首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 246 毫秒
1.
Intra- and extracellular recordings were made in the transverse hippocampal slice in vitro to study the requirements for the triggering of epileptiform discharges of CA1 cells. Spontaneous and induced epileptiform discharges were produced by adding small amounts of sodium benzyl penicillin. Recorded intracellularly, the epileptiform activity consisted of a burst of action potentials superimposed on a depolarizing wave. Extracellular recordings demonstrated a marked synchronization. The epileptiform activity of the CA1 cells appeared without changes in the passive membrane properties or in the spike generating mechanism. Spontaneous epileptiform discharges of the CA1 cells depended upon a synaptic activation from the CA3 region. Stimulation of afferent fibres evoked an early and a late burst response in the CA1 cells. The long latency burst was caused by a re-excitation from the CA3 region. The early burst response seems to be an intrinsic property of the CA1 cells and may be induced by synaptic activation of either apical or basal dendrites. The findings suggest that synaptic depolarization is necessary for the generation of epileptiform discharges of the CA1 cells.  相似文献   

2.
Alterations in NMDA receptors in a rat model of cortical dysplasia   总被引:13,自引:0,他引:13  
Recent studies have demonstrated an important role for the N-methyl-D-aspartate receptor (NMDAR) in epilepsy. NMDARs have also been shown to play a critical role in hyperexcitability associated with several animal models of human epilepsy. Using whole-cell voltage clamp recordings in brain slices, we studied evoked paroxysmal discharges in the freeze-lesion model of neocortical microgyria. The voltage dependence of epileptiform discharges indicated that these paroxysmal events were produced by a complex pattern of excitatory and inhibitory inputs. We examined the effect of the NMDAR antagonist D-2-amino-5-phosphopentanoic acid (APV) and the NMDA receptor subunit type 2B (NR2B)-selective antagonist ifenprodil on the threshold, peak amplitude, and area of evoked epileptiform discharges in brain slices from lesioned animals. Both compounds consistently raised the threshold for evoking the discharge but had modest effects on the discharge peak and amplitude. For comparison with nonlesioned cortex, we examined the effects of ifenprodil on the epileptiform discharge evoked in the presence of 2 microM bicuculline (partial disinhibition). In slices from nonlesioned cortex, 10 microM ifenprodil had little effect on the threshold whereas 71% of the recordings in bicuculline-treated lesioned cortex showed a >25% increase in threshold. These results suggest that NR2B-containing receptors are functionally enhanced in freeze-lesioned cortex and may contribute to the abnormal hyperexcitability observed in this model of neocortical microgyria.  相似文献   

3.
Dopaminergic modulation of prefrontal cortex (PFC) is important for neuronal integration in this brain region known to be involved in cognition and working memory. Because of the complexity and heterogeneity of the effect of dopamine on synaptic transmission across layers of the neocortex, dopamine's net effect on local circuits in PFC is difficult to predict. We have combined whole cell patch-clamp recording and voltage-sensitive dye imaging to examine the effect of dopamine on the excitability of local excitatory circuits in rat PFC in vitro. Whole cell voltage-clamp recording from visually identified layer II/III pyramidal neurons in rat brain slices revealed that, in the presence of bicuculline (10 microM), bath-applied dopamine (30-60 microM) increased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by weak intracortical stimulus. The effect was mimicked by the selective D1 receptor agonist SKF 81297 (1 microM). Increasing stimulation resulted in epileptiform discharges. SKF 81297 (1 microM) significantly lowered the threshold stimulus required for generating epileptiform discharges to 83% of control. In the imaging experiments, bath application of dopamine or SKF 81297 enhanced the spatiotemporal spread of activity in response to weak stimulation and previously subthreshold stimulation resulted in epileptiform activity that spread across the whole cortex. These effects could be blocked by the selective D1 receptor antagonist SCH 23390 (10 microM) but not by the D2 receptor antagonist eticlopride (5 microM). These results indicate that dopamine, by a D1 receptor-mediated mechanism, enhances spatiotemporal spread of synaptic activity and lowers the threshold for epileptiform activity in local excitatory circuits within PFC.  相似文献   

