首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-PK is a nuclear protein with serine/threonine kinase activity and forms a complex consisting of the DNA-PKcs and a heterodimer of Ku70 and Ku80 proteins. Recent laboratory experiments have demonstrated that the DNA-PK complex formation is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. In this study, we evaluated the relationship between expression levels of DNA-PKcs, Ku70 and Ku80 proteins and radiation sensitivity in oral squamous cell carcinoma (OSCC) cell lines and in OSCC patients treated with preoperative radiation therapy. The OSCC cell lines greatly differed in their response to irradiation, as assessed by a standard colony formation assay. However, the expression levels of the DNA-PK complex proteins were all similar, and there was no association between the magnitude of their expression and the tumor radiation sensitivity. Expression of DNA-PK complex proteins increased after radiation treatment, and the increased values correlated with the tumor radiation resistance. Expression of DNA-PKcs and Ku70 after irradiation was increased in the surviving cells of OSCC tissues irradiated preoperatively. These results suggest that up-regulation of DNA-PK complex protein, especially DNA-PKcs, after radiation treatment correlates to radiation resistance. DNA-PKcs might be a molecular target for a novel radiation sensitization therapy of OSCC.  相似文献   

2.
We investigated whether the levels of the DNA-dependent protein kinase (DNA-PK) activity and content correlate with drug sensitivity in different tumour materials and if this can be utilised in predicting treatment outcome. DNA-PK activity and expression were investigated in tumour cells from 8 patients with chronic lymphocytic leukaemia (CLL) and 18 patients with acute myeloid leukaemia (AML), using Western blot and DNA-PK kinase activity assay. Tumour cells from the patients were investigated for their drug sensitivity to topoisomerase II inhibitors (doxorubicin and etoposide), DNA reactive agents (melphalan, 4-hydroxycyclophosphamide and cisplatinum), an antimetabolite (cytosine arabinoside) and an antimicrotubule agent (vincristine) by fluorometric microculture cytotoxicity assay (FMCA). Within each group of leukaemia there was a large variation in both DNA-PK activity and DNA-PKcs expression, while the Ku subunits were expressed more homogeneously. In CLL cells, sensitivity to topoisomerase II inhibitors correlated with DNA-PKcs protein expression (r=0.7174, p=0.0452). In AML samples, sensitivity to DNA cross-linking alkylating agents correlated with Ku86 (r=-0.7512, p=0.0031) and Ku70 (r=-0.6134, p=0.0258) expression. Unexpectedly, DNA-PK activity was found to correlate with sensitivity to vincristine in both CLL (r=0.8557, p=0.0067) and AML (r=0.5480, p=0.0228) cells. The results indicate that DNA-PK is not only involved in the recognition of DNA double-strand breaks (DSB), but also other DNA lesions.  相似文献   

3.
PURPOSE: The DNA-PK complex is one of the major pathways by which mammalian cells respond to DNA double-strand breaks induced by ionizing radiation. This study evaluated the relationship between the immunohistochemical expression of the individual components of DNA-PK and cellular radiosensitivity in head and neck cancers. METHODS AND MATERIALS: Biopsies from patients with previously untreated squamous cell carcinomas of the head and neck were assessed for inherent tumor radiosensitivity measured as the surviving fraction at 2 Gy (SF2) using a soft agar clonogenic assay. Paraffin-embedded tumor material from 64 successfully grown specimens was immunohistochemically stained for expression of DNA-PKcs and Ku (p70/p80). The same tumor material was previously analyzed for the immunohistochemical expression of p53. RESULTS: A significant correlation was found between the degree of expression of DNA-PKcs and Ku (p70/p80) (r = 0.55, p<0.001). There were no overall significant differences in the levels of expression of DNA-PKcs and Ku (p70/p80) in tumors from patients of either sex, different sites, histologies, and stages. No relationship was found between SF2 and the expression of either DNA-PKcs (r = 0.22, p = 0.081) or Ku (p70/p80) (r = 0.064, p = 0.62). Comparison with previous immunohistochemical characterization showed no significant correlations between the expression levels of p53 and either DNA-PKcs (r = 0.093, p = 0.46) or Ku (p70/p80) (r = -0.17, p = 0.17). CONCLUSIONS: This study suggests that determining the immunohistochemical expression of DNA-PK in head and neck cancers from multiple sites does not have a role as a predictive assay of tumor in vitro radiosensitivity.  相似文献   

