首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast cancer resistance protein (BCRP/ABCG2) confers resistance to anticancer drugs such as 7-ethyl-10-hydroxycamptothecin (SN-38, an active metabolite of irinotecan), mitoxantrone, and topotecan. In this study, we examined the reversing effects of YHO-13177, a novel acrylonitrile derivative, and its water-soluble diethylaminoacetate prodrug YHO-13351 on the BCRP-mediated drug resistance. YHO-13177 potentiated the cytotoxicity of SN-38, mitoxantrone, and topotecan in both BCRP-transduced human colon cancer HCT116 (HCT116/BCRP) cells and SN-38-resistant human lung cancer A549 (A549/SN4) cells that express BCRP, but had little effect in the parental cells. In addition, YHO-13177 potentiated the cytotoxicity of SN-38 in human lung cancer NCI-H460 and NCI-H23, myeloma RPMI-8226, and pancreatic cancer AsPC-1 cells that intrinsically expressed BCRP. In contrast, it had no effect on P-glycoprotein-mediated paclitaxel resistance in MDR1-transduced human leukemia K562 cells and multidrug resistance-related protein 1-mediated doxorubicin resistance in MRP1-transfected human epidermoid cancer KB-3-1 cells. YHO-13177 increased the intracellular accumulation of Hoechst 33342, a substrate of BCRP, at 30 minutes and partially suppressed the expression of BCRP protein at more than 24 hours after its treatment in both HCT116/BCRP and A549/SN4 cells. In mice, YHO-13351 was rapidly converted into YHO-13177 after its oral or intravenous administration. Coadministration of irinotecan with YHO-13351 significantly increased the survival time of mice inoculated with BCRP-transduced murine leukemia P388 cells and suppressed the tumor growth in an HCT116/BCRP xenograft model, whereas irinotecan alone had little effect in these tumor models. These findings suggest that YHO-13351, a prodrug of YHO-13177, could be clinically useful for reversing BCRP-mediated drug resistance in cancer chemotherapy.  相似文献   

2.
Breast cancer resistance protein (BCRP), an ATP-binding cassette transporter, confers resistance to a series of anticancer agents such as SN-38, mitoxantrone, and topotecan. In a previous study, we found that estrogens reverse drug resistance of BCRP-expressing cells. In this study, estrogen antagonists, estrogen agonists, and their derivatives were evaluated for BCRP-reversing activity. First, compounds were tested for effects on the cellular accumulation of topotecan in BCRP-transduced K562 cells (K562/BCRP). Next, these compounds were examined for their ability to reverse SN-38 and mitoxantrone resistance in K562/BCRP cells. Among commercially available estrogen antagonists and agonists tested, diethylstilbestrol showed the strongest BCRP-reversing activity. Diethylstilbestrol increased the cellular accumulation of topotecan and reversed drug resistance in K562/BCRP cells but showed marginal or no effect in parental K562 cells. The reversal activities of estrone and diethylstilbestrol were more prominent for mitoxantrone than for SN-38. Tamoxifen and toremifene were also found to enhance topotecan uptake in K562/BCRP cells. Next, various tamoxifen derivatives were screened for anti-BCRP activity. In the first cycle of screening with 14 compounds, TAG-11 showed the strongest effect. In the second cycle of screening of 25 TAG-11-related compounds, TAG-139 showed the strongest effect. Reversal of SN-38 and mitoxantrone resistance in K562/BCRP cells by TAG-139 was 5-fold stronger than that by estrone. Dose-dependent characteristics of drug resistance reversal with estrone and TAG-139 were very similar, suggesting that estrone and tamoxifen derivatives interact with the same drug-binding site of BCRP. Derivatives of antiestrogens that exhibit no other biological effects promise to be useful in overcoming BCRP-mediated drug resistance.  相似文献   