4.
Spontaneous, synchronous epileptiform discharges were recorded in both CA3 and CA1 subfields of rat hippocampal slices perfused with Mg2+-free medium. Surgical separation of the two areas abolished the spontaneous discharges only in the CA1 subfield. However, epileptiform responses in the isolated CA1 subfield could still be evoked by orthodromic stimulation. Intracellularly these stimulus-induced responses were characterized by a depolarization associated with a burst of action potentials. Stimulation of the alveus still evoked a hyperpolarizing potential, presumably a recurrent inhibitory postsynaptic potential (IPSP) in CA1 pyramidal cells. Both spontaneous and stimulus-induced epileptiform discharges were blocked by the selective antagonist of N-methyl-D-aspartate (NMDA) receptors DL-2-amino-phosphonovalerate (APV). APV also reduced the amplitude and duration of the IPSP induced by alveus stimulation. Thus, epileptiform discharges evoked by lowering Mg2+ in the CA1 subfield are associated with a preservation of inhibitory mechanisms. Furthermore the effects exerted by APV upon the IPSP implicate that NMDA receptors might be involved in the neuronal circuit responsible for the hyperpolarizing IPSP generated by CA1 pyramidal neurons.  相似文献   

5.
Summary Intra- and extracellular recordings were obtained from the CA1 region of guinea pig hippocampal slices maintained in vitro. We studied the effect of reducing the extracellular sodium concentration on penicillin-induced epileptiform responses.In control experiments, Tris and choline were assayed as sodium substitutes. Choline was found unsuitable, since it induced repetitive firing in the absence of any convulsant agent. Replacement of 50% of the extracellular sodium ([Na+]o) with Tris reduced the amplitude of the presynaptic fiber volley, the field EPSP, and the population spike. Intracellular studies showed that when [Na+]o was lowered, action-potential amplitudes were reversibly depressed by an amount close to that predicted by the Nernst relation.Orthodromically elicited epileptiform discharges, induced by penicillin, were reduced in a low-sodium medium when constant stimulus currents were employed. If orthodromic stimulus strengths in normal and low-sodium states were equated on the basis of the field-EPSP amplitude, no significant diminution of the depolarizing-wave component of the epileptiform response was observed. These results suggest that a synaptic component underlies penicillin-induced epileptiform discharges.Supported by grants from the Norwegian Research Council for Science and the Humanities and by NIH grants NS 11535 and NS 15772  相似文献   

6.
Bijak M 《Neuroscience》2000,96(3):487-494
Neuropeptide Y reduced spontaneous and stimulation-evoked epileptiform discharges in rat frontal cortex slices perfused with a magnesium-free solution and with the GABA(A) receptor antagonist picrotoxin. To investigate the mechanism of that action, effects of neuropeptide Y on intrinsic membrane properties and synaptic responses of layer II/III cortical neurons were studied using intracellular recording. Neuropeptide Y (1 microM) had no detectable effect on the membrane properties of neurons. The evoked synaptic potentials were attenuated by neuropeptide Y. Moreover, the pharmacologically isolated excitatory postsynaptic potentials, mediated by N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors, were reversibly depressed by neuropeptide Y. The most pronounced inhibitory effect of neuropeptide Y was observed on late polysynaptic excitatory postsynaptic potentials. To assess a putative postsynaptic action of neuropeptide Y, N-methyl-D-aspartate was locally applied in the presence of tetrodotoxin. The N-methyl-D-aspartate-evoked depolarizations were unaffected by neuropeptide Y, which suggests that the depression of excitatory postsynaptic potentials was due to an action at sites presynaptic to the recorded neurons.These data show that neuropeptide Y attenuates epileptiform discharges and the glutamate receptor-mediated synaptic transmission in the rat frontal cortex. The above results indicate that neuropeptide Y may regulate neuronal excitability within the cortex, and that neuropeptide Y receptors are potential targets for an anticonvulsant therapy.  相似文献   

