首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we propose a new nonlinear cell-centered finite volume scheme on general polygonal meshes for two dimensional anisotropic diffusion problems, which preserves discrete maximum principle (DMP). The scheme is based on the so-called diamond scheme with a nonlinear treatment on its tangential flux to obtain a local maximum principle (LMP) structure. It is well-known that existing DMP preserving diffusion schemes suffer from the fact that auxiliary unknowns should be presented as a convex combination of primary unknowns. In this paper, to get rid of this constraint a nonlinearization strategy is introduced and it requires only a second-order accurate approximation for auxiliary unknowns. Numerical results show that this scheme has second-order accuracy, preserves maximum and minimum for solutions and is conservative.  相似文献   

2.
We develop a second-order continuous finite element method for solving the static Eikonal equation. It is based on the vanishing viscosity approach with a homotopy method for solving the discretized nonlinear system. More specifically, the homotopy method is utilized to decrease the viscosity coefficient gradually, while Newton’s method is applied to compute the solution for each viscosity coefficient. Newton’s method alone converges for just big enough viscosity coefficients on very coarse grids and for simple 1D examples, but the proposed method is much more robust and guarantees the convergence of the nonlinear solver for all viscosity coefficients and for all examples over all grids. Numerical experiments from 1D to 3D are presented to confirm the second-order convergence and the effectiveness of the proposed method on both structured or unstructured meshes.  相似文献   

3.
Extrapolation cascadic multigrid (EXCMG) method with conjugate gradient smoother is very efficient for solving the elliptic boundary value problems with linear finite element discretization. However, it is not trivial to generalize the vertex-centred EXCMG method to cell-centered finite volume (FV) methods for diffusion equations with strongly discontinuous and anisotropic coefficients, since a non-nested hierarchy of grid nodes are used in the cell-centered discretization. For cell-centered FV schemes, the vertex values (auxiliary unknowns) need to be approximated by cell-centered ones (primary unknowns). One of the novelties is to propose a new gradient transfer (GT) method of interpolating vertex unknowns with cell-centered ones, which is easy to implement and applicable to general diffusion tensors. The main novelty of this paper is to design a multigrid prolongation operator based on the GT method and splitting extrapolation method, and then propose a cell-centered EXCMG method with BiCGStab smoother for solving the large linear system resulting from linear FV discretization of diffusion equations with strongly discontinuous and anisotropic coefficients. Numerical experiments are presented to demonstrate the high efficiency of the proposed method.  相似文献   

4.
New superconvergent structures are proposed and analyzed for the finite volume element (FVE) method over tensorial meshes in general dimension $d$ (for $d≥2$); we call these orthogonal superconvergent structures. In this framework, one has the freedom to choose the superconvergent points of tensorial $k$-order FVE schemes (for $k≥3$). This flexibility contrasts with the superconvergent points (such as Gauss points and Lobatto points) for current FE schemes and FVE schemes, which are fixed. The orthogonality condition and the modified M-decomposition (MMD) technique that are developed over tensorial meshes help in the construction of proper superclose functions for the FVE solutions and in ensuring the new superconvergence properties of the FVE schemes. Numerical experiments are provided to validate our theoretical results.  相似文献   

5.
The radiative transfer equation is a fundamental equation in transport theory and applications, which is a 5-dimensional PDE in the stationary one-velocity case, leading to great difficulties in numerical simulation. To tackle this bottleneck, we first use the discrete ordinate technique to discretize the scattering term, an integral with respect to the angular variables, resulting in a semi-discrete hyperbolic system. Then, we make the spatial discretization by means of the discontinuous Galerkin (DG) method combined with the sparse grid method. The final linear system is solved by the block Gauss-Seidal iteration method. The computational complexity and error analysis are developed in detail, which show the new method is more efficient than the original discrete ordinate DG method. A series of numerical results are performed to validate the convergence behavior and effectiveness of the proposed method.  相似文献   