3.
Breast cancer resistance protein (BCRP) confers multidrug resistance to cancer cells against agents such as SN-38 (an active metabolite of irinotecan), mitoxantrone, and topotecan. Among 59 human tumor cell lines tested, 6 cell lines, A549, NCI-H460, KM-12, HT-29, OVCAR-5, and RPMI8226, showed high BCRP expression. BCRP cDNA was isolated from 11 cancer cell lines and three variant cDNAs [G34A substituting Met for Val-12 (V12M), C421A substituting Lys for Gln-141 (Q141K), and 944-949 deletion lacking Ala-315 and Thr-316 (delta315-6)] were identified. G34A and C421A variants were polymorphisms, and 944-949 deletion was a splicing variant. C421A BCRP-transfected PA317 cells showed markedly decreased protein expression and low-level drug resistance compared with wild-type BCRP-transfected cells when transfectants expressed similar levels of BCRP mRNA. G34A or 944-949-deleted BCRP-transfected PA317 cells showed similar or somewhat lower protein expression and drug resistance compared with wild-type BCRP-transfected cells. Of 124 healthy Japanese volunteers, 67 were wild-type, 48 were heterozygous, and 9 were homozygous for the C421A allele. These results suggest that some people possess the C421A polymorphic BCRP gene and express low amounts of Q141K BCRP. In addition to that, C376T polymorphism in exon 4 substituting stop codon for Gln-126 was found in 3 of the 124 general Japanese population. This C376T polymorphism may also have high impact because active BCRP protein will not be expressed from the C376T allele. Therefore, people with C376T and/or C421A polymorphisms may express low amounts of BCRP, and this low BCRP expression might result in hypersensitivity of normal cells to such anticancer drugs as irinotecan and mitoxantrone.  相似文献   

4.
Overexpression of the breast cancer resistance protein (BCRP/ABCG2) confers multidrug resistance (MDR) to tumor cells and often limits the efficacy of chemotherapy. To circumvent BCRP-mediated MDR, a common approach is the use of potent and specific inhibitors of BCRP transport such as fumitremorgin C, novobiocin, and GF120918. Here, we evaluated a new approach using RNA interference for the specific knockdown of BCRP. We designed and synthesized small interfering RNA (siRNA) using T7 RNA polymerase and showed that siRNAs markedly down-regulated both exogenous and endogenous expression of BCRP. As a functional consequence, knockdown of BCRP by siRNAs increased the sensitivity of human choriocarcinoma BeWo cells to mitoxantrone and topotecan by 10.5- and 8.2-fold, respectively. Using flow cytometry, we found that introduction of siRNAs also enhanced the intracellular accumulation of topotecan. We have previously identified an estrogen response element in the BCRP promoter and have shown that 17beta-estradiol increased BCRP mRNA expression. Furthermore, in the present study, we found that expression of BCRP protein was inducible by 17beta-estradiol and that this effect was ameliorated by the introduction of siRNAs. These studies indicate that siRNAs could modulate MDR in vitro and may present a new approach to overcome BCRP-mediated drug resistance.  相似文献   

5.
Although some cancers are initially sensitive to EGFR tyrosine kinase inhibitors (TKIs), resistance invariably develops. We investigated mechanisms of acquired resistance to the EGFR TKI gefitinib by generating gefitinib-resistant (GR) A431 squamous cancer cells. In GR cells, gefitinib reduced phosphorylation of EGFR, ErbB-3, and Erk but not Akt. These cells also showed hyperphosphorylation of the IGFI receptor (IGFIR) and constitutive association of IRS-1 with PI3K. Inhibition of IGFIR signaling disrupted the association of IRS-1 with PI3K and restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit GR cell growth. Gene expression analyses revealed that GR cells exhibited markedly reduced IGF-binding protein 3 (IGFBP-3) and IGFBP-4 RNA. Addition of recombinant IGFBP-3 restored the ability of gefitinib to downregulate PI3K/Akt signaling and to inhibit cell growth. Finally, gefitinib treatment of mice with A431 xenografts in combination with an IGFIR-specific monoclonal antibody prevented tumor recurrence, whereas each drug given alone was unable to do so. These data suggest that loss of expression of IGFBPs in tumor cells treated with EGFR TKIs derepresses IGFIR signaling, which in turn mediates resistance to EGFR antagonists. Moreover, combined therapeutic inhibition of EGFR and IGFIR may abrogate this acquired mechanism of drug resistance and is thus worthy of prospective clinical investigation.  相似文献   