7.
The relevance of long-term potentiation (LTP) at excitatory synapses in CA3 circuits to generation of spontaneous epileptiform bursts in CA3 was investigated using rat hippocampal slices. CA3 pyramidal cells were antidromically stimulated through Schaffer collaterals. Evoked field potentials were extracellularly recorded from the stratum pyramidale and the stratum radiatum in CA3. Therefore, field potentials reflecting recurrent excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs) were positive at the stratum pyramidale and negative at the stratum radiatum. First, we tested how the amplitude of the evoked field potentials depends on a γ-aminobutyric acid (GABAA) antagonist. Both of the positive and negative field potential peaks reduced in the medium containing penicillin (2 mM) or bicuculline (20 μM). This suggests that unmasked EPSPs due to suppression of IPSPs do not result in an increase in the evoked potentials. Second, CA3 pyramidal cells were antidromically stimulated by tetanic stimulation of Schaffer collaterals in order to induce LTP at synapses in CA3 circuits. Both of the positive and negative field potentials increased, suggesting that recurrent EPSPs were enhanced by tetanic stimulation. Induction of LTP at recurrent excitatory synapses was followed by spontaneous epileptiform bursts which persisted throughout experiments (1.5 h), while LTP of afferent synaptic potential evoked by hilar test stimulation was not induced. These results suggest that LTP at the afferent synapses is not necessary to spontaneous epileptiform bursts in CA3, but LTP at excitatory synapses between CA3 pyramidal cells contribute to spontaneous epileptiform bursts.  相似文献   

8.
Extracellularly recorded field potentials, evoked by stimulation of cortico-nucleus accumbens border, were recorded in the nucleus accumbens (NAcc) in horizontal slices of rat ventral forebrain. The field excitatory postsynaptic potential (EPSP) event (N2) was calcium dependent, blocked by tetrodotoxin (1 microM), and reduced by over 70% by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM), the antagonist of AMPA-type glutamate receptors. The EPSP amplitude was enhanced by either of the GABA(A) receptor antagonists, picrotoxin (10 microM; by 252+/-33%, n=18) and bicuculline methiodide (20 microM; by 216+/-34%, n=4). Additionally, picrotoxin (3-50 microM) and bicuculline methiodide (20 microM) promoted epileptiform activity within the NAcc, manifest as the emergence of additional late components, N3, N4 and N5, in the evoked synaptic waveform. In slices with the frontal cortex removed, picrotoxin (10-50 microM) and bicuculline methiodide (20 microM) were unable to promote epileptiform activity within the NAcc, although a smaller increase in the peak amplitude of the field EPSP (163+/-18%, n=6) was observed at the highest concentrations of picrotoxin (50 microM). Histological examination of the slice demonstrated that in such decorticated slices, the piriform cortex (PC) had been removed. We propose that stimulation of the cortico-NAcc border not only evokes an orthodromic EPSP in the NAcc, but also causes antidromic activation of cortical tissue. Disinhibition by GABA(A) antagonists of circuits intrinsic to the cortex, possibly the piriform cortex, is the principal cause of the facilitation of the EPSP and of regenerative epileptiform activity in NAcc evoked by stimulation of cortical input.  相似文献   

9.
Functional segregation along the dorso-ventral axis of the hippocampus is a developing concept. The higher susceptibility of the ventral hippocampus to epileptic activity compared with dorsal hippocampus is one of the main features, which still has obscure mechanisms. Using the model of magnesium-free medium and field recordings, single epileptiform discharges displayed higher incidence (77% vs 57%), rate (41.7+/-3.1 vs 13.5+/-0.7 events/min), duration (173.9+/-17.7 vs 116.8+/-13.6 ms) and intensity (coastline, 25.4+/-2.5 vs 9.5+/-1.8) in ventral compared with dorsal rat hippocampal slices. In addition, the decay phase of the evoked synaptic potentials was 110% slower in ventral slices. The N-methyl-D-aspartate (NMDA) receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (50-100 microM) decreased the discharge rate and coastline similarly in ventral and dorsal slices, but it shortened the discharges in ventral slices (by 40%) only. The NMDA receptor antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10 microM) decreased the rate in both groups and additionally shortened discharges in both kinds of slices, an effect which was greater in ventral ones (31% vs 13%). Furthermore, both drugs shortened the evoked potentials more in ventral (77%) than in dorsal slices (52%). On the other hand, 1 microM of 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid shortened the discharges and evoked synaptic potentials only in ventral slices, and slowed down the discharge rate only in dorsal slices. Addition of NMDA, in the magnesium-free medium, enhanced activity in both kinds of slices. At 5 and 10 microM of NMDA 51% of the ventral but only 9% of the dorsal slices displayed persistent epileptiform discharges, which were recorded for at least one hour after reintroduction of magnesium in the medium. At 10-20 microM the enhancement of activity was transient, followed by suppression of discharges in 40% and 76% of the ventral and dorsal slices, respectively. Most of the slices having experienced suppression did not develop persistent activity. We propose that the NMDA receptors contribute to the higher susceptibility of the ventral hippocampus to expression and long-term maintenance of epileptiform discharges. This diversification may be related to other aspects of hippocampal dorso-ventral functional segregation.  相似文献   