4.
DNA-dependent protein kinase (DNA-PK), including Ku80, Ku70 and DNA-PK catalytic subunit (DNA-PKcs), is the key protein in non-homologous end-joining (NHEJ) after DNA double-strand breaks (DSBs) appear. In this study, small hairpin interfering RNAs (siRNAs) targeting Ku80 and DNA- PKcs were used both individually and in combination, to explore the effects of these DSB proteins on HeLa cell functional changes after X-ray irradiation. HeLa cells co-transfected with Ku80-siRNA and DNA-PKcs-siRNA were more radiosensitive than the ones transfected individually. HeLa in the absence of Ku80 and pretreated with LY294002, a chemically specific PI 3-kinase inhibitor, resulted in cells that were even more sensitive to X-rays than HeLa/Ku80-siRNA transfected with DNA- PKcs-siRNA. The cells inhibited by Ku80 either individually or in combination with DNA-PKcs showed cell accumulation in the G2/M phase 48 h post-irradiation, similarly to control cells. However, cells transfected with DNA-PKcs-siRNA or pretreated with LY294002 had a prolonged G2/M delay, suggesting the accumulation of significant un-repaired DNA damage following inhibition of DSB repair proteins. In conclusion, these data indicate that the role of Ku80 in DSB repair could be compensated by other DSB repair proteins; co-inhibition would be a suitable strategy to enhance the radiosensitivity of cancer cells.  相似文献   

5.
6.
7.
Jin  S; Inoue  S; Weaver  DT 《Carcinogenesis》1998,19(6):965-971
Etoposides block cell division by interfering with the action of topoisomerase II, leaving enzyme-DNA double-strand breaks. We found that certain components of the trimeric DNA-dependent protein kinase influence cell survival following etoposide damage. Interestingly, either Ku70- or Ku80-deficient cell lines, but not mutant cell lines of the DNA-PK catalytic sub-unit (DNA-PKcs), were found to be hypersensitive to the effects of etoposide VP16. Ku70- and Ku80- deficient cells can be complemented to an etoposide resistant phenotype by introducing wildtype Ku70 or Ku80 cDNAs. Mutational analysis of introduced Ku70 cDNAs into murine embryonic stem cells deleted for Ku70 (-/-) showed that mutants where heterodimerization and DNA binding functions of Ku were disrupted, also blocked the restoration of etoposide resistance. In contrast with the differential etoposide sensitivity of DNA-PK mutants, both Ku- and DNA-PKcs-deficient cell lines showed G2 ionizing radiation-induced delays, a cell cycle phase where topoisomerase II function is critical. Thus, the topoisomerase II cleaved complexes may be an example of DNA lesions requiring the Ku heterodimer, but not DNA-PK for DNA repair.   相似文献   

