首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A recent work of Li et al. [Numer. Math. Theor. Meth. Appl., 1(2008), pp. 92-112] proposed a finite volume solver to solve 2D steady Euler equations. Although the Venkatakrishnan limiter is used to prevent the non-physical oscillations nearby the shock region, the overshoot or undershoot phenomenon can still be observed. Moreover, the numerical accuracy is degraded by using Venkatakrishnan limiter. To fix the problems, in this paper the WENO type reconstruction is employed to gain both the accurate approximations in smooth region and non-oscillatory sharp profiles near the shock discontinuity. The numerical experiments will demonstrate the efficiency and robustness of the proposed numerical strategy.  相似文献   

2.
Although there is agreement that flexion and extension spaces should be symmetrical and that rotation of the femoral component impacts outcome in a knee replacement, there is dispute over what is the 'correct' rotation and how best to achieve it (Akagi et al., Clin Orthop Relat Res 366:155-163, 1999; Anouchi et al., Clin Orthop Relat Res 287:170-177, 1993; Barrack et al., Clin Orthop Relat Res 392:46-55, 2001; Berger et al., Clin Orthop Relat Res 356:144-153, 1998; Jenny and Boeri, Acta Orthop Scand 75(1):74-77, 2004; Poilvache et al., Clin Orthop Relat Res 331:35-46, 1996; Siston et al., J Bone Joint Surg Am 87(10):2276-2280, 2005). Insall and Scuderi recommended placing a tensor in flexion and rotating the femoral cutting block so that its posterior edge is parallel to the cut tibia (Insall, Surgery of the knee, vol 2, 2nd edn., Churchill Livingstone, New York, 1993; Scuderi and Insall, Orthop Clin N Am 20:71-78, 1989). We feel Equiflex instrumentation will reliably achieve Insall and Scuderi's recommendation. To evaluate early results and lateral retinacular release rates using Equiflex instrumentation for TKR, we evaluated 209 consecutive knees (31 valgus, 178 varus) using this technique from 4 April 2005 until 19 September 2006. Pre and postop American Knee Society and Oxford scores, deformity, ROM, lateral retinacular release rates and complications were recorded. We could correct alignment and achieve our technical goals in 99% of cases. A lateral retinacular release was required in only five knees (2.4%). The complications are comparable to published data. The Equiflex instrumentation does help in equalising flexion-extension gaps, improves patellar tracking and reduces the incidence of lateral retinacular release.  相似文献   

3.
We present a new conservative semi-Lagrangian finite difference weighted essentially non-oscillatory scheme with adaptive order. This is an extension of the conservative semi-Lagrangian (SL) finite difference WENO scheme in [Qiu and Shu, JCP, 230 (4) (2011), pp. 863-889], in which linear weights in SL WENO framework were shown not to exist for variable coefficient problems. Hence, the order of accuracy is not optimal from reconstruction stencils. In this paper, we incorporate a recent WENO adaptive order (AO) technique [Balsara et al., JCP, 326 (2016), pp. 780-804] to the SL WENO framework. The new scheme can achieve an optimal high order of accuracy, while maintaining the properties of mass conservation and non-oscillatory capture of solutions from the original SL WENO. The positivity-preserving limiter is further applied to ensure the positivity of solutions. Finally, the scheme is applied to high dimensional problems by a fourth-order dimensional splitting. We demonstrate the effectiveness of the new scheme by extensive numerical tests on linear advection equations, the Vlasov-Poisson system, the guiding center Vlasov model as well as the incompressible Euler equations.  相似文献   

4.
We have developed efficient numerical algorithms for solving 3D steady-state Poisson-Nernst-Planck (PNP) equations with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by a finite difference scheme and solved iteratively using the Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Then, the algebraic multigrid method is applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed, which reduces computational complexity from $\mathcal{O}$($N^2$) to $\mathcal{O}$($NlogN$), where $N$ is the number of grid points. Integrals involving the Dirac delta function are evaluated directly by coordinate transformation, which yields more accurate results compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for lithium-ion (Li-ion) batteries are shown to be in good agreement with the experimental data and the results from previous studies.  相似文献   

5.
In this paper, we present an adaptive moving mesh technique for solving the incompressible viscous flows using the vorticity stream-function formulation. The moving mesh strategy is based on the approach proposed by Li et al. [J. Comput. Phys., 170 (2001), pp. 562–588] to separate the mesh-moving and evolving PDE at each time step. The Navier-Stokes equations are solved in the vorticity stream-function form by a finite-volume method in space, and the mesh-moving part is realized by solving the Euler-Lagrange equations to minimize a certain variation in conjunction with a more sophisticated monitor function. A conservative interpolation is used to redistribute the numerical solutions on the new meshes. This paper discusses the implementation of the periodic boundary conditions, where the physical domain is allowed to deform with time while the computational domain remains fixed and regular throughout. Numerical results demonstrate the accuracy and effectiveness of the proposed algorithm.  相似文献   