10.
The deep piriform region has an unusually high seizure susceptibility. Voltage imaging previously located the sites of epileptiform discharge onset in slices of rat piriform cortex and revealed the spatiotemporal pattern of development of two types of electrical activity during the latent period prior to discharge onset. A ramplike depolarization (onset activity) appears at the site of discharge onset. Onset activity is preceded by a sustained low-amplitude depolarization (plateau activity) at another site, which shows little if any overlap with the site of onset. Because synaptic blockade at either of these two sites blocks discharges, it was proposed that both forms of latent period activity are necessary for the generation of epileptiform discharges and that the onset and plateau sites work together in the amplification of electrical activity. The capacity for amplification was examined here by studying subthreshold responses in slices of piriform cortex using two different in vitro models of epilepsy. Under some conditions electrically evoked responses showed a nonlinear dependence on stimulus current, suggesting amplification by strong polysynaptic excitatory responses. The sites of plateau and onset activity were mapped for different in vitro models of epilepsy and different sites of stimulation. These experiments showed that the site of plateau activity expanded into deep layers of neighboring neocortex in parallel with expansions of the onset site into neocortex. These results provide further evidence that interactions between the sites of onset and plateau activity play an important role in the initiation of epileptiform discharges. The site of plateau activity showed little variation with different stimulation sites in the piriform cortex, but when stimulation was applied in the endopiriform nucleus (in the sites of onset of plateau activity), plateau activity had a lower amplitude and became distributed over a much wider area. These results indicate that in the initiation of epileptiform discharges, the location of the circuit that generates plateau activity is not rigidly defined but can exhibit flexibility.  相似文献   

11.
Kindling-related changes of the hippocampal evoked field potentials and patterns of the spontaneous interictal spikes were investigated in 10 hippocampally kindled cats. A complex potential waveform was recorded by macroelectrodes placed in the CA3 region of the hippocampal gyrus and hilus of the gyrus dentatus, close to the granule cell layer, after stimulation of the entorhinal cortex. After high intensity repetitive (10/s) stimulation a late component could be recorded with the latency of about 30-40 ms, in addition to the early response originating in the gyrus dentatus. Probably this component developed during kindling into a delayed, high amplitude spike. After application of the double shock test, post-stimulus facilitation of the spike response was observed within time limits of 20-100 ms. Another observation was a widespread, ipsilateral and bilateral long-term enhancement of the amplitudes of field potentials evoked by entorhinal and intrahippocampal stimulation. It was the most common effect observed during kindling. Widespread synchronized discharges of hippocampal spikes and localized clusters of brief irregular spikes were the most significant features of spontaneous interictal spikes. The paroxysmal discharges of spikes could be evoked by ipsi or by contralateral stimulation of the afferent pathways projecting to the kindled hippocampus, rather than by direct electrical stimulation of the kindled hippocampal gyrus.  相似文献   