8.
9.
DNA-PKcs、Ku80及ATM备选宫颈癌放疗增敏靶点的体外研究   总被引:3,自引:0,他引:3  
Zhuang L  Yu SY  Huang XY  Cao Y  Xiong HH 《癌症》2007,26(7):724-729
背景与目的:DNA双链断裂(DNA double strand break,DSB)是细胞受辐射后最致命的损伤,而DNA依赖蛋白激酶催化亚单位(DNA-dependent protein kinase catalytic subunit,DNA-PKcs)、Ku80和ATM(ataxia-telangiectasia mutated)为DSB的主要修复蛋白.宫颈癌是以放疗为主要治疗手段的肿瘤.但其肿瘤细胞对放射线的敏感性不同.本实验拟研究3种DSB修复蛋白的表达与宫颈癌细胞放射敏感性的关系.并探讨DSB修复蛋白成为宫颈癌放疗增敏靶点的可能性.方法:免疫组化法检测41例宫颈癌患者组织中DNA-PKcs、Ku80和ATM蛋白的表达情况;Western blot检测8株肿瘤细胞(包括4株宫颈癌细胞)中3种蛋白的表达,克隆形成实验检测SF2 (suivival fraction at 2 Gv)、α值,分析蛋白表达水平和SF2、α值的关系;利用靶向抑制DNA-PKcs的shRNA表达质粒和小分子抑制剂LY294002,分别抑制HeLa细胞DNA-PKcs蛋白表达和活性后,克隆形成实验和流式细胞仪检测HeLa细胞受6 MVX线照射后的SF2、α值和凋亡率变化.结果:在41例宫颈癌组织中,Ku80、DNA-PKcs和ATM的阳性率分别为70.73%、68.29%和19.51%:8株肿瘤细胞中Ku80、DNA.PKcs和ATM蛋白的相对表达量与各细胞SF2、α值各不相同,作Pearson线性相关分析后得出DNA-PKcs的表达水平与SF2之间有明显的正相关关系(r=0.72,P=0.04);靶向抑制DNA-PKcs的shRNA可以促进HeLa细胞的放射敏感性,其SF2值为0.37,显著低于对照HeLa细胞的0.53(P<0.05);单独接受50 μmol/L LY294002作用1 h HeIa细胞的凋亡率未见明显增加,但先经LY294002处理再照射6 Gy的HeLa细胞在48 h和72 h的凋亡率比单独照射6 Gy的HeLa细胞凋亡率显著增加(48 h点:t=3.25,P=0.03;72h点:t=3.01,P=0.04).结论:DNA-PKcs在宫颈癌组织中表达较高,且其表达水平可以预示肿瘤细胞的放射敏感性:抑制DNA-PKcs的表达或活性可以促进HeLa细胞的放射敏感性.  相似文献   

10.
Exploring mechanism of radioresistance and searching for some suitable radiosensitized approaches isone of the ways to improve the curative rate of nasopharyngeal carcinoma. As we know, radiosensitivity is highly correlated with the number of DNA double strand breaks (DSBs) and the extent of it’s repair[1], and the ability of DSBs repair is one of the important factors influencing radiosensitivity. In mammalian cells, the nonhomologous end joining (NHEJ) is the predominan pathway of DSB…  相似文献   

11.
Protein phosphatase 2A (PP2A) functions as a potent tumor suppressor, but its mechanism(s) remains enigmatic. Specific disruption of PP2A by either expression of SV40 small tumor antigen or depletion of endogenous PP2A/C by RNA interference inhibits Ku DNA binding and DNA-PK activities, which results in suppression of DNA double-strand break (DSB) repair and DNA end-joining in association with increased genetic instability (i.e., chromosomal and chromatid breaks). Overexpression of the PP2A catalytic subunit (PP2A/C) enhances Ku and DNA-PK activities with accelerated DSB repair. Camptothecin-induced DSBs promote PP2A to associate with Ku 70 and Ku 86. PP2A directly dephosphorylates Ku as well as the DNA-PK catalytic subunit (DNA-PKcs) in vitro and in vivo, which enhances the formation of a functional Ku/DNA-PKcs complex. Intriguingly, PP2A promotes DSB repair in wild type mouse embryonic fibroblast (MEF) cells but has no such effect in Ku-deficient MEF cells, suggesting that the Ku 70/86 heterodimer is required for PP2A promotion of DSB repair. Thus, PP2A promotion of DSB repair may occur in a novel mechanism by activating the nonhomologous end-joining pathway through direct dephosphorylation of Ku and DNA-PKcs, which may contribute to maintenance of genetic stability.  相似文献   

12.
DNA-dependent protein kinase (DNA-PK) is a DNA-activated nuclear serine/threonine protein kinase. DNA-PK consists of a regulatory sub-unit, the heterodimeric Ku protein (composed of a 70- and a 86-kDa subunit) which binds DNA ends and targets the catalytic sub-unit, DNA-PKcs to DNA strand breaks. DNA-PK plays a major role in the repair of double-strand breaks induced in DNA after exposure to ionizing radiation as shown by the extreme radiosensitivity of cells with mutations in Ku86, Ku70 or DNA-PKcs genes. Cells deficient in DNA-PK activity also exhibit hypersensitivity to genotoxic drugs such as cisplatin and nitrogen mustards. In the first part of this review, the current knowledge on the biochemical characteristics of DNA-PK, its mechanism of action in DNA repair and the phenotype of DNA-PK deficient cells is summarized. These results suggest that DNA-PK might play a role in the acquisition of a resistant phenotype of human tumors to radiotherapy, chemotherapy using genotoxic drugs or to both treatments. In the second part of this review, the studies devoted to inhibition of DNA-PK in order to enhance cancer therapy by DNA-damaging agents are presented.  相似文献   