6.
In this paper, we present an adaptive moving mesh algorithm for meshes of unstructured polyhedra in three space dimensions. The algorithm automatically adjusts the size of the elements with time and position in the physical domain to resolve the relevant scales in multiscale physical systems while minimizing computational costs. The algorithm is a generalization of the moving mesh methods based on harmonic mappings developed by Li et al. [J. Comput. Phys., 170 (2001), pp. 562-588, and 177 (2002), pp. 365-393]. To make 3D moving mesh simulations possible, the key is to develop an efficient mesh redistribution procedure so that this part will cost as little as possible comparing with the solution evolution part. Since the mesh redistribution procedure normally requires to solve large size matrix equations, we will describe a procedure to decouple the matrix equation to a much simpler block-tridiagonal type which can be efficiently solved by a particularly designed multi-grid method. To demonstrate the performance of the proposed 3D moving mesh strategy, the algorithm is implemented in finite element simulations of fluid-fluid interface interactions in multiphase flows. To demonstrate the main ideas, we consider the formation of drops by using an energetic variational phase field model which describes the motion of mixtures of two incompressible fluids. Numerical results on two- and three-dimensional simulations will be presented.  相似文献   

7.
In this paper, we introduce an extension of a splitting method for singularly perturbed equations, the so-called RS-IMEX splitting [Kaiser et al., Journal of Scientific Computing, 70(3), 1390–1407], to deal with the fully compressible Euler equations. The straightforward application of the splitting yields sub-equations that are, due to the occurrence of complex eigenvalues, not hyperbolic. A modification, slightly changing the convective flux, is introduced that overcomes this issue. It is shown that the splitting gives rise to a discretization that respects the low-Mach number limit of the Euler equations; numerical results using finite volume and discontinuous Galerkin schemes show the potential of the discretization.  相似文献   

8.
We propose a mass-conservative and monotonicity-preserving characteristic finite element method for solving three-dimensional transport and incompressible Navier-Stokes equations on unstructured grids. The main idea in the proposed algorithm consists of combining a mass-conservative and monotonicity-preserving modified method of characteristics for the time integration with a mixed finite element method for the space discretization. This class of computational solvers benefits from the geometrical flexibility of the finite elements and the strong stability of the modified method of characteristics to accurately solve convection-dominated flows using time steps larger than its Eulerian counterparts. In the current study, we implement three-dimensional limiters to convert the proposed solver to a fully mass-conservative and essentially monotonicity-preserving method in addition of a low computational cost. The key idea lies on using quadratic and linear basis functions of the mesh element where the departure point is localized in the interpolation procedures. The proposed method is applied to well-established problems for transport and incompressible Navier-Stokes equations in three space dimensions. The numerical results illustrate the performance of the proposed solver and support its ability to yield accurate and efficient numerical solutions for three-dimensional convection-dominated flow problems on unstructured tetrahedral meshes.  相似文献   

9.
The rotational incremental pressure-correction (RIPC) scheme, described in Timmermans et al. [Int. J. Numer. Methods. Fluids., 22 (1996)] and Shen et al. [Math. Comput., 73 (2003)] for non-rotational Navier-Stokes equations, is extended to rotating incompressible flows. The method is implemented in the context of a pseudo Fourier-spectral code and applied to several rotating laminar and turbulent flows. The performance of the scheme and the computational results are compared to the so-called diagonalization method (DM) developed by Morinishi et al. [Int. J. Heat. Fluid. Flow., 22 (2001)]. The RIPC predictions are in excellent agreement with the DM predictions, while being simpler to implement and computationally more efficient. The RIPC scheme is not in anyway limited to implementation in a pseudo-spectral code or periodic boundary conditions, and can be used in complex geometries and with other suitable boundary conditions.  相似文献   

10.

