首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pixel-by-pixel spatiotemporal progression of focal ischemia (permanent occlusion) in rats was investigated using quantitative perfusion and diffusion magnetic resonance imaging every 30 minutes for 3 hours. The normal left-hemisphere apparent diffusion coefficient (ADC) was 0.76 +/- 0.03 x 10(-3) mm(2)/s and CBF was 0.7 +/- 0.3 mL x g(-1) x min(-1) (mean +/- SD, n=5). The ADC and CBF viability thresholds yielding the lesion volumes (LV) at 3 hours that best approximated the 2,3,5-triphenyltetrazolium chloride (TTC) infarct volumes (200 +/- 30 mm(3)) at 24 hours were 0.53 +/- 0.02 x 10(-3) mm(2)/s (30% +/- 2% reduction) and 0.30 +/- 0.09 mL x g(-1) x min(-1) (57% +/- 11% reduction), respectively. Temporal evolution of the ADC- and CBF-defined LV showed a significant "perfusion-diffusion mismatch" up to 2 hours (P < 0.05, n = 11), a potential therapeutic window. Based on the viability thresholds, three pixel clusters were identified on the CBF-ADC scatterplots: (1) a "normal" cluster with normal CBF and ADC, (2) an "ischemic core" cluster with markedly reduced CBF and ADC, and (3) a "mismatch" cluster with reduced CBF but slightly reduced ADC. These clusters were color-coded and mapped onto the image and CBF-ADC spaces. Lesions grew peripheral and medial to the initial ADC abnormality. In contrast to the CBF distribution, the ADC distribution in the ischemic hemisphere was bimodal; the relatively time-invariant bimodal-ADC minima were 0.57 +/- 0.02 x 10(-3) mm(2)/s (corresponding CBF 0.35 +/- 0.04 mL x g(-1) x min(-1)), surprisingly similar to the TTC-derived thresholds. Together, these results illustrate an analysis approach to systemically track the pixel-by-pixel spatiotemporal progression of acute ischemic brain injury.  相似文献   

2.
High-resolution (200 x 200 x 1,500 microm3) imaging was performed to derive quantitative cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) maps in stroke rats (permanent occlusion) every 30 minutes up to 3 hours after occlusion onset, followed by histology at 24 hours. An improved automated iterative-self-organizing-data-analysis-algorithm (ISODATA) was developed to dynamically track ischemic tissue fate on a pixel-by-pixel basis during the acute phase. ISODATA-resolved clusters were overlaid on the CBF-ADC scatterplots and image spaces. Tissue volume ADC, and CBF of each ISODATA cluster were derived. In contrast to the single-cluster normal left hemisphere (ADC = 0.74 +/- 0.02 x 10(-3) mm2/s, CBF = 1.36 +/- 0.22 mL g(-1)min(-1), mean +/- SD, n = 8), the right ischemic hemisphere exhibited three ISODATA clusters, namely: "normal" (normal ADC and CBF), "ischemic core" (low CBF and ADC), and at-risk "perfusion-diffusion mismatch" (low CBF but normal ADC). At 180 minutes, the mismatch disappeared in five rats (Group I, 180-minute "core" lesion volume = 255 +/- 62 mm3 and 24-hour infarct volume = 253 +/- 55 mm3, P > 0.05), while a substantial mismatch persisted in three rats (Group II, 180-minute CBF-abnormal volume = 198 +/- 7 mm3 and 24-hour infarct volume 148 +/- 18 mm3, P < 0.05). The CBF (0.3 +/- 0.09 mL g(-1)min(-1)) of the "persistent mismatch" (Group II, 0.3 +/- 0.09 mL g(-1)min(-1)) was above the CBF viability threshold (0.2 to 0.3 mL g(-1)min(-1)) throughout and its ADC (0.70 +/- 0.03 x 10(-3) mm2/s) did not decrease as ischemia progressed. In contrast, the CBF (0.08 +/- 0.03 mL g(-1)min(-1)) of the analogous brain region in Group I was below the CBF viability threshold, and its ADC gradually decreased from 0.63 +/- 0.05 to 0.43 +/- 0.03 x 10(-3) mm2/s (ADC viability threshold = 0.53 +/- 0.02 x 10(-3) mm2/s). The modified ISODATA analysis of the ADC and CBF tissue characteristics during the acute phase could provide a useful and unbiased means to characterize and predict tissue fates in ischemic brain injury and to monitor therapeutic intervention.  相似文献   