12.
1. Suppression of GABAA receptor-mediated inhibition disrupts the neural activity of neocortex and can lead to synchronized discharges that mimic those of partial epilepsy. We have studied the role of GABAA-mediated inhibition in controlling the synchronization and horizontal (tangential) spread of cortical activity. 2. Slices of rat SmI were maintained in vitro and focally stimulated in layer VI while recording with a horizontal array of extracellular electrodes. Inhibition was slightly suppressed by adding low concentrations of the GABAA antagonists bicuculline or bicuculline methiodide to the bathing medium. Under control conditions neural activity was narrowly confined to a vertical strip of cortex. The horizontal spread of activity expanded about twofold in the presence of antagonist concentrations (less than or equal to 0.5 microM) that were expected to suppress GABAA function by no more than 10-20%. 3. At antagonist concentrations between 0.4 and 1.0 microM, evoked epileptiform activity appeared. These threshold-dose epileptiform events showed wide variations in size and duration (even at the same recording site), very variable distances of horizontal propagation, specific sites of propagation failure, reversals of propagation direction, and directional asymmetries in their probability of propagation. This contrasts with activity observed previously (Ref. 9) in high bicuculline concentrations (greater than or equal to 10 microM): large, stereotyped events that propagate reliably without decrement or reflection. 4. Intracellular recordings were obtained from pyramidal neurons in layers II/III in the presence of less than or equal to 1 microM bicuculline. Inhibitory postsynaptic potentials (IPSPs) were observed during both primary evoked responses and propagating epileptiform events and were often comparable in size and duration to those in untreated cortex. Epileptiform field potentials were always correlated with synaptic activity in single cells, but the pattern and type of PSPs varied with the form of the field potentials. Large amplitude epileptiform events coincided with an overwhelming inhibition of upper layer neurons. 5. We conclude that 1) the horizontal spread of normal cortical activity is strongly constrained by GABAA-mediated IPSPs, 2) a relatively small reduction in the efficacy of inhibition leads to a large increase in the spread of excitation, 3) initiation and propagation of synchronized epileptiform activity can occur even in the presence of robust cortical inhibition, and 4) the character of epileptiform activity is strongly affected by the influences of inhibition.  相似文献   

13.
The common features of all types of epilepsy are synchronized and uncontrolled discharges of nerve cell assemblies. It is believed that calcium ions play an important role in the generation of epileptic activity. Excessive calcium influx into neurons is the first step toward a seizure. The aim of the present study is to investigate whether the calcium channel blocker nimodipine has anticonvulsive effects. The left cerebral cortex was exposed by craniotomy in anaesthetized rats. An epileptic focus was produced by injection of penicillin G potassium (500 units) into the somatomotor cortex. After the epileptiform activity reached maximum frequency and amplitude; nimodipine was injected into the same area. Application of nimodipine caused an inhibition in the electrocorticograms (ECoG). Solvent alone did not affect the epileptiform activity. The results of this study indicate that nimodipine may have anticonvulsant effects.  相似文献   

14.
Copper-rutin complex (2 mg/kg) completely eliminated epileptiform potentials induced by a combination of chlorpromazine and microwave radiation 1-2 min postinjection and suppressed convulsive activity provoked by application of penicillin to the sensorimotor cortex.  相似文献   

15.
Summary A technique of cryogenic blockade was used in waking rabbits to produce complete and reversible isolation of the olfactory bulb from the rest of the brain. During cooling of the olfactory peduncle epileptiform activity occurred spontaneously in the pyriform cortex in 3 out of 20 sessions, but never in the bulb. Following removal of the cryoblockade, during the seizure state, epileptiform discharges appeared simultaneously in the bulb and pyriform cortex. In the control state, without cooling of the peduncle, epileptiform activity could be evoked in the bulb and cortex by intense electrical stimulation of either the bulb or the lateral olfactory tract. During the cryoblockade, however, intense stimulation of the bulb failed to evoke seizure-like discharges. The results demonstrate a dependency on more central olfactory structures for the induction and maintenance of epileptiform activity in the olfactory bulb.This project was supported by a grant no. HL31164 from NIH  相似文献   

16.
Summary Voltage sensitive probes were used to monitor the development, distribution, and spread of epileptiform potentials with a photodiode array in neocortical slices of guinea pigs. Epileptiform activity was induced by bath application of bicuculline-methiodide or 3,4-diaminopyridine and electrical stimulation of white matter or cortical layer I. Stimulation evoked a primary or early potential which was followed by a delayed epileptiform potential with a larger spatial extent. Shape, duration and amplitude of the delayed epileptiform potential varied strongly among slices and across the recording area and could reach largest amplitudes at a distance from the stimulation point. At a specific recording site, however, with repeated stimulation, potentials were generated in a stereotyped way. Intracellularly recorded delayed epileptiform potentials corresponded very closely at least to the early part of the optical response. Epileptiform activity appeared in layer III as soon as the primary potential reached sufficient amplitude there. Apart from this relationship, the distribution and spread of maximal amplitudes of delayed epileptiform potentials were segregated from those of early potentials. Early potentials reached maximal amplitudes close to the stimulation site. In contrast, the largest amplitudes of delayed epileptiform potentials were always found in layer III. A second maximum occasionally occurred in layer V. The horizontal amplitude distribution of epileptiform potentials was asymmetric, i.e. amplitudes increased to one side and decreased to the other. Early potential maxima spread from deeper to upper layers when initiated by white matter stimulation and from upper to deeper layers when initiated by layer I stimulation. In contrast, delayed epileptiform potentials always spread from layer III to lower layers and to the sides. Velocity of spread of early potentials and delayed epileptiform potentials differed systematically along the vertical and horizontal axis. The distribution of maximal amplitudes, shape, and pattern of spread of epileptiform potentials was the same whether white matter or layer I was stimulated. The independence of delayed epileptiform potential characteristics from the point of stimulation and from early potential characteristics suggests that epileptiform activity is determined by intrinsic properties of the cortex and not by afferent activation.  相似文献   