6.
In this paper, a new mixed finite element scheme using element-wise stabilization is introduced for the biharmonic equation with variable coefficient on Lipschitz polyhedral domains. The proposed scheme doesn’t involve any integration along mesh interfaces. The gradient of the solution is approximated by $H$(div)-conforming $BDM_{k+1}$ element or vector valued Lagrange element with order $k+1,$ while the solution is approximated by Lagrange element with order $k+2$ for any $k≥0.$ This scheme can be easily implemented and produces symmetric and positive definite linear system. We provide a new discrete $H^2$-norm stability, which is useful not only in analysis of this scheme but also in ${\rm C}^0$ interior penalty methods and DG methods. Optimal convergences in both discrete $H^2$-norm and $L^2$-norm are derived. This scheme with its analysis is further generalized to the von Kármán equations. Finally, numerical results verifying the theoretical estimates of the proposed algorithms are also presented.  相似文献   

7.
We apply the monotonicity correction to the finite element method for the anisotropic diffusion problems, including linear and quadratic finite elements on triangular meshes. When formulating the finite element schemes, we need to calculate the integrals on every triangular element, whose results are the linear combination of the two-point pairs. Then we decompose the integral results into the main and remaining parts according to coefficient signs of two-point pairs. We apply the nonlinear correction to the positive remaining parts and move the negative remaining parts to the right side of the finite element equations. Finally, the original stiffness matrix can be transformed into a nonlinear M-matrix, and the corrected schemes have the positivity-preserving property. We also give the monotonicity correction to the time derivative term for the time-dependent problems. Numerical experiments show that the corrected finite element method has monotonicity and maintains the convergence order of the original schemes in $H^1$-norm and $L^2$-norm, respectively.  相似文献   

8.
The goal of this paper is to develop numerical methods computing a few smallest elastic interior transmission eigenvalues, which are of practical importance in inverse elastic scattering theory. The problem is challenging since it is nonlinear, non-self-adjoint, and of fourth order. In this paper, we construct a lowest-order mixed finite element method which is close to the Ciarlet-Raviart mixed finite element method. The scheme is based on Lagrange finite element and is one of the less expensive methods in terms of the amount of degrees of freedom. Due to the non-self-adjointness, the discretization of elastic transmission eigenvalue problem leads to a non-classical mixed problem which does not fit into the framework of classical theoretical analysis. Instead, we obtain the convergence analysis based on the spectral approximation theory of compact operator. Numerical examples are presented to verify the theory. Both real and complex eigenvalues can be obtained.  相似文献   

9.
This paper develops an efficient positivity-preserving finite volume scheme for the two-dimensional nonequilibrium three-temperature radiation diffusion equations on general polygonal meshes. The scheme is formed as a predictor-corrector algorithm. The corrector phase obtains the cell-centered solutions on the primary mesh, while the predictor phase determines the cell-vertex solutions on the dual mesh independently. Moreover, the flux on the primary edge is approximated with a fixed stencil and the nonnegative cell-vertex solutions are not reconstructed. Theoretically, our scheme does not require any nonlinear iteration for the linear problems, and can call the fast nonlinear solver (e.g. Newton method) for the nonlinear problems. The positivity, existence and uniqueness of the cell-centered solutions obtained on the corrector phase are analyzed, and the scheme on quasi-uniform meshes is proved to be $L^2$- and $H^1$-stable under some assumptions. Numerical experiments demonstrate the accuracy, efficiency and positivity of the scheme on various distorted meshes.  相似文献   

10.
In this paper we consider the numerical solution of the Allen-Cahn type diffuse interface model in a polygonal domain. The intersection of the interface with the re-entrant corners of the polygon causes strong corner singularities in the solution. To overcome the effect of these singularities on the accuracy of the approximate solution, for the spatial discretization we develop an efficient finite element method with exponential mesh refinement in the vicinity of the singular corners, that is based on ($k$−1)-th order Lagrange elements, $k$≥2 an integer. The problem is fully discretized by employing a first-order, semi-implicit time stepping scheme with the Invariant Energy Quadratization approach in time, which is an unconditionally energy stable method. It is shown that for the error between the exact and the approximate solution, an accuracy of $\mathcal{O}$($h^k$+$τ$) is attained in the $L^2$-norm for the number of $\mathcal{O}$($h^{−2}$ln$h^{−1}$) spatial elements, where $h$ and $τ$ are the mesh and time steps, respectively. The numerical results obtained support the analysis made.  相似文献   