3.
This study quantitatively determined the effect of salbutamol (1 microgram kg-1), a beta 2-adrenoceptor agonist, on the perfusion of the brain microvasculature, cerebral O2 consumption, O2 extraction and cerebral blood flow (CBF) in conscious rat. Indices of arteriolar and capillary structure and the percentage of the total cerebral microvascular volume/mm3 (% Vv) and number/mm2 (% Na) perfused were determined. These parameters were obtained from the perfused microvessels, identified by the presence of fluorescein isothiocyanate (FITC) - dextran, and compared with the entire microvascular bed, identified by alkaline phosphatase stain. Cerebral O2 extraction was determined microspectrophotometrically and CBF was determined using 14[C]iodoantipyrine in another group of salbutamol-treated rats. The acute administration of salbutamol did not alter systemic arterial blood pressure. Significant tachycardia was noted in the salbutamol-treated rats. Salbutamol resulted in a significant increase in the percentage of arterioles perfused. Average percentage perfused capillary Na increased significantly from 46 +/- 2 to 88 +/- 1%; %Vv increased significantly and similarly in the arteriolar and capillary beds in all brain regions examined. Average cerebral O2 consumption increased significantly from 3.0 +/- 0.2 to 7.4 +/- 0.7 ml O2 min-1 100 g-1 with salbutamol, while cerebral O2 extraction was unchanged. Average CBF increased from 50 +/- 2 to 142 +/- 9 ml min-1 100 g-1 with salbutamol. Salbutamol may increase the perfusion of the regional microvasculature by increasing cerebral O2 consumption (metabolic vasodilation) and CBF and microvascular perfusion secondarily, although a direct effect of salbutamol on cerebral microvessels cannot be ruled out.  相似文献   

4.
Lipopolysaccharide (LPS), administered 72 hours before middle cerebral artery (MCA) occlusion, confers significant protection against ischemic injury. For example, in the present study, LPS (0.9 mg/kg intravenously) induced a 31% reduction in infarct volume (compared with saline control) assessed 24 hours after permanent MCA occlusion. To determine whether LPS induces true tolerance to ischemia, or merely attenuates initial ischemic severity by augmenting collateral blood flow, local CBF was measured autoradiographically 15 minutes after MCA occlusion. Local CBF did not differ significantly between LPS- and saline-pretreated rats (e.g., 34 +/- 10 and 29 +/- 15 mL x 100 g(-1) x min(-1) for saline and LPS pretreatment in a representative region of ischemic cortex), indicating that the neuroprotective action of LPS is not attributable to an immediate reduction in the degree of ischemia induced by MCA occlusion, and that LPS does indeed induce a state of ischemic tolerance. In contrast to the similarity of the initial ischemic insult between tolerant (LPS-pretreated) and nontolerant (saline-pretreated) rats, microvascular perfusion assessed either 4 hours or 24 hours after MCA occlusion was preserved at significantly higher levels in the LPS-pretreated rats than in controls. Furthermore, the regions of preserved perfusion in tolerant animals were associated with regions of tissue sparing. These results suggest that LPS-induced tolerance to focal ischemia is at least partly dependent on the active maintenance of microvascular patency and hence the prevention of secondary ischemic injury.  相似文献   