13.
BACKGROUND: The Ku protein is a tightly associated heterodimer, comprised of 70-kilodalton (kD) and 86-kD subunits, that forms the DNA-dependent protein kinase (DNA-PK) complex together with the 470-kD DNA-PKcs catalytic subunit, and is involved mainly in DNA double-strand breaks (DSBs) repair. The objective of the current study was to investigate the expression and DNA-binding activity of the Ku protein in fresh tissues from patients with bladder carcinoma and to compare it with that in nontumor tissues obtained from the same organ. Moreover, the DNA-binding activity of Ku was assessed after exposure of the tumor cells to 1 or 2 grays (Gy) of X-rays. Furthermore, the level of phosphorylated Ku was analyzed in both the nuclear and cytoplasmic compartment of normal tissue after exposure to 2 Gy of X-rays. METHODS: The expression and DNA-binding activity of Ku protein were assessed in tumor samples from patients who all were diagnosed with transitional cell carcinoma (TCC) of the bladder using Western blot analysis and the electrophoretic mobility shift assay, respectively. RESULTS: Enhanced Ku activity and expression were found in tumor tissue compared with normal tissue for each patient. Moreover, variations in Ku activity were found in a dose-dependent manner after the tumor cells were exposed to 1 or 2 Gy of X-rays. A decrease in phosphorylated Ku in the cytoplasm and a parallel increase in the nucleus of normal tissue cells were observed after exposure to X-rays. CONCLUSIONS: The results of the current study suggest a possible role of Ku in regulating the DNA-PK activity of DSBs repair in bladder tumors.  相似文献   

14.
PURPOSE: del(17p), del(11q), and associated p53 dysfunction predict for short survival and chemoresistance in B-cell chronic lymphocytic leukemia (CLL). DNA-dependent protein kinase (DNA-PK) is activated by DNA damage and mediates DNA double-strand break repair. We hypothesized that inhibiting DNA-PK would sensitize CLL cells to drug-induced DNA damage and that this approach could increase the therapeutic index of agents used to treat CLL. EXPERIMENTAL DESIGN: Fifty-four CLL cases were characterized for poor prognosis markers [del(17p), del(11q), CD38, and ZAP-70]. In selected cases, DNA-PK catalytic subunit (DNA-PKcs) expression and activity and p53 function were also measured. Ex vivo viability assays established sensitivity to fludarabine and chlorambucil and also tested the ability of a novel DNA-PK inhibitor (NU7441) to sensitize CLL cells to these drugs. The effects of NU7441 on fludarabine-induced DNA damage repair were also assessed (Comet assays and detection of gammaH2AX). RESULTS: DNA-PKcs levels correlated with DNA-PK activity and varied 50-fold between cases but were consistently higher in del(17p) (P = 0.01) and del(11q) cases. NU7441 sensitized CLL cells to chlorambucil and fludarabine, including cases with del(17p), del(11q), p53 dysfunction, or high levels of DNA-PKcs. NU7441 increased fludarabine-induced double-strand breaks and abrogated drug-induced autophosphorylation of DNA-PKcs at Ser2056. High DNA-PK levels predicted for reduced treatment-free interval. CONCLUSIONS: These data validate the concept of targeting DNA-PKcs in poor risk CLL, and demonstrate a mechanistic rationale for use of a DNA-PK inhibitor. The novel observation that DNA-PKcs is overexpressed in del(17p) and del(11q) cases indicates that DNA-PK may contribute to disease progression in CLL.  相似文献   