17.
The dynamic response properties of the isolated frog muscle spindle receptor were investigated by recording the receptor potential evoked by pseudorandom noise (PRN) stimuli. The entire dynamic range of the receptor was determined by measuring the sensory response either at different intensities of the PRN stimulus (sigma = 8-30 microns) around a constant mean length or at the same intensity while varying the mean length from resting length L0 up to L0 + 150 microns. The 3-dB bandwidth of the test signal was 130 Hz. Random stimuli often evoked brief receptor potentials with variable size but characteristic shape. This shape contained a fast depolarization transient of the receptor potential during the stretching phase of the stimulus and a slowly decaying repolarization transient during release of stretch. The depolarization transient rose faster in proportion to the increasing amplitude of the receptor potential, so that larger receptor potentials were more phasic in character than smaller ones. The repolarization transient exhibited two segments of different exponential decay: The first brief repolarization phase lasted for 5 ms; its decline (tau = 2-5 ms) was faster for larger receptor potentials. The second slowly decaying repolarization transient was the same for different receptor potential amplitudes (tau = 47 ms). Consequently, the slow repolarization transients of succeeding receptor potentials displayed temporal summation. Since the amplitude and shape of the receptor potential remained constant during repeated sequences of PRN stimuli, this test stimulus was the most appropriate for the investigation of dynamic response properties under stationary conditions. Long-term stimulation caused a small shift of the mean membrane voltage towards hyperpolarizing values. This finding together with the marked "off effect" after termination of the stimulus indicate the action of an electrogenic pumping mechanism. The dynamic range of the muscle spindle receptor extended from resting length L0 up to L0 + 100 microns. Within this range static prestretches placed a bias upon the transducing site and effectively enhanced the amplitude of the receptor potential. Further prestretch beyond the dynamic region kept the receptor potential constant at its maximum amplitude. The receptor potential amplitude distribution was not symmetrical about the mean but was skewed in favor of depolarization values responding to the stretch trajectories of the PRN stimulus. Variation of the operating point by increasing the static prestretch also shifted the mode of the response distribution towards depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
1. Extracellular and intracellular recordings and measurements of the extracellular concentration of free K+ ([K+]o) were performed in the CA1 subfield of the rat hippocampal slice during perfusion with artificial cerebrospinal fluid (ACSF) in which NaCl had been replaced with equimolar Na-isethionate or Na-methylsulfate (hereafter called low Cl- ACSF). 2. CAl pyramidal cells perfused with low Cl- ACSF generated intracellular epileptiform potentials in response to orthodromic, single-shock stimuli delivered in stratum (S.) radiatum. Low-intensity stimuli evoked a short-lasting epileptiform burst (SB) of action potentials that lasted 40-150 ms and was followed by a prolonged hyperpolarization. When the stimulus strength was increased, a long-lasting epileptiform burst (LB) appeared; it had a duration of 4-15 s and consisted of an early discharge of action potentials similar to the SB, followed by a prolonged, large-amplitude depolarizing plateau. The refractory period of the LB was longer than 20 s. SB and LB were also seen after stimulation of the alveus. 3. Variations of the membrane potential with injection of steady. DC current modified the shape of SB and LB. When microelectrodes filled with the lidocaine derivative QX-314 were used, the amplitudes of both SB and LB increased in a linear fashion during changes of the baseline membrane potential in the hyperpolarizing direction. The membrane input resistance, as measured by injecting brief square pulses of hyperpolarizing current, decreased by 65-80% during the long-lasting depolarizing plateau of LB. 4. A synchronous field potential and a transient increase in [K+]o accompanied the epileptiform responses. The extracellular counterpart of the SB was a burst of three to six population spikes and a small increase in [K+]o (less than or equal to 2 mM from a resting value of approximately 2.5 mM). The LB was associated with a large-amplitude, biphasic, negative field potential and a large increase in [K+]o (up to 12.4 mM above the resting value). Changes in [K+]o during the LB were largest at the border between S. oriens and S. pyramidale. This was also the site where the field potentials measured 2-5 s after the stimulus attained their maximal amplitude. Conversely, field potentials associated with the early component of the LB or with the SB displayed a maximal amplitude in the S. radiatum. 5. Spontaneous SBs and LBs were at times recorded in the CA1 and in the CA3 subfield.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