5.
BACKGROUND: Mapping of brain perfusion using bolus tracking methods is increasingly used to assess the amount and severity of cerebral ischemia in acute stroke. Using relative perfusion maps, however, it is difficult to identify the tissue at risk-maximum (TARM) of infarction with sufficient reliability and reproducibility. METHODS: We analysed 76 perfusion computed tomography (PCT) derived maps of cerebral blood flow (CBF), cerebral blood volume (CBV) and time-to-peak (TTP) in 40 acute stroke patients using multidetector row technology and standard software (Somatom VolumeZoom, Siemens, Germany). 'Window narrowing' of the color maps was performed until color homogenisation of the contralateral unaffected hemisphere was reached. Tissue still depictable on the affected hemisphere after sufficient window narrowing was defined as the TARM. We analysed presence and size of the TARM on PCT maps, its relative perfusion values by comparison with contralateral, mirrored tissue, and its correlation with occurrence and final size of cerebral infarction on follow-up imaging. RESULTS: An ischemic area was visible in 64, 58.9 and 72.6% on the conventional CBF, CBV and TTP maps, respectively. After window narrowing, a TARM was present in 56.8, 54.1 and 63.0% of slices comprising 11.9, 11.6 and 21.1% of the ipsilateral hemisphere (CBF, CBV and TTP), respectively. The relative perfusion values were 38.7 (CBF) and 43.0% (CBV) for the entire ischemic area and 11.3 (CBF) and 13.3% (CBV) for the TARM. Definite cerebral infarction was visible on 68.1% of the target slices comprising 23.7 +/- 22.9% of the ipsilateral hemisphere. The size of the TARM correlated slightly better with the final infarction size (r=0.74-0.82) than the entire ischemic area (r=0.61-0.79). With respect to the occurrence of cerebral infarction, the presence of a TARM on CBF maps showed the best positive (97.9%) and negative (72.7%) predictability. DISCUSSION: On PCT maps, window narrowing provides a standardized display of the TARM in peracute stroke. The severely reduced values of relative CBF and CBV suggest the TARM to indicate tissue most prone to infarction.  相似文献   

6.
Laser-scanning confocal microscopy (LSCM) was used to measure at high resolution cerebral plasma volumes (perfusion) using two fluorescent plasma markers in a rat model of embolic stroke. This application of LSCM to study the microvascular circulation in embolic stroke was developed as an alternative to autoradiography to measure cerebral perfusion. An additional benefit of LSCM is that it quantitates with great accuracy the structural relationships of the microcirculation to cells and the pathological alterations of the ischemic brain. Autoradiography allows only a quantitative analysis of cerebral perfusion. For example, in order to study the microcirculation and its relationship to blood brain barrier damage, the volume of perfused cerebral capillaries was measured by administering two fluorescent plasma markers (FITC-dextran and Evans blue) intravenously to a rat. Evans blue was administered before cerebral ischemia and FITC-dextran administered post-ischemia 1 min before sacrifice. Volumes of plasma perfusion were analyzed by means of a system developed for 3D analysis of fixed and stained serial brain histologies. Plasma volumes for the non-ischemic cerebral cortex were 1.00%+/-0.38% while plasma volumes in the caudate/putamen were 0.69%+/-0.17% in good agreement with the previously published values using the autoradiography method. The architecture of the capillaries in the ischemic core showed perfusion of Evans blue but there was no flow of FITC dextran. Our work represents a novel application of this technology to investigation of cerebral vascular disease and identifies its potential to become an important tool for investigation of cerebral pathology.  相似文献   

7.
Reduction of functional capillary density in human brain after stroke   总被引:1,自引:0,他引:1  
The blood flow of brain tissue often returns to normal after an ischemic episode. As "luxury" rather than "reactive" reperfusion, this hyperemia is associated with low metabolism. It is not known to what extent the high blood flow accompanies a high, normal, or low density of capillaries. The resolution of this question may indicate whether the functional capillary density is variable and, if so, whether it is coupled to blood flow or metabolism. To answer these questions, we defined functional capillaries as capillaries that transport glucose. We then calculated the density of functional capillaries (Dcap) and the mean time of transit of blood through the capillaries (tcap) from hemodynamic variables obtained in vivo by positron tomography of five patients afflicted by cerebral ischemic stroke. Each patient was studied twice, within 36 h of the insult and 1 week later. We identified nominally "ischemic" regions in the first study as cortical gray matter regions, contiguous with the ischemic focus, in which the magnitude of blood flow did not exceed 20 ml 100 g-1 min-1. In these regions, values of metabolism and functional capillary density were proportionately low compared with normal values obtained in the contralateral hemisphere. The studies revealed a reduction of the functional density of exchange vessels in postischemic brain tissue as soon as 36 h after the insult. In "ischemic" regions, within 36 h of the insult, the net extraction of oxygen was inversely related to the capillary transit time and appeared to be limited mainly by the low functional density of the capillaries. Contrary to expectations, the reduced density persisted, even when more than adequate perfusion of the tissue returned. For these reasons, we concluded that changes of the capillary density were associated with changes of the metabolism of the tissue rather than with blood flow.  相似文献   