Background  

The laparoscopic vertical sleeve gastrectomy (LSG) is derived from the biliopancreatic diversion with duodenal switch operation (Marceau et al., Obes Surg 3:29–35, 1993; Hess and Hess, Obes Surg 8:267–82, 1998; Chu et al., Surg Endosc 16:S069, 2002). Later, LSG was advocated as the first step of a two-stage procedure for super-obese patients (Regan et al., Obes Surg 13:861–4, 2003; Cottam et al., Surg Endosc 20:859–63, 2006). However, recent support is mounting that continues to establish LSG as the definitive procedure for surgical treatment of morbid obesity. We will report our experience with the LSG as a primary bariatric procedure and evaluate if this operation is suitable as a stand-alone procedure.  相似文献   

11.
In [A NURBS-enhanced finite volume solver for steady Euler equations, X. C. Meng, G. H. Hu, J. Comput. Phys., Vol. 359, pp. 77–92], a NURBS-enhanced finite volume method was developed to solve the steady Euler equations, in which the desired high order numerical accuracy was obtained for the equations imposed in the domain with a curved boundary. In this paper, the method is significantly improved in the following ways: (i) a simple and efficient point inversion technique is designed to compute the parameter values of points lying on a NURBS curve, (ii) with this new point inversion technique, the $h$-adaptive NURBS-enhanced finite volume method is introduced for the steady Euler equations in a complex domain, and (iii) a goal-oriented a posteriori error indicator is designed to further improve the efficiency of the algorithm towards accurately calculating a given quantity of interest. Numerical results obtained from a variety of numerical experiments with different flow configurations successfully show the effectiveness and robustness of the proposed method.  相似文献   

12.
The parareal algorithm, proposed firstly by Lions et al. [J. L. Lions, Y. Maday, and G. Turinici, A "parareal" in time discretization of PDE's, C.R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 661-668], is an effective algorithm to solve the time-dependent problems parallel in time. This algorithm has received much interest from many researchers in the past years. We present in this paper a new variant of the parareal algorithm, which is derived by combining the original parareal algorithm and the Richardson extrapolation, for the numerical solution of the nonlinear ODEs and PDEs. Several nonlinear problems are tested to show the advantage of the new algorithm. The accuracy of the obtained numerical solution is compared with that of its original version (i.e., the parareal algorithm based on the same numerical method).  相似文献   

13.
Originally described by Kirkaldy–Willis, the degenerative cascade leading to anatomic LSS occurs in a predictable pattern, beginning with altered biomechanics of the intervertebral disk (Yong-Hing and Kirkaldy-Willis, 1983). Further studies have elucidated several theorized mechanisms responsible for the varied clinical manifestations experienced by patients with similar radiographic evidence of LSS; however, a single explanation for these finding has yet to be identified (Olemarker et al., 1996; Rydevick et al., 1991; Pedowitz et al., 1992). Obtaining thorough patient history and performing a complete physical exam is critical to ensure an accurate diagnosis. Although neurogenic claudication symptoms are classic for LSS, patients frequently present with varied and often mixed symptomatology (Buckland et al, 2017; Lesher et al., 2008). Consistent screening for myelopathic symptoms, identifying “red-flag” symptoms suggesting systemic illness, and awareness of potential extraspinal pathology is necessary to improve patient outcomes (Devin et al, 2012; Golob et al, 2006; Berger et al, 2017).  相似文献   

14.
This paper presents a modeling framework—mathematical model and computational framework—to study the response of a plastic material due to the presence and transport of a chemical species in the host material. Such a modeling framework is important to a wide variety of problems ranging from Li-ion batteries, moisture diffusion in cementitious materials, hydrogen diffusion in metals, to consolidation of soils under severe loading-unloading regimes. The mathematical model incorporates experimental observations reported in the literature on how (elastic and plastic) material properties change because of the presence and transport of a chemical species. Also, the model accounts for one-way (transport affects the deformation but not vice versa) and two-way couplings between deformation and transport subproblems. The resulting coupled equations are not amenable to analytical solutions; so, we present a robust computational framework for obtaining numerical solutions. Given that popular numerical formulations do not produce nonnegative solutions, the computational framework uses an optimized-based nonnegative formulation that respects physical constraints (e.g., nonnegative concentrations). For completeness, we also show the effect and propagation of the negative concentrations, often produced by contemporary transport solvers, into the overall predictions of deformation and concentration fields. Notably, anisotropy of the diffusion process exacerbates these unphysical violations. Using representative numerical examples, we discuss how the concentration field affects plastic deformations of a degrading solid. Based on these numerical examples, we also discuss how plastic zones spread because of material degradation. To illustrate how the proposed computational framework performs, we report various performance metrics such as optimization iterations and time-to-solution.  相似文献   