11.
The radiative transfer equation models the interaction of radiation with scattering and absorbing media and has important applications in various fields in science and engineering. It is an integro-differential equation involving time, frequency, space and angular variables and contains an integral term in angular directions while being hyperbolic in space. The challenges for its numerical solution include the needs to handle with its high dimensionality, the presence of the integral term, and the development of discontinuities and sharp layers in its solution along spatial directions. Its numerical solution is studied in this paper using an adaptive moving mesh discontinuous Galerkin method for spatial discretization together with the discrete ordinate method for angular discretization. The former employs a dynamic mesh adaptation strategy based on moving mesh partial differential equations to improve computational accuracy and efficiency. Its mesh adaptation ability, accuracy, and efficiency are demonstrated in a selection of one- and two-dimensional numerical examples.  相似文献   

12.
In this paper, a conforming enriched finite element method over an interface-unfitted mesh is developed and analyzed for a type of Stokes-elliptic interface problem with jump coefficients. An inf-sup stability result that is uniform with respect to the mesh size is proved in order to derive the corresponding well-posedness and optimal convergence properties in spite of the low regularity of the problem. The developed new finite element method breaks the limit of the classical immersed finite element method (IFEM) which can only deal with the case of identical governing equations on either side of the interface. Numerical experiments are carried out to validate the theoretical results. This is the first step of our new method to solve complex interface problems with different governing equations on either side of the interface, and will be extended to solve transient interface problems towards fluid-structure interaction problems in the future.  相似文献   

13.
A monotone cell-centered finite volume scheme for diffusion equations on tetrahedral meshes is established in this paper, which deals with tensor diffusion coefficients and strong discontinuous diffusion coefficients. The first novelty here is to propose a new method of interpolating vertex unknowns (auxiliary unknowns) with cell-centered unknowns (primary unknowns), in which a sufficient condition is given to guarantee the non-negativity of vertex unknowns. The second novelty of this paper is to devise a modified Anderson acceleration, which is based on an iterative combination of vertex unknowns and will be denoted as AA-Vertex algorithm, in order to solve the nonlinear scheme efficiently. Numerical testes indicate that our new method can obtain almost second order accuracy and is more accurate than some existing methods. Furthermore, with the same accuracy, the modified Anderson acceleration is much more efficient than the usual one.  相似文献   

14.
In [A NURBS-enhanced finite volume solver for steady Euler equations, X. C. Meng, G. H. Hu, J. Comput. Phys., Vol. 359, pp. 77–92], a NURBS-enhanced finite volume method was developed to solve the steady Euler equations, in which the desired high order numerical accuracy was obtained for the equations imposed in the domain with a curved boundary. In this paper, the method is significantly improved in the following ways: (i) a simple and efficient point inversion technique is designed to compute the parameter values of points lying on a NURBS curve, (ii) with this new point inversion technique, the $h$-adaptive NURBS-enhanced finite volume method is introduced for the steady Euler equations in a complex domain, and (iii) a goal-oriented a posteriori error indicator is designed to further improve the efficiency of the algorithm towards accurately calculating a given quantity of interest. Numerical results obtained from a variety of numerical experiments with different flow configurations successfully show the effectiveness and robustness of the proposed method.  相似文献   

15.
In this paper, a fairly simple 3D immersed interface method based on the CG-Uzawa type method and the level set representation of the interface is employed for solving three-dimensional Stokes flow with singular forces along the interface. The method is to apply the Taylor's expansions only along the normal direction and incorporate the jump conditions up to the second normal derivatives into the finite difference schemes. A second order geometric iteration algorithm is employed for computing orthogonal projections on the surface with third-order accuracy. The Stokes equations are discretized involving the correction terms on staggered grids and then solved by the conjugate gradient Uzawa type method. The major advantages of the present method are the special simplicity, the ability in handling the Dirichlet boundary conditions, and no need of the pressure boundary condition. The method can also preserve the volume conservation and the discrete divergence free condition very well. The numerical results show that the proposed method is second order accurate and efficient.  相似文献   