8.
Serial measurements of cerebral blood flow (CBF) were performed in 12 patients with acute symptoms of ischemic cerebrovascular disease. CBF was measured by xenon-133 inhalation and single photon emission computer tomography. Six patients had severe strokes and large infarcts on the CT scan. They showed in the acute phase (Days 1-3) very large low-flow areas, larger than the hypodense areas seen on the CT scan. The cerebral vasoconstrictor and vasodilator capacity was tested in the acute phase following aminophylline and acetazolamide, respectively. A preserved but reduced reactivity was seen at both tests in all 6 cases in the infarct and the peri-infarct areas. On Days 5-25, 4 of the patients had transitory increases (59-108%) of CBF, probably corresponding to lysis of an intracerebral embolic occlusion. The other 2 patients showed on Days 7-15 only a moderate CBF increase (appr. 20%), both had occlusion of the relevant internal carotid artery. In all 6 patients, CBF studies at 2 and 6 months resembled the acute phase, showing large areas with reduced flow. At the 6 months follow-up, the vasodilatory stress test was repeated, and all but one showed a preserved but reduced vasoreactivity in the infarct and peri-infarct tissue. Of the remaining 6 patients, one had a pontine infarct and one had no lesions on the CT scan, both having normal angiograms and CBF maps. Four patients had small deep or subcortical CT lesions, and showed a slight, but persistent CBF reduction of about 6-8% in the parietal region on the affected side. No changes in the flow pattern were seen at the vasoreactive studies. A likely explanation for the finding of superjacent low-flow areas is an intrahemispheric uncrossed diaschisis. This interpretation is discussed in relation to the peri-infarct low-flow area seen in the 6 cases with large infarcts.  相似文献   

9.
The functional consequences of increased capillary densities in the brain resulting from vascular endothelial growth factor (VEGF165) overexpression are unknown. Therefore, the authors measured local CBF using the iodo-[14C]antipyrine technique in transgenic mice expressing brain-specifically sixfold higher VEGF165 levels and in nontransgenic littermates. To reveal possible compensatory vasoconstriction, CBF was also measured during severe hypercapnia (Paco2 > 130 mm Hg). Simultaneously, local capillary density, perfusion state, and blood-brain-barrier permeability were assessed. Using the 2-[14C]deoxyglucose method, metabolic effects of VEGF over-expression could be excluded. In transgenic mice all capillaries showed normal morphology and a tight blood-brain barrier. However, 3% nonperfused capillaries in some brain structures indicate ongoing angiogenesis. Capillary density was drastically increased in transgenic mice in white matter structures (70% to 185%), the dentate gyrus (143%), and caudate nucleus (86%). In all other brain structures investigated, capillary densities were moderately increased by approximately 20%. Normocapnic CBF did not differ between transgenic and nontransgenic mice. During maximal hypercapnic vasodilation, CBF was 20% to 30% higher in transgenic mice, although only in brain structures where capillary density was increased more than twofold. These findings suggest that attenuated CBF in transgenic mice during normocapnia is only partly due to a compensatory vasoconstriction, and that microvascular networks in transgenic brains might be ineffectively constructed.  相似文献   