15.
DNA-dependent protein kinase (DNA-PK) is activated by DNA strand breaks and participates in DNA repair. Its regulatory subunit, Ku autoantigen, binds to DNA and recruits the catalytic subunit (DNA-PKcs). We show here a new role of DNA-PK in the development of multidrug resistance (MDR). The Ku-DNA binding activity, the levels of Ku70/Ku80 and DNA-PKcs in MDR variants, CEM/VLB(10-2), CEM/VLB(55-8) and CEM/VLB100 were higher than those in their parental drug-sensitive CEM cells in a drug resistance-dependent fashion. Also, CEM/VLB100 cells showed about 3-fold increase of DNA-PK enzyme activity as compared with CEM cells. Similar results were observed in another MDR cell line, FM3A/M mouse mammary carcinoma cells. Moreover, we observed that CEM/VLB100 cells were about 11-fold sensitive to wortmannin, which inhibits DNA-PK, compared with the CEM cells, and sensitized the MDR cells when combined with either bleomycin or vincristine, but have a little effect on CEM cells. Wortmannin was shown to inhibit DNA-PK and Ku-DNA binding activity in CEM/VLB100 cells dose dependently but had a little or no effect on their parental cells. Our results suggested that enhanced expression of DNA-PK participates in the development of MDR, and the use of DNA-PK inhibitors such as wortmannin is likely to improve the effectiveness of anticancer drugs and thus could partially overcome drug resistance in MDR cells, through its ability to inhibit Ku/DNA-PK activity.  相似文献   

16.
BACKGROUND: DNA double-strand breaks (DSB) are the major lethal lesions induced by ionizing radiation. The capability for DNA DSB repair is crucial for inherent radiosensitivity of tumor and normal cells. DNA-PKcs, Ku 70, Ku 85, Xrcc4, and Nbs1 play a critical role in DNA DSB repair. METHODS: We immunohistochemically investigated the expression of DNA-PKcs, Ku 70, Ku85, Xrcc4, and Nbs1 in 134 specimens from various normal and tumor tissues with different radiosensitivity. RESULTS AND CONCLUSION: Immunopositivity to Ku70, Ku85, DNA-PKcs, Xrcc4, and Nbs1 was found in all tumor tissues examined. The staining for Ku70, Ku85, and DNA-PKcs was nuclear; but, for Xrcc4 and Nbs1, it was nuclear and cytoplasmic. There were no apparent differences in the expression of these five proteins among cancerous tissues and the corresponding normal tissues. No apparent differences in nuclear staining intensity were detected in the expression of these five proteins among tumor tissues with different radiosensitivity, although non-Hodgkins' lymphoma (B or T cell) tended to show a lower expression than the others. The stromal cells generally expressed these five proteins at much lower frequency than either tumor or epithelial cells in both tumor and normal tissues.  相似文献   

17.
5-Fluorouracil and cisplatin-based induction chemotherapy (IC) is commonly used to treat locally advanced head and neck squamous cell carcinoma (HNSCC). The role of nonhomologous end joining (NHEJ) genes (Ku70, Ku80 and DNA-PKcs) in double-strand break (DSB) repair, genomic instability and apoptosis suggest a possible impact on tumor response to radiotherapy, 5-fluorouracil or cisplatin, as these agents are direct or indirect inductors of DSBs. We evaluated the relationship between Ku80, Ku70 or DNA PKcs mRNA expression in pretreatment tumor biopsies, and tumor response to IC or local recurrence, in 50 patients with HNSCC. Additionally, in an independent cohort of 75 patients with HNSCC, we evaluated the relationship between tumor Ku70 protein expression and the same clinical outcomes or patient survival. Tumors in the responder group had significantly higher mRNA levels for Ku70, Ku80 and DNA-PKcs than those in the nonresponder group. Ku70 mRNA was the marker most significantly associated with response to IC. Moreover, high tumor Ku70 mRNA expression was associated with significantly longer local recurrence-free survival (LRFS). Ku70 protein expression was also significantly related to response, and patients with higher percentage of tumor cells expressing Ku70 had longer LRFS. In addition, the percentage of Ku70 positive cells, tumor localization and node involvement were significantly associated with overall survival of patient. Therefore, Ku70 expression is a candidate predictive marker that could distinguish patients who are likely to benefit from chemoradiotherapy or radiotherapy after the induction chemotherapy treatment, suggesting a contribution of the NHEJ system in HNSCC clinical outcome.  相似文献   

