supports the theory of unequal crossing-over as molecular mechanism causing the mutation in the PABPN1 gene responsible for OPMD, and not the slippage model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号