10.
Acetazolamide effects on cerebral blood flow in acute reversible ischemia   总被引:1,自引:0,他引:1  
Cerebral blood flow (CBF) was studied in 4 patients with acute reversible ischemia (RIND). To test the ischemic areas' vasoreactivity, CBF was measured by the Xenon-133 inhalation method, before and after acetazolamide injected intravenously. At the baseline CBF study, 3 patients presented hypoperfused areas while one patient had increased CBF over the affected hemisphere. The acetazolamide test, showed in this latter case a "steal phenomenon" while in the other 3 an increase of perfusion was evidenced, in areas of normal flow, as well as in areas with reduced flow. These results suggest that in the acute phase of patients with RIND, when brain regions of hypoperfusion and neurological signs are still present, the vasomotor response may be preserved.  相似文献   

11.
Magnetic resonance imaging (MRI) and spectroscopy (MRS) were used at a magnetic field strength of 7 T to measure CBF and CMRO2 in the sensorimotor cortex of mature rats at different levels of cortical activity. In rats maintained on morphine anesthesia, transitions to lower activity and higher activity states were produced by administration of pentobarbital and nicotine, respectively. Under basal conditions of morphine sulfate anesthesia, CBF was 0.75 +/- 0.09 mL x g(-1) x min(-1) and CMRO2 was 3.15 +/- 0.18 micromol x g(-1) x min(-1). Administration of sodium pentobarbital reduced CBF and CMRO2 by 66% +/- 16% and 61% +/- 6%, respectively (i.e., "deactivation"). In contrast, administration of nicotine hydrogen tartrate increased CBF and CMRO2 by 41% +/- 5% and 30% +/- 3%, respectively (i.e., "activation"). The resting values of CBF and CMRO2 for alpha-chloralose anesthetized rats were 0.40 +/- 0.09 mL x g(-1) x min(-1) and 1.51 +/- 0.06 micromol x g(-1) x min(-1), respectively. Upon forepaw stimulation, CBF and CMRO2 were focally increased by 34% +/- 10% and 26% +/- 12%, respectively, above the resting nonanesthetized values (i.e., "activation"). Incremental changes in CBF and CMRO2, when expressed as a percentage change for "deactivation" and "activation" from the respective control conditions, were linear (R2 = 0.997) over the entire range examined with the global and local perturbations. This tight correlation for cerebral oxygen delivery in vivo is supported by a recent model where the consequence of a changing effective diffusivity of the capillary bed for oxygen, D, has been hypothetically shown to be linked to alterations in CMRO2 and CBF. This assumed functional characteristic of the capillary bed can be theoretically assessed by the ratio of fractional changes in D with respect to changes in CBF, signified by omega. A value 0.81 +/- 0.23 was calculated for omega with the in vivo data presented here, which in turn corresponds to a supposition that the effective oxygen diffusivity of the capillary bed is not constant but presumably varies to meet local requirements in oxygen demand in a similar manner with both "deactivation" and "activation."  相似文献   

12.
An algorithm was developed to statistically predict ischemic tissue fate on a pixel-by-pixel basis. Quantitative high-resolution (200 x 200 microm) cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) were measured on acute stroke rats subjected to permanent middle cerebral artery occlusion and an automated clustering (ISODATA) technique was used to classify ischemic tissue types. Probability and probability density profiles were derived from a training data set (n=6) and probability maps of risk of subsequent infarction were computed in another group of animals (n=6) as ischemia progressed. Predictions were applied to overall tissue fate. Performance measures (sensitivity, specificity, and receiver operating characteristic) showed that prediction made based on combined ADC+CBF data outperformed those based on ADC or CBF data alone. At the optimal operating points, combined ADC+CBF predicted tissue infarction with 86%+/-4% sensitivity and 89%+/-6% specificity. More importantly, probability of infarct (P(I)) for different ISODATA-derived ischemic tissue types were also computed: (1) For the 'normal' cluster in the ischemic right hemisphere, P(I) based on combined ADC+CBF data (P(I)[ADC+CBF]) accurately reflected tissue fate, whereas P(I)[ADC] and P(I)[CBF] overestimated infarct probability. (2) For the 'perfusion-diffusion mismatch' cluster, P(I)[ADC+CBF] accurately predicted tissue fate, whereas P(I)[ADC] underestimated and P(I)[CBF] overestimated infarct probability. (3) For the core cluster, P(I)[ADC+CBF], P(I)[ADC], and P(I)[CBF] prediction were high and similar ( approximately 90%). This study shows an algorithm to statistically predict overall, normal, ischemic core, and 'penumbral' tissue fate using early quantitative perfusion and diffusion information. It is suggested that this approach can be applied to stroke patients in a computationally inexpensive manner.  相似文献   

