首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the general population, evaluation of lung cancer risk from radon in houses is hampered by low levels of exposure and by dosimetric uncertainties due to residential mobility. To address these limitations, the authors conducted a case-control study in a predominantly rural area of China with low mobility and high radon levels. Included were all lung cancer cases diagnosed between January 1994 and April 1998, aged 30-75 years, and residing in two prefectures. Randomly selected, population-based controls were matched on age, sex, and prefecture. Radon detectors were placed in all houses occupied for 2 or more years during the 5-30 years prior to enrollment. Measurements covered 77% of the possible exposure time. Mean radon concentrations were 230.4 Bq/m(3) for cases (n = 768) and 222.2 Bq/m(3) for controls (n = 1,659). Lung cancer risk increased with increasing radon level (p < 0.001). When a linear model was used, the excess odds ratios at 100 Bq/m(3) were 0.19 (95% confidence interval: 0.05, 0.47) for all subjects and 0.31 (95% confidence interval: 0.10, 0.81) for subjects for whom coverage of the exposure interval was 100%. Adjusting for exposure uncertainties increased estimates by 50%. Results support increased lung cancer risks with indoor radon exposures that may equal or exceed extrapolations based on miner data.  相似文献   

2.
目的 居室氡暴露是导致肺癌死亡的第二位重要原因,这是地下矿工氡暴露研究的外推结果。本分析就是为了验证此预测的正确性。方法 中国进行的两项居室氡暴露肺癌病例-对照研究共包括1050肺癌病例和1996名对照,把这些数据汇总在一起进行分析。结果 根据线性模型,在95%置信区间情况下,每100Bq/m^3的附加比值比(EOR)为0.133(0.01,0.036)。对在现住所居住30a以上的调查对象进行分析,EOR值为0.315(0.07,0.91)。此估算值与矿工数据外推值及北美和欧洲室内氡研究结果类似。结论 在众多居室中普遍存在的氡浓度长期暴露,会使肺癌危险度增加。  相似文献   

3.
BACKGROUND: Underground miners exposed to high levels of radon have an excess risk of lung cancer. Residential exposure to radon is at much lower levels, and the risk of lung cancer with residential exposure is less clear. We conducted a systematic analysis of pooled data from all North American residential radon studies. METHODS: The pooling project included original data from 7 North American case-control studies, all of which used long-term alpha-track detectors to assess residential radon concentrations. A total of 3662 cases and 4966 controls were retained for the analysis. We used conditional likelihood regression to estimate the excess risk of lung cancer. RESULTS: Odds ratios (ORs) for lung cancer increased with residential radon concentration. The estimated OR after exposure to radon at a concentration of 100 Bq/m3 in the exposure time window 5 to 30 years before the index date was 1.11 (95% confidence interval = 1.00-1.28). This estimate is compatible with the estimate of 1.12 (1.02-1.25) predicted by downward extrapolation of the miner data. There was no evidence of heterogeneity of radon effects across studies. There was no apparent heterogeneity in the association by sex, educational level, type of respondent (proxy or self), or cigarette smoking, although there was some evidence of a decreasing radon-associated lung cancer risk with age. Analyses restricted to subsets of the data with presumed more accurate radon dosimetry resulted in increased estimates of risk. CONCLUSIONS: These results provide direct evidence of an association between residential radon and lung cancer risk, a finding predicted using miner data and consistent with results from animal and in vitro studies.  相似文献   

4.
A case-control study nested in the cohort of French uranium miners took smoking information into account in investigating the effect of radon exposure on lung cancer risk. This study included 100 miners who died of lung cancer and 500 controls matched for birth period and attained age. Data about radon exposure came from the cohort study, and smoking information was retrospectively determined from a questionnaire and occupational medical records. Smoking status (never vs. ever) was reconstructed for 62 cases and 320 controls. Statistical analyses used conditional logistic regression. The effect of radon exposure on lung cancer risk was assessed with a linear excess relative risk model, and smoking was considered as a multiplicative factor. Mean cumulative radon exposures were 114.75 and 70.84 Working Level Months (WLM) among exposed cases and controls, respectively. The crude excess risk of lung cancer per 100 WLM was 0.98 (95% CI: 0.18-3.08%). When adjusted for smoking, the excess risk was 0.85 per 100 WLM (95% CI: 0.12-2.79%), which is still statistically significant. The relative risk related to smoking was equal to 3.04 (95% CI: 1.20-7.70). This analysis shows a relative risk of lung cancer related to smoking similar to that estimated from previous miners' cohorts. After adjustment for smoking, the effect of radon exposure on lung cancer risk persists, and its estimated risk coefficient is close to that found in the French cohort without smoking information.  相似文献   