18.
DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and the Ku70 and Ku86 proteins, participates in the repair of DNA double-strand breaks (DSBs). We assessed its expression immunohistochemically in normal human colon tissue, colon adenomas, colon carcinomas, and normal tissue distant from carcinomas. Normal colonocytes expressed all DNA-PK proteins. Compared with the expression in normal tissue [176.62 +/- 18.56 (the intensity of expression x the percentage of cells expressing this protein), mean + SE], the expression of Ku70 was significantly reduced in adenomas (36.62 +/- 11.09; P < 0.001) and carcinomas (85.68 +/- 15.76; P < 0.01), as was the expression of Ku86 [(113.10 +/- 10.22 versus 41.66 +/- 14.71 in adenomas (P < 0.01) or versus 85.68 +/- 15.76 in carcinomas (P < 0.05)]. The expression of DNA-PKcs was not significantly changed. The marked underexpression of Ku70 and Ku86 starting at the adenoma stage may be crucial to the development of colon cancer.  相似文献   

19.
PURPOSE: The objective of this study was to determine whether the expressions of the two components of DNA-dependent protein kinase, Ku70 and DNA-protein kinase catalytic subunit (DNA-PKcs), influence the response to radiotherapy (RT) and outcome of treatment of nondisseminated nasopharyngeal carcinoma (NPC) in patients who received definitive RT. METHODS AND MATERIALS: Sixty-six patients with NPC who were treated with radiotherapy alone or with concurrent chemotherapy between June 1995 and December 2001 were divided into groups based on the levels of immunoreactivity for Ku70 and DNA-PKcs in pretreatment biopsy specimens. The overexpression of Ku70 or DNA-PKcs groups included patients whose biopsy specimens showed at least 50% immunopositive tumor cells; patients in which less than 50% of the tumor cells in the biopsy tissues were immunopositive were placed in the low Ku70 and DNA-PKcs groups. The immunoreactivities for Ku70 and DNA-PKcs were retrospectively compared with the sensitivity of the tumor to radiation and the patterns of therapy failure. Univariate analyses were performed to determine the prognostic factors that influenced locoregional control of NPC. RESULTS: The 5-year locoregional control rate was significantly higher in the low Ku70 group (Ku-) (85%) than in the high Ku70 group (Ku+) (42%) (p = 0.0042). However, there were no differences in the metastases-free survival rates between the 2 groups (Ku70+, 82%; Ku70- 78%; p = 0.8672). Univariate analysis indicated that the overexpression of Ku70 surpassed other well-known predictive clinicopathologic parameters as an independent prognostic factor for locoregional control. Eighteen of 22 patients who had locoregional recurrences of the tumor displayed an overexpression of Ku70. No significant association was found between the level of DNA-PKcs expression and the clinical outcome. CONCLUSIONS: Our data suggest that the level of Ku70 expression can be used as a molecular marker to predict the response to RT and the locoregional control after RT and concurrent chemotherapy in patients with nondisseminated NPC.  相似文献   

20.
siRNA抑制DNA-PKcs表达及对HeLa细胞增殖的影响   总被引:3,自引:0,他引:3  
背景与目的:建立抑制DNA-PKcs表达的细胞模型,以此探讨DNA-PKcs的功能。材料与方法:构建DNA-PKcs的siRNA抑制表达载体,利用Lipofectamine介导,转染HeLa细胞,筛选稳定表达的转化克隆。Western blot检测DNA-PKcs表达。通过细胞生长速度检测细胞辐射敏感性变化。结果:设计了作用于DNA-PKcs不同位点的3条siRNA,并构建表达质粒,转染HeLa细胞,获得了3个稳定转化克隆,Western blot分析表明其DNA-PKcs表达受到明显抑制,细胞对了射线和紫外线的敏感性增加,接种裸鼠后的肿瘤生长速度减慢。结论:成功建立了DNA-PKcs表达抑制细胞模型,并且发现DNA-PKcs表达抑制后除影响细胞的辐射敏感性外,还可能与肿瘤细胞增殖有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号