13.
Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic'' ischemia. We discuss diagnostic and therapeutic consequences of these predictions.  相似文献   

14.
Region-specific cerebral blood flow (CBF) and the apparent diffusion coefficient (ADC) of tissue water in the rat brain were quantified by high-field magnetic resonance imaging at 9.4 T in the rat suture occlusion model. Cerebral blood flow and ADC were compared during the short- (4.5 hours) and long-term (up to 6 days) reperfusion after 80 minutes of transient middle cerebral artery occlusion, and correlated with the histology analysis. On occlusion, average CBF fell from approximately 100 to less than 50 mL x 100 g(-1) x min(-1) in the cortex, and to less than 20 mL x 100 g(-1) x min(-1) in the caudate putamen (CP). Corresponding ADC values decreased from (6.98 +/- 0.82) x 10(-4) to (5.49 +/- 0.54) x 10(-4) mm2/s in the cortex, and from (7.16 +/- 0.58) x 10(-4) to (4.86 +/- 0.62) x 10(-4) mm2/s in the CP. On average, CBF recovered to approximately 50% of baseline in the first 24 hours of reperfusion. After 2 to 4 days, a strong hyperperfusion in the ipsilateral cortex and CP, up to approximately 300 mL x 100 g(-1) x min(-1), was observed. The ADC ratio in the ipsilateral and contralateral CP was also inverted in the late reperfusion period. Histology revealed more severe tissue damage at the late stage of reperfusion than at 4.5 hours. Significant reversal of CBF and ADC during the late reperfusion period may reflect the impairment of autoregulation in the ischemic regions. Vascular factors may play an important role in the infarct development after 80-minute focal ischemia.  相似文献   

15.
BACKGROUND AND PURPOSE: Continuous arterial spin-labeled perfusion MRI (CASL-PI) uses electromagnetically labeled arterial blood water as a diffusible tracer to noninvasively measure cerebral blood flow (CBF). We hypothesized that CASL-PI could detect perfusion deficits and perfusion/diffusion mismatches and predict outcome in acute ischemic stroke. METHODS: We studied 15 patients with acute ischemic stroke within 24 hours of symptom onset. With the use of a 6-minute imaging protocol, CASL-PI was measured at 1.5 T in 8-mm contiguous supratentorial slices with a 3.75-mm in-plane resolution. Diffusion-weighted images were also obtained. Visual inspection for perfusion deficits, perfusion/diffusion mismatches, and effects of delayed arterial transit was performed. CBF in predetermined vascular territories was quantified by transformation into Talairach space. Regional CBF values were correlated with National Institutes of Health Stroke Scale (NIHSS) score on admission and Rankin Scale (RS) score at 30 days. RESULTS: Interpretable CASL-PI images were obtained in all patients. Perfusion deficits were consistent with symptoms and/or diffusion-weighted imaging abnormalities. Eleven patients had hypoperfusion, 3 had normal perfusion, and 1 had relative hyperperfusion. Perfusion/diffusion mismatches were present in 8 patients. Delayed arterial transit effect was present in 7 patients; serial imaging in 2 of them showed that the delayed arterial transit area did not succumb to infarction. CBF in the affected hemisphere correlated with NIHSS and RS scores (P=0.037 and P=0.003, Spearman rank correlation). The interhemispheric percent difference in middle cerebral artery CBF correlated with NIHSS and RS scores (P=0.007 and P=0.0002, respectively). CONCLUSIONS: CASL-PI provides rapid noninvasive multislice imaging in acute ischemic stroke. It depicts perfusion deficits and perfusion/diffusion mismatches and quantifies regional CBF. CASL-PI CBF asymmetries correlate with severity and outcome. Delayed arterial transit effects may indicate collateral flow.  相似文献   