15.
The indices for ulnar translation described by Chamay et al. (1983, Annales de Chirurgie de la Main, Vol. 2, pp. 5-17), and Bouman et al. (1994, Journal of Hand Surgery Vol. 19B, pp. 325-329), and for carpal height described by Youm et al. (1978, Journal of Bone and Joint Surgery, Vol. 40A, pp. 423-431) and Bouman et al. (1994) were compared in pre- and postoperative wrist X-rays of 91 patients with rheumatoid arthritis undergoing radiolunate arthrodesis. Both indices described by Bouman had a higher applicability and sensitivity than the Chamay and Youm indices and are recommended for use with the rheumatoid wrist. However false-negative values may result when the Bouman index for ulnar translation is used to follow up radiolunate arthrodesis.  相似文献   

16.
In this paper, we are concerned with probabilistic high order numerical schemes for Cauchy problems of fully nonlinear parabolic PDEs. For such parabolic PDEs, it is shown by Cheridito, Soner, Touzi and Victoir [4] that the associated exact solutions admit probabilistic interpretations, i.e., the solution of a fully nonlinear parabolic PDE solves a corresponding second order forward backward stochastic differential equation (2FBSDEs). Our numerical schemes rely on solving those 2FBSDEs, by extending our previous results [W. Zhao, Y. Fu and T. Zhou, SIAM J. Sci. Comput., 36 (2014), pp. A1731-A1751.]. Moreover, in our numerical schemes, one has the flexibility to choose the associated forward SDE, and a suitable choice can significantly reduce the computational complexity. Various numerical examples including the HJB equations are presented to show the effectiveness and accuracy of the proposed numerical schemes.  相似文献   

17.
A computational study of superconducting states near the superconducting-normal phase boundary in mesoscopic finite cylinders is presented. The computational approach uses a finite element method to find numerical solutions of the linearized Ginzburg-Landau equation for samples with various sizes, aspect ratios, and cross-sectional shapes, i.e., squares, triangles, circles, pentagons, and four star shapes. The vector potential is determined using a finite element method with two penalty terms to enforce the gauge conditions that the vector potential is solenoidal and its normal component vanishes at the surface(s) of the sample. The eigenvalue problem for the linearized Ginzburg-Landau equations with homogeneous Neumann boundary conditions is solved and used to construct the superconducting-normal phase boundary for each sample. Vortex-antivortex (V-AV) configurations for each sample that accurately reflect the discrete symmetry of each sample boundary were found through the computational approach. These V-AV configurations are realized just within the phase boundary in the magnetic field-temperature phase diagram. Comparisons are made between the results obtained for the different sample shapes.  相似文献   

18.
In this work, we propose an efficient multi-mesh adaptive finite element method for simulating the dendritic growth in two- and three-dimensions. The governing equations used are the phase field model, where the regularity behaviors of the relevant dependent variables, namely the thermal field function and the phase field function, can be very different. To enhance the computational efficiency, we approximate these variables on different h-adaptive meshes. The coupled terms in the system are calculated based on the implementation of the multi-mesh h-adaptive algorithm proposed by Li (J. Sci. Comput., pp. 321-341, 24 (2005)). It is illustrated numerically that the multi-mesh technique is useful in solving phase field models and can save storage and the CPU time significantly.  相似文献   

19.
A fourth-order finite difference method is proposed and studied for the primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean vorticity formulation. Since the vertical average of the horizontal velocity field is divergence-free, we can introduce mean vorticity and mean stream function which are connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The mean vorticity equation is approximated by a compact difference scheme due to the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil approximations are utilized to deal with transport type equations for computational convenience. The numerical values for the total velocity field (both horizontal and vertical) are statically determined by a discrete realization of a differential equation at each fixed horizontal point. The method is highly efficient and is capable of producing highly resolved solutions at a reasonable computational cost. The full fourth-order accuracy is checked by an example of the reformulated PEs with force terms. Additionally, numerical results of a large-scale oceanic circulation are presented.  相似文献   

20.
The swimming of a 3D fish-like body with finlets is numerically investigated at Re = 1000 (the Reynolds number is based on the uniform upstream flow and the length of the fish-like body). The finlets are simply modeled as thin rigid rectangular plates that undulate with the body. The wake structures and the flow around the caudal peduncle are studied. The finlets redirect the local flow across the caudal peduncle but the vortical structures in the wake are almost not affected by the finlets. Improvement of hydrodynamic performance has not been found in the simulation based on this simple model. The present numerical result is in agreement with that of the work of Nauen and Lauder [J. Exp. Biol., 204 (2001), pp. 2251-2263] and partially supports the hypothesis of Webb [Bull. Fish. Res. Bd. Can., 190 (1975), pp. 1-159].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号