1. Intra- and extracellular recording techniques were used to study epileptogenesis in in vitro slices of immature rat neocortex. Slices of sensorimotor cortex were prepared from animals 5-60 days old. Epileptiform activity was induced by bath application of 50 microM picrotoxin. 2. Convulsant-induced paroxysmal activity was observed only rarely in the youngest age group (5-7 days) and consisted of orthodromically evoked bursts of low-amplitude isolated discharges. This activity was labile and could be evoked only at long interstimulus intervals (greater than 10 s). 3. Extracellular recordings in slices from 8- to 15-day-old rats showed spontaneous epileptiform activity consisting of 10- to 30-s paroxysms of repetitive spike discharges superimposed on a 3- to 5-mV negative steady potential. This steady potential declined slightly during the course of the prolonged discharge and returned quickly to base line following the last spike discharge. 4. Laminar analysis of epileptiform activity in 8- to 15-day-old rats showed that the spike discharges were negative and superimposed on a positive slow wave in superficial cortical layers. At 100 micron below the pial surface, the slow potential reversed polarity and remained negative throughout the remainder of the cortex. Spike discharges reversed polarity 800 micron below the pial surface. 5. In intracellular recordings from slices obtained from 9- to 14-day-old animals, each paroxysm began with a sharply rising membrane depolarization (paroxysmal depolarizing shift, or PDS). A second PDS occurred before the cells repolarized to their resting potential. A series of PDSs then followed, superimposed on a sustained membrane depolarization. This was associated with a 33% decrease in input resistance. Afterhyperpolarizations (AHPs) following termination of the depolarization were low in amplitude or absent. 6. In the 16- to 30-day-old age group, extracellular recordings showed paroxysmal activity consisting of 3-10 initial spikes followed by a sustained, slow, negative-potential shift. This slow potential could be as great as 30 mV in amplitude and could last as long as 180 s. Paroxysmal events recurred spontaneously at intervals of 4-11 min. Spontaneous PDSs and slow, negative-potential shifts were not observed after 30 days of age, although PDSs could still be evoked by orthodromic stimulation. 7. Intracellular recordings in the 16- to 30-day-old group revealed that each paroxysmal event consisted of an initial period of increased synaptic activity and cellular firing, followed by a marked, long-lasting depolarization (LLD), culminating in an AHP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Experiments on conscious rabbits were performed using the oddball paradigm, in which a rare (deviant) and common (standard) stimuli were of the same color but different intensities. Deviant stimuli were of lesser intensity. Recordings were made of evoked potentials induced by series of uniform deviant stimuli (without using standard stimuli), which were presented at the beginning and end of stimulation. Visual evoked potentials recorded in response to deviant stimuli in the visual cortex and hippocampus showed increases in the amplitudes of phases, shifted towards positivity as compared with responses to standard stimuli and uniform deviant stimuli at the beginning and end of stimulus blocks. Significant changes affected phases P1 and P2 of visual evoked potentials in the cortex and phases P1, N1, and P2 in the hippocampus. The most significant increase in evoked potentials in the cortex was seen for the P2 peak (P130). It is suggested that changes in responses to oddball-deviant stimuli result from an orienting reflex to rare, unexpected stimuli and that the P2 (P130) peak in the cortex is associated with transmission of information regarding changes in the intensity of the light. The amplitude of this peak was shown to be decreased in responses to uniform deviant stimuli at the beginning and end of stimulus blocks. It was also demonstrated that the clearest and most contrasting changes in visual evoked potentials in responses to deviant and standard stimuli were seen with the smallest differences in intensity between these types of stimulus, this reflecting increases in the orienting reflex at threshold differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号