16.
Cerebral blood flow (CBF) was measured in gerbils 2, 4, 7, and 12 hours after unilateral irreversible carotid artery ligation to determine if the delayed ischemic damage to nerve terminals that occurs over 8 hours after stroke could be due to changes in CBF. [14C]butanol (4.5 mu Ci in 45 microliter 0.9% saline) was injected into the femoral vein, and cpm accumulating in the cerebrum and in a catheter inserted in the abdominal aorta were measured. CBF (ml/100 g/min, mean +/- SEM) in sham-operated control gerbils was 108.4 +/- 37.5 in the left hemisphere and 123.8 +/- 37.1 in the right. CBF in the ischemic left cerebrum was 41.0 +/- 7.7 at 2 hours (n = 7), 21.6 +/- 7.2 at 4 hours (n = 4), 26.2 +/- 4.6 at 7 hours (n = 7), and 9.7 +/- 3.1 at 12 hours (n = 6). CBF in the nonligated right hemisphere was 115.0 +/- 15.3 at 2 hours, 70.4 +/- 23.3 at 4 hours, 80.4 +/- 14.6 at 7 hours, and 50.9 +/- 20.1 at 12 hours. As expected, CBF was significantly reduced in the ischemic left cerebral hemisphere compared with the nonligated right cerebral hemisphere at each time, but CBF in the ischemic left cerebral hemisphere was also significantly lower at 12 hours than at 2 hours (p = 0.002) and at 7 hours (p = 0.014). CBF in the nonligated right cerebral hemisphere was also lower at 12 hours than at 2 hours (p = 0.02). No changes in PCO2 or blood pressure accounted for these differences.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Transient focal ischemia of brief duration (15–30 min) gives rise to brain damage. In normoglycemic animals this damage usually consists of selective neuronal necrosis (SNN), and is largely confined to the lateral caudoputamen. In hyperglycemic subjects damage occurs more rapidly, involves also neocortical areas, and is often of the pan-necrotic type (`infarction'). Since experiments on forebrain ischemia of 30 min duration suggest that microcirculatory compromise develops during recirculation, we studied whether focal ischemia of the same duration, followed by reperfusion for 1, 2 or 4 h, leads to microcirculatory dysfunction. To test this possibility, we fixed the tissue by perfusion and counted the number of formed elements (leukocytes, macrophages and erythrocytes) in capillaries and postcapillary venules. Furthermore, capillary patency was evaluated following in vivo injection of Evan's blue. Histopathological examination of tissue fixed by perfusion after 1, 2 and 4 h of recirculation showed an increasing density of SNN in the caudoputamen of normoglycemic animals. Hyperglycemic, but not normoglycemic, animals showed pan-necrotic lesions (`infarction') after 4 h of recirculation. As a result, the total volume of tissue damage (SNN plus infarction) was larger in hyper- than in normoglycemic animals at 2 and 4 h of recirculation. In addition, hyperglycemic animals showed involvement of neocortex which increased with the time of reperfusion. In the ischemic hemisphere, between 5 and 10% of counted capillaries contained formed elements. However, since hyperglycemic animals contained an equal (or smaller) amount of cells the results did not suggest that capillary `plugging' could explain the aggravated damage. Moreover, both normo- and hyperglycemic animals showed close to 100% capillary patency. The results thus fail to support the notion that the aggravation of focal ischemic damage by hyperglycemia is due to obstruction of microvessel by swelling or leukocyte adherence.  相似文献   