6.
The breast cancer resistance protein (BCRP/ABCG2) is an ATP-binding cassette drug efflux transporter that extrudes xenotoxins from cells, mediating drug resistance and affecting the pharmacological behavior of many compounds. To study the interaction of human wild-type BCRP with steroid drugs, hormones, and the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP), we expressed human BCRP in the murine MEF3.8 fibroblast cell line, which lacks Mdr1a/1b P-glycoprotein and Mrp1, and in the polarized epithelial MDCKII cell line. We show that PhIP was efficiently transported by human BCRP in MDCKII-BCRP cells, as was found previously for murine Bcrp1. Furthermore, we show that six out of nine glucocorticoid drugs, corticosterone, and digoxin increased the accumulation of mitoxantrone in the MEF3.8-BCRP cell line, indicating inhibition of BCRP. In contrast, aldosterone and ursodeoxycholic acid had no significant effect on BCRP. The four most efficiently reversing glucocorticoid drugs (beclomethasone, 6alpha-methylprednisolone, dexamethasone, and triamcinolone) and 17beta-estradiol showed a significantly reduced BCRP-mediated transepithelial transport of PhIP by MDCKII-BCRP cells, with the highest reduction of PhIP transport ratio for beclomethasone (from 25.0 +/- 1.1 to 2.7 +/- 0.0). None of the tested endogenous steroids or synthetic glucocorticoids or digoxin, however, were transported substrates of BCRP. We also identified the H(2)-receptor antagonist drug cimetidine as a novel efficiently transported substrate for human BCRP and mouse Bcrp1. The generated BCRP-expressing cell lines thus provide valuable tools to study pharmacological and toxicological interactions mediated by BCRP and to identify new BCRP substrates.  相似文献   

7.
目的 通过检测慢性粒细胞白血病急变细胞系K562及其阿霉素耐药株K562/A02的微小RNA(microRNA、miR)表达差异,探讨microRNA与白血病化疗耐药的关系.方法 MTT法检测K562/A02及其亲本细胞系K562的耐药性能;流式细胞术检测K562与K562/A02细胞的P-gp表达;运用microRNA芯片技术筛查K562与K562/A02细胞之间差异表达的microRNA,随后用实时荧光定量RT-PCR方法进一步证实.结果 阿霉素耐药株K562/A02相对于其亲本细胞系K562对阿霉素的耐药倍数为180倍;K562细胞P-gp的表达率为0.2%,K562/A02细胞P-gp的表达率为86%;microRNA芯片结果显示K562/A02与K562细胞之间有22种microRNA表达存在显著的差异(P<0.01),表达差异在2倍以上的有9种,其中miR-221、miR-155、miR-451在K562/A02细胞表达上调,而miR-98、miR-181a、let-7f、miR-424、let-7g和miR-563则表达下调.实时荧光定量RT-PCR进一步证实了上述结果,并显示miR-451、miR-155、miR-221、let-7f、miR-424在两种细胞中表达差异显著.结论 K562/A02与K562细胞存在microRNA表达差异,其中miR-451、miR-155和miR-221在K562/A02中表达显著上调,而let-7f、miR-424则显著下调,提示microRNA可能参与白血病耐药形成,差异表达的microRNA可能为逆转白血病耐药提供新的作用靶点.  相似文献   

8.
目的 通过检测慢性粒细胞白血病急变细胞系K562及其阿霉素耐药株K562/A02的微小RNA(microRNA、miR)表达差异,探讨microRNA与白血病化疗耐药的关系.方法 MTT法检测K562/A02及其亲本细胞系K562的耐药性能;流式细胞术检测K562与K562/A02细胞的P-gp表达;运用microRNA芯片技术筛查K562与K562/A02细胞之间差异表达的microRNA,随后用实时荧光定量RT-PCR方法进一步证实.结果 阿霉素耐药株K562/A02相对于其亲本细胞系K562对阿霉素的耐药倍数为180倍;K562细胞P-gp的表达率为0.2%,K562/A02细胞P-gp的表达率为86%;microRNA芯片结果显示K562/A02与K562细胞之间有22种microRNA表达存在显著的差异(P<0.01),表达差异在2倍以上的有9种,其中miR-221、miR-155、miR-451在K562/A02细胞表达上调,而miR-98、miR-181a、let-7f、miR-424、let-7g和miR-563则表达下调.实时荧光定量RT-PCR进一步证实了上述结果,并显示miR-451、miR-155、miR-221、let-7f、miR-424在两种细胞中表达差异显著.结论 K562/A02与K562细胞存在microRNA表达差异,其中miR-451、miR-155和miR-221在K562/A02中表达显著上调,而let-7f、miR-424则显著下调,提示microRNA可能参与白血病耐药形成,差异表达的microRNA可能为逆转白血病耐药提供新的作用靶点.  相似文献   