5.
In order to investigate an association between residential radon exposure and risk of lung cancer, a case-control study was conducted in Misasa Town, Tottori Prefecture, Japan. The case series consisted of 28 people who had died of lung cancer in the years 1976-96 and 36 controls chosen randomly from the residents in 1976, matched by sex and year of birth. Individual residential radon concentrations were measured for 1 year with alpha track detectors. The average radon concentration was 46 Bq/m3 for cases and 51 Bq/m3 for controls. Compared to the level of 24 or less Bq/m3, the adjusted odds ratios of lung cancer associated with radon levels of 25-49, 50-99 and 100 or more Bq/m3, were 1.13 (95% confidence interval; 0.29-4.40), 1.23 (0.16-9.39) and 0.25 (0.03-2.33), respectively. None of the estimates showed statistical significance, due to small sample size. When the subjects were limited to only include residents of more than 30 years, the estimates did not change substantially. This study did not find that the risk pattern of lung cancer, possibly associated with residential radon exposure, in Misasa Town differed from patterns observed in other countries.  相似文献   

6.
We studied the relation of radon exposure and tobacco use to lung cancer among tin miners in Yunnan Province in the People's Republic of China. Interviews were conducted in 1985 with 107 living tin miners with lung cancer and an equal number of age-matched controls from among tin miners without lung cancer to obtain information on lung cancer risk factors including a detailed history of employment and tobacco use. Occupational history was combined with extensive industrial hygiene data to estimate cumulative working level months (WLM) of radon daughter exposure. Similar data were also used to estimate arsenic exposure for control in the analysis. Results indicate an increased risk of lung cancer for water pipe smoking, a traditional form of tobacco use practiced in 91% of cases and 85% of controls. Ever use of water pipes was associated with a twofold elevation in risk when compared with tobacco abstainers, and a dose-response relation was observed with increasing categories of pipe-year (dose times duration) usage. Estimated WLM of radon exposure varied from 0 to 1,761 among subjects but averaged 515 in cases versus only 244 in controls. Analyses indicated that the persons in the highest quarter of the radon exposure distribution had an odds ratio (OR) = 9.5 (95% confidence interval = 2.7-33.1) compared to persons without radon exposure after controlling for arsenic exposure and other potential confounders. Examination of duration and rate of radon exposure indicated higher risk associated with long duration as opposed to high rate of exposure. Cross-categorizations of radon exposure and tobacco use suggest greater risk associated with radon exposure than tobacco in these workers.  相似文献   

7.
The most direct way to derive risk estimates for residential radon progeny exposure is through epidemiologic studies that examine the association between residential radon exposure and lung cancer. However, the National Research Council concluded that the inconsistency among prior residential radon case-control studies was largely a consequence of errors in radon dosimetry. This paper examines the impact of applying various epidemiologic dosimetry models for radon exposure assessment using a common data set from the Iowa Radon Lung Cancer Study (IRLCS). The IRLCS uniquely combined enhanced dosimetric techniques, individual mobility assessment, and expert histologic review to examine the relationship between cumulative radon exposure, smoking, and lung cancer. The a priori defined IRLCS radon-exposure model produced higher odds ratios than those methodologies that did not link the subject's retrospective mobility with multiple, spatially diverse radon concentrations. In addition, the smallest measurement errors were noted for the IRLCS exposure model. Risk estimates based solely on basement radon measurements generally exhibited the lowest risk estimates and the greatest measurement error. The findings indicate that the power of an epidemiologic study to detect an excess risk from residential radon exposure is enhanced by linking spatially disparate radon concentrations with the subject's retrospective mobility.  相似文献   