18.
This study was designed to assess that mouse pial and cortical microcirculation can be monitored in the long term directly in the area of focal ischemia, using in vivo fluorescence microscopy. A closed cranial window was placed over the left parieto-occipital cortex of C57BL/6J mice. Local microcirculation was recorded in real time through the window using laser-scanning confocal fluorescence microscopy after intravenous injection of fluorescent erythrocytes and dextran. The basal velocity of erythrocytes through intraparenchymal capillaries was 0.53+/-0.30 mm/sec (n=121 capillaries in 10 mice). Two branches of the middle cerebral artery were topically cauterized through the window. Blood flow evaluated by laser-Doppler flowmetry in two distinct areas indicated the occurrence of an ischemic core (15.2%+/-5.9% of baseline for at least 2 h) and a penumbral zone. Magnetic resonance imaging and histology were used to characterize the ischemic area at 24 h after occlusion. The infarct volume was 7.3+/-3.2 mm(3) (n=6). Microcirculation was repeatedly videorecorded using fluorescence confocal microscopy over the next month. After the decrease following arterial occlusion, capillary erythrocyte velocity was significantly higher than baseline 1 week later, and attained 0.74+/-0.51 mm/sec (n=76 capillaries in six mice, P<0.005) after 1 month, while venous and capillary network remodeling was assessed, with a marked decrease in tortuosity. Immunohistochemistry revealed a zone of necrotic tissue into the infarct epicenter, with activated astrocytes at its border. Such long-term investigations in ischemic cortex brings new insight into the microcirculatory changes induced by focal ischemia and show the feasibility of long-term fluorescence studies in the mouse cortex.  相似文献   

19.
The effect of unilateral, incomplete cerebral ischemia on CBF, unidirectional flux of alpha-aminoisobutyric acid (AIB) and sodium, and number of perfused capillaries during ischemia and reperfusion was measured in the cortex of gerbils with symptomatic ischemia. Three hours of unilateral carotid occlusion reduced the CBF to the ipsilateral cortex by 81%, with a smaller 30% decrease in the contralateral cortex. Following 11 min of reperfusion, CBF in the ipsilateral cortex returned to the preischemic value, while the contralateral blood flow decreased to 50% of control. The transfer constants for AIB and sodium in the ipsilateral cortex were reduced by 67 and 53%, respectively, after 3 h of ischemia, with no change in the contralateral cortex. The transfer constant for AIB remained decreased by 48% during the first 20 min of reperfusion, while that for sodium returned to its control value. The number of perfused capillaries was reduced 54% by 3 h of ischemia and remained decreased by 20% after 11 min of reperfusion. These data indicate that 3 h of unilateral carotid occlusion reduces the number of perfused capillaries in the ipsilateral cortex during the ischemic period. Further, the early reperfusion phase is characterized by a mismatch between capillary perfusion and CBF. Finally, early in the postischemic phase, sodium transport undergoes a selective stimulation, probably as a result of stimulation of ion transport.  相似文献   

20.
Hemodilution has had limited success as a treatment of cerebral ischemia. When using a nonoxygen binding fluid, the therapeutic efficacy of hemodilution-induced increases in CBF are offset by concomitant decreases in oxygen content. The effect of hemodilution, with diaspirin alpha-alpha cross-linked hemoglobin (DCLHb), on CBF during middle cerebral artery occlusion was assessed. Rats were hemodiluted to one of the following hematocrits (Hct): (a) 44/Hct, (b) 37/Hct, (c) 30/Hct, (d) 23/Hct, (e) 16/Hct, or (f) 9/Hct. After 10 min of ischemia, CBF was determined with 14C-iodoantipyrine. Coronal brain sections were evaluated for areas with a CBF of 0-10 and 11-20 ml 100 g-1 min-1. In addition, oxygen delivery was calculated. In the center of the ischemic zone, both areas of low CBF were less in the 30/Hct, 23/Hct, and 16/Hct groups compared with the 44/Hct and 37/Hct groups; and both areas were less in the 9/Hct group compared with the other five groups (p < 0.05). For the hemisphere contralateral to occlusion, there was a direct correlation between hematocrit and oxygen delivery. However, for the hemisphere ipsilateral to occlusion, oxygen delivery increased as hematocrit decreased (44/Hct, 8.6 +/- 0.3 vs. 9/Hct, 13.6 +/- 0.4 [mean +/- SD, ml 100 g-1 min-1]). The results of this study support a hypothesis that hemodilution with DCLHb decreases the extent of focal cerebral ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号