9.
Inhibitors of the breast cancer resistance protein (BCRP/ABCG2) multidrug transporter are of interest as chemosensitizers for clinical drug resistance, for improving the pharmacokinetics of substrate chemotherapeutic drugs, and in functional assays of BCRP activity for tailoring chemotherapy. The fungal toxin fumitremorgin C (FTC) is a potent and specific inhibitor of BCRP, but its neurotoxic effects preclude use in vivo. We have therefore evaluated a new tetracyclic analogue of FTC, Ko143, as a practical inhibitor of BCRP, comparing it with two other analogues in the same class and with GF120918. All three FTC analogues are effective inhibitors of both mouse Bcrp1 and human BCRP, proving highly active for increasing the intracellular drug accumulation and reversing Bcrp1/BCRP-mediated multidrug resistance. Indeed, Ko143 appears to be the most potent BCRP inhibitor known thus far. In contrast, the compounds have only low activity against P-glycoprotein, the multidrug resistance-associated protein (MRP1), or other known drug transporters. They are nontoxic in vitro at useful concentrations and evinced no signs of toxicity in mice at high oral or i.p. doses. Administered p.o. to inhibit intestinal Bcrp1, Ko143 markedly increased the oral availability of topotecan in mice. It is thus the first highly potent and specific BCRP inhibitor applicable in vivo. As such, Ko143 and other FTC analogues of this type represent valuable reagents for analysis of drug resistance mechanisms and may be candidates for development as clinical BCRP inhibitors.  相似文献   

10.
目的 通过检测慢性粒细胞白血病急变细胞系K562及其阿霉素耐药株K562/A02的微小RNA(microRNA、miR)表达差异,探讨microRNA与白血病化疗耐药的关系.方法 MTT法检测K562/A02及其亲本细胞系K562的耐药性能;流式细胞术检测K562与K562/A02细胞的P-gp表达;运用microRNA芯片技术筛查K562与K562/A02细胞之间差异表达的microRNA,随后用实时荧光定量RT-PCR方法进一步证实.结果 阿霉素耐药株K562/A02相对于其亲本细胞系K562对阿霉素的耐药倍数为180倍;K562细胞P-gp的表达率为0.2%,K562/A02细胞P-gp的表达率为86%;microRNA芯片结果显示K562/A02与K562细胞之间有22种microRNA表达存在显著的差异(P<0.01),表达差异在2倍以上的有9种,其中miR-221、miR-155、miR-451在K562/A02细胞表达上调,而miR-98、miR-181a、let-7f、miR-424、let-7g和miR-563则表达下调.实时荧光定量RT-PCR进一步证实了上述结果,并显示miR-451、miR-155、miR-221、let-7f、miR-424在两种细胞中表达差异显著.结论 K562/A02与K562细胞存在microRNA表达差异,其中miR-451、miR-155和miR-221在K562/A02中表达显著上调,而let-7f、miR-424则显著下调,提示microRNA可能参与白血病耐药形成,差异表达的microRNA可能为逆转白血病耐药提供新的作用靶点.  相似文献   

11.
本研究的目的是应用蛋白质芯片检测汉防己甲素(Tet)单独及与屈洛昔芬(Drol)伍用对作用的白血病细胞表面的耐药蛋白,包括P糖蛋白(Pgp)、多药耐药相关蛋白(MRP1)、乳腺癌耐药蛋白(BCRP)表达的作用,为逆转剂的临床应用提供理论依据。选择位于膜表面Pgp、MRP1、BCRP耐药蛋白及其相应的抗体为研究体系,制备蛋白芯片,直接对逆转剂作用12、24和48小时的K562/A02细胞进行检测。结果表明:Tet和Drol联合作用24小时时检测到Pgp表达下调(Tet Drol组:85.27±3.095,对照组:93.67±2.748,P<0.05)。经逆转剂单独及联合作用K562/A02细胞48小时时均检测到Pgp表达下调,且联合应用两药对Pgp表达下调作用明显(Tet Drol:82.62±3.227,Tet:86.44±2.906,Drol:87.23±2.049,对照组:93.67±2.748,P<0.05)。检测结果与流式细胞仪检测结果一致。结论:逆转剂Tet和Drol对K562/A02细胞的Pgp下调呈时间依赖性。联合作用24小时时出现下调Pgp表达,单独作用48小时均下调Pgp表达,联合用药时下调作用明显。不同检测时间均未见下调MRP1和BCRP的表达。  相似文献   