16.
This paper aims to design and analyze a solution method for a time-dependent, nonlinear and thermally coupled eddy-current problem with a moving conductor on hyper-velocity. We transform the problem into an equivalent coupled system and use the nodal finite element discretization (in space) and the implicit Euler method (in time) for the coupled system. The resulting discrete coupled system is decoupled and implicitly solved by a time step-length iteration method and the Picard iteration. We numerically and theoretically prove that the finite element approximations have the optimal error estimates and both the two iteration methods possess the linear convergence. For the proposed method, numerical stability and accuracy of the approximations can be held even for coarser mesh partitions and larger time steps. We also construct a preconditioner for the discrete operator defined by the linearized bilinear form and show that this preconditioner is uniformly effective. Numerical experiments are done to confirm the theoretical results and illustrate that the proposed method is well behaved in large-scale numerical simulations.  相似文献   

17.
We consider a model of coupled free and porous media flow governed by Stokes equation and Darcy's law with the Beavers-Joseph-Saffman interface condition. In this paper, we propose a new numerical approach for the Stokes-Darcy system. The approach employs the classical finite element method for the Darcy region and the weak Galerkin finite element method for the Stokes region. We construct corresponding discrete scheme and prove its well-posedness. The estimates for the corresponding numerical approximation are derived. Finally, we present some numerical experiments to validate the efficiency of the approach for solving this problem.  相似文献   

18.
A higher order interpolation scheme based on a multi-stage BVD (Boundary Variation Diminishing) algorithm is developed for the FV (Finite Volume) method on non-uniform, curvilinear structured grids to simulate the compressible turbulent flows. The designed scheme utilizes two types of candidate interpolants including a higher order linear-weight polynomial as high as eleven and a THINC (Tangent of Hyperbola for INterface Capturing) function with the adaptive steepness. We investigate not only the accuracy but also the efficiency of the methodology through the cost efficiency analysis in comparison with well-designed mapped WENO (Weighted Essentially Non-Oscillatory) scheme. Numerical experimentation including benchmark broadband turbulence problem as well as real-life wall-bounded turbulent flows has been carried out to demonstrate the potential implementation of the present higher order interpolation scheme especially in the ILES (Implicit Large Eddy Simulation) of compressible turbulence.  相似文献   

19.
In this paper, we consider the numerics of the dispersion-managed Korteweg-de Vries (DM-KdV) equation for describing wave propagations in inhomogeneous media. The DM-KdV equation contains a variable dispersion map with discontinuity, which makes the solution non-smooth in time. We formally analyze the convergence order reduction problems of some popular numerical methods including finite difference and time-splitting for solving the DM-KdV equation, where a necessary constraint on the time step has been identified. Then, two exponential-type dispersion-map integrators up to second order accuracy are derived, which are efficiently incorporated with the Fourier pseudospectral discretization in space, and they can converge regardless of the discontinuity and the step size. Numerical comparisons show the advantage of the proposed methods with the application to solitary wave dynamics and extension to the fast & strong dispersion-management regime.  相似文献   

20.
Elastic wave scattering has received ever-increasing attention in military and medical fields due to its high-precision solution. In this paper, an edge-based smoothed finite element method (ES-FEM) combined with the transparent boundary condition (TBC) is proposed to solve the elastic wave scattering problem by a rigid obstacle with smooth surface, which is embedded in an isotropic and homogeneous elastic medium in two dimensions. The elastic wave scattering problem satisfies Helmholtz equations with coupled boundary conditions obtained by Helmholtz decomposition. Firstly, the TBC of the elastic wave scattering is constructed by using the analytical solution to Helmholtz equations, which can truncate the boundary value problem (BVP) in an unbounded domain into the BVP in a bounded domain. Then the formulations of ES-FEM with the TBC are derived for Helmholtz equations with coupled boundary conditions. Finally, several numerical examples illustrate that the proposed ES-FEM with the TBC (ES-FEM-TBC) can work effectively and obtain more stable and accurate solution than the standard FEM with the TBC (FEM-TBC) for the elastic wave scattering problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号