12.
BACKGROUND: The anticancer drug irinotecan induces cholinergic side effects that are currently ascribed to the blockade of acetylcholinesterase. This study investigated (1) the pattern of acetylcholinesterase activity in patients receiving treatment with irinotecan and (2) the relationship between acetylcholinesterase activity and plasma concentrations of irinotecan, 7-ethyl-10-hydroxycamptothecin (SN-38), and SN-38 glucuronide (SN-38G). METHODS: Twenty-five patients with advanced colorectal cancer were treated with 250 mg/m(2) irinotecan administered by intravenous infusion for 60 minutes. Blood samples were collected before drug infusion and at 15 minutes and 45 minutes after the start of drug infusion. Blood acetylcholinesterase activity was determined by a colorimetric enzymatic assay, and irinotecan, SN-38, and SN-38G concentrations were determined in plasma by HPLC. The in vitro effects of irinotecan and other drugs on human acetylcholinesterase were also assessed. RESULTS: Compared with basal values, the activity of acetylcholinesterase in blood specimens collected during irinotecan infusion at 15 minutes (-0.76%) and at 45 minutes (-1.50%) showed no changes. No relationships were established between the activity of blood acetylcholinesterase at 15 or 45 minutes and plasma concentrations of irinotecan, SN-38, or SN-38G measured at the same time points. In vitro, the activity of acetylcholinesterase was inhibited by 100-micromol/L irinotecan (-24.8%) and markedly reduced by 1-micromol/L physostigmine (-86.7%), whereas neither SN-38 nor camptothecin had an effect. CONCLUSIONS: Although the use of erythrocyte acetylcholinesterase as a surrogate marker of acetylcholinesterase activity in the nervous system has not been firmly established, our findings do not support the hypothesis that the toxic cholinergic syndrome associated with irinotecan treatment depends on acetylcholinesterase blockade.  相似文献   

13.
Members of the multidrug resistance-associated protein (MRP) family of transporters are believed to contribute to cytotoxic drug resistance and chemotherapy failure. We observed frequent MRP4 overexpression in aggressive primary neuroblastoma, a disease for which we have previously shown MRP1 to be a prognostic indicator. High MRP4 expression correlated with MYCN oncogene amplification and was significantly associated with poor clinical outcome. Although MRP4 is known to transport some nucleoside analogues, it has not previously been associated with resistance to drugs used to treat solid tumors. We now show that it mediates substantial resistance in vitro to the topoisomerase I poison irinotecan/CPT-11 and its active metabolite SN-38. These results suggest that MRP4 will be a useful prognostic marker for neuroblastoma and that clinical trials of irinotecan as a neuroblastoma treatment should monitor MRP4 expression. The same may be true for other tumor types expressing high levels of the transporter.  相似文献   

14.
本课题研究槲皮素(quercetin,Que)对白血病细胞系K562/A多药耐药的影响及机制.体外培养的K562和K562/A细胞经不同浓度的Que处理,采用MTT法检测Que对细胞的生长抑制率及对阿霉紊(adriamycin,ADR)的增敏倍数;流式细胞术检测Que作用后细胞内ADR浓度的变化,Annexin V/PI双染色法观察细胞凋亡情况;实时荧光定量PCR基因芯片检测药物转运蛋白基因及凋亡相关基因表达的变化.结果表明,Que在5-160μmol/L的浓度范围内对K562和K562/A细胞均有剂量依赖性的生长抑制作用,低毒剂量的Que使K562/A对ADR的敏感性显著增强;在ADR为5 μmol/L时,Que与细胞共培养2小时细胞内ADR浓度则明显增加;Que可剂量依赖性地诱导K562和K562/A细胞的凋亡;Que可下调ABC、SLC家族药物转运蛋白相关基因的表达,并可调节BCL-2、TNF等凋亡相关基因的表达.结论:Que可通过多种机制逆转白血病细胞系K562/A的多药耐药性,逆转效果与剂量呈正相关.  相似文献   

15.
OBJECTIVES: Our objective was to build population pharmacokinetic models that describe plasma concentrations of irinotecan (CPT-11) and its metabolites 7-ethyl-10-hydroxycamptothecin (SN-38) and SN-38 glucuronide (SN-38G) and to investigate the pharmacokinetic-pharmacodynamic relationships between drug exposure and diarrhea, the major dose-limiting toxicity. METHODS: Data were obtained from 109 patients (65 men and 44 women) who received 1.5-hour (range, 0.75- to 2.25-hour) intravenous infusions of irinotecan at doses that ranged from 100 to 350 mg/m(2); 44 patients had a second course. The population pharmacokinetic models were developed to describe plasma concentration-time profiles. The area under the concentration-time curve from time zero to 60 hours [AUC (0-60)] was used as a measure of drug exposure to model the probabilities of diarrhea with use of a logistic regression model. RESULTS: A 3-compartment pharmacokinetic model best described the disposition of irinotecan, whereas SN-38 and SN-38G showed 2-compartmental characteristics. The population estimate of clearance for irinotecan was 31.6 L/h, and the volume of distribution at steady-state (V(SS)) was 263 L. The clearance divided by formation fraction (F(m)) was 712 L/h and 66.8 L/h for SN-38 and SN-38G, respectively. The V(SS)/F(m) was 72,000 L for SN-38 and 85.4 L for SN-38G. The frequencies of diarrhea scores in this study were 46% (grade 0), 28% (grade 1), 20% (grade 2), 4% (grade 3), and 2% (grade 4). Significant correlations between AUC(0-60) and diarrhea scores were found for irinotecan (P <.05) and SN-38G (P <.01) but not for SN-38 or the biliary index. CONCLUSIONS: In this population analysis, irinotecan and SN-38G AUC values were appropriate predictors of the risk for diarrhea, and SN-38G AUC showed the stronger relationship of the two. The developed population models may be useful in further clinical development of this agent.  相似文献   

16.
本研究观察核糖体蛋白L6(RPL6)基因表达的改变对白血病细胞耐药性的作用及其可能的机制。通过RT-PCR方法获得RPL6 cDNA序列,用真核表达载体pcDNA3.1(+)分别构建正向插入和反向插入的RPL6 cDNA重组质粒。以脂质体将正义RPL6 cDNA真核表达质粒转染K562细胞,将反义RPL6 cDNA真核表达质粒转染K562/AO2细胞。以MTT、流式细胞术和荧光分光光度计观察RPL6对化疗药物耐药性、凋亡和caspase-3的作用。结果表明:转染正义RPL6 cDNA真核表达质粒后,K562细胞对阿霉素的耐药性增强到原来的325%,凋亡和caspase-3活性明显降低(P〈0.005);转染反义RPL6 cDNA真核表达质粒后,K562/A02细胞对阿霉素的耐药性降低原来的38%;凋亡和caspase-3活性明显增加(P〈0.005)。结论:RPL6基因过表达通过改变药物诱导的凋亡在K562/A02细胞耐药性的形成中起重要作用。  相似文献   

17.
本研究旨在探讨抑制NHE1活性和细胞内酸化能否逆转白血病细胞对伊马替尼的耐药,以及慢性髓系白血病(CML)患者细胞的BCR/ABL下游分子网络。对CML患者原代白血病细胞或K562/DOX,K562/G01耐药细胞株进行酸化处理,检测细胞内P-糖蛋白(Pgp)基因及蛋白表达,药物在细胞内蓄积。考察细胞酸化后原代白血病细胞ERK1/2、p38MAPK磷酸化水平的变化。结果表明:细胞酸化后进展期患者细胞内药物蓄积增加,对伊马替尼的敏感性增强。随着细胞内pH的降低,进展期CML患者的细胞内p38MAPK磷酸化水平呈下降趋势,ERK1/2磷酸化水平3min时升高、30min后下降。特异性p38MAPK抑制剂SB203580可与NHEl抑制剂卡立泊来德协同下调Pgp蛋白的表达。结论:抑制NHE1活性能够显著降低耐药细胞中Pgp表达,增加CML疾病进展期患者细胞中罗丹明123及阿霉素的累积,增加细胞对伊马替尼的敏感性,p38MAPK信号传导通路参与其中。  相似文献   

18.
Itraconazole is a recently developed triazole antifungal agent that inhibits cell membrane sterol biosynthesis. Itraconazole, in a dose-dependent manner, enhanced intracellular accumulation of daunorubicin and reversed the drug resistance in murine leukemia P388/ADR cells. In addition, itraconazole corrected the altered plasma membrane potentials of P388/ADR cells. The concentrations of itraconazole that reversed drug resistance are comparable to the plasma levels achieved by therapeutic dosage used in the treatment of fungal infections. Therefore, itraconazole is a potential candidate for in vivo use to reverse multidrug resistance in cancer with added benefit of its antifungal property.  相似文献   

19.
背景:对白血病患儿在白血病细胞获得耐药、抗凋亡特性的过程中机制的研究目前甚少,多数研究集中在正常骨髓间充质干细胞和已建系的基质细胞,而未重视患儿骨髓间充质干细胞与白血病细胞之间的相瓦作用。 目的:课题创新性提出白血病患儿骨髓间充质干细胞可能对白血病细胞株K562/AO2生长增殖及凋亡产生影响的理论假设。 设计、时间及地点:细胞学体外实验,于2007-12/2008—08在广州医学院第一附属医院儿科实验室完成。 材料:骨髓间充质干细胞来源于广州医学院第一附属医院住院的30例自血病患儿,其中急性淋巴细胞白血病患儿22例,急性粒细胞白血病8例,患儿家属对实验均签署知情同意书。K562/AO2细胞株由天津血液病研究所提供。 方法:Ficoll密度梯度法分离培养白血病患儿骨髓间充质干细胞。设立2组:K562/AO2细胞组单独悬浮培养处于对数生长期的K562/AO2细胞;K562/AO2细胞+骨髓间充质干细胞共培养组在骨髓间充质干细胞贴壁呈融合状态时,加入1×10^8L^-1处于对数生长期的K562/AO2细胞,24h后去除未黏附的K562/AO2细胞。 主要观察指标:白血病患儿骨髓间充质干细胞对K562/AO2细胞生长的影响,AnnexinV-FITC法榆测阿霉素对K562/AO2细胞凋亡的影响,流式细胞仪测定不同条件培养下的K562/AO2细胞周期,Taqman—MGB探针实时荧光定量PCR愉测不同条件培养下耐药基因mdr1的表达。 结果:与单独悬浮培养的K562/AO2细胞比较,K562/AO2细胞+骨髓间充质干细胞共培养组的K562/AO2细胞生长较为缓慢,无明显的对数生长期;早期凋亡细胞数明显减少(P〈0.05);处于G0-G1期的K562/AO2细胞明显增多,S期细胞减少:K562/AO2细胞mdr1耐约基因的表达无明显差异(P〉0.05)。 结论:体外细胞学实验结局证实,白血病患儿骨髓间充质干细胞诱导的K562/AO2细胞耐药与mdr1基因无关,而是通过黏附作用改变K562/AO2细胞周期,进而逃避药物的促凋亡作用。  相似文献   

20.
One activity potentially limiting the efficacy of camptothecin anticancer agents is their cellular efflux by the ATP-binding cassette half-transporter, ABCG2. Homocamptothecins are novel anticancer drugs that inhibit topoisomerase 1 with a greater potency than camptothecins. Homocamptothecins differ from camptothecins by their E-ring, which is seven-membered instead of the six-membered ring of camptothecins. We report herein that, like camptothecins, homocamptothecin and its difluoro derivative BN80915 are substrates for ABCG2. However, the resistance of three selected cell lines overexpressing wild-type or mutant ABCG2 to homocamptothecin or BN80915 was less than resistance to SN-38 (7-ethyl-10-hydroxycamptothecin), indicating that both the seven-membered E-ring present in homocamptothecin and the A- and B-ring modifications present in SN-38 are involved in substrate recognition by ABCG2. HEK-293 cells transfected with vectors encoding wild-type or mutant ABCG2 were found to be less resistant to both homocamptothecins than to SN-38. However, transfectants overexpressing mutant ABCG2 had relative resistance values for homocamptothecin and BN80915 4- to 14-fold higher than cells expressing wild-type ABCG2, suggesting that the gain of function resulting from mutation at amino acid 482, although not affecting SN-38, extends to the homocamptothecins. Resistance was reversed by the ABCG2 inhibitor fumitremorgin C. BN80915 was 17-fold more potent than SN-38 in wild-type ABCG2-transfected cells, suggesting that BN80915 has the potential to overcome ABCG2-related resistance to SN-38, the active metabolite of CPT-11 (irinotecan).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号