8.
Meta-analysis of residential exposure to radon gas and lung cancer   总被引:4,自引:0,他引:4  
OBJECTIVES: To investigate the relation between residential exposure to radon and lung cancer. METHODS: A literature search was performed using Medline and other sources. The quality of studies was assessed. Adjusted odds ratios with 95% confidence intervals (CI) for the risk of lung cancer among categories of levels of exposure to radon were extracted. For each study, a weighted log-linear regression analysis of the adjusted odds ratios was performed according to radon concentration. The random effect model was used to combine values from single studies. Separate meta-analyses were performed on results from studies grouped with similar characteristics or with quality scores above or equal to the median. FINDINGS: Seventeen case-control studies were included in the meta-analysis. Quality scoring for individual studies ranged from 0.45 to 0.77 (median, 0.64). Meta-analysis based on exposure at 150 Bq/m3 gave a pooled odds ratio estimate of 1.24 (95% CI, 1.11-1.38), which indicated a potential effect of residential exposure to radon on the risk of lung cancer. Pooled estimates of fitted odds ratios at several levels of randon exposure were all significantly different from unity--ranging from 1.07 at 50 Bq/m3 to 1.43 at 250 Bq/m3. No remarkable differences from the baseline analysis were found for odds ratios from sensitivity analyses of studies in which > 75% of eligible cases were recruited (1.12, 1.00-1.25) and studies that included only women (1.29, 1.04-1.60). CONCLUSION: Although no definitive conclusions may be drawn, our results suggest a dose-response relation between residential exposure to radon and the risk of lung cancer. They support the need to develop strategies to reduce human exposure to radon.  相似文献   

9.
Case-control study on lung cancer and residential radon in western Germany   总被引:5,自引:0,他引:5  
In a 1990-1996 case-control study in western Germany, the authors investigated lung cancer risk due to exposure to residential radon. Confirmed lung cancer cases from hospitals and a random sample of community controls were interviewed by trained interviewers regarding different risk factors. For 1 year, alpha track detectors were placed in dwellings to measure radon gas concentrations. The evaluation included 1,449 cases and 2,297 controls recruited from the entire study area and a subsample of 365 cases and 595 controls from radon-prone areas of the basic study region. Rate ratios were estimated by using conditional logistic regression adjusted for smoking and for asbestos exposure. In the entire study area, no rate ratios different from 1.0 were found; in the radon-prone areas, the adjusted rate ratios for exposure in the present dwelling were 1.59 (95% confidence interval (CI): 1.08, 2.27), 1.93 (95% CI: 1.19, 3.13), and 1.93 (95% CI: 0.99, 3.77) for 50-80, 80-140, and >140 Bq/m3, respectively, compared with 0-50 Bq/m3. The excess rate ratio for an increase of 100 Bq/m3 was 0.13 (-0.12 to 0.46). An analysis based on cumulative exposure produced similar results. The results provide additional evidence that residential radon is a risk factor for lung cancer, although a risk was detected in radon-prone areas only, not in the entire study area.  相似文献   

10.
Although high radon concentrations have been linked to increased risk of lung cancer by both experimental studies and investigations of underground miners, epidemiologic studies of residential radon exposure display inconsistencies. The authors therefore decided to conduct a population-based case-control study in northwest Spain to determine the risk of lung cancer associated with exposure to residential radon. The study covered a total of 163 subjects with incident lung cancer and a population sample of 241 cancer-free subjects since 1992-1994. Odds ratios for radon were estimated using logistic regression adjusted for sex, age, lifetime tobacco use, family history, and habitat. The adjusted odds ratios for the second, third, and fourth quartiles of radon (breakpoints: 37.0, 55.2, and 148.0 Bq/m(3)) were 2.73 (95% confidence interval (CI): 1.12, 5.48), 2.48 (95% CI: 1.29, 6.79), and 2.96 (95% CI: 1.29, 6.79), respectively. An additive synergic effect between radon and tobacco was found. The results from this study suggest that, even at concentrations far below official guideline levels, radon may lead to a 2.5-fold rise in the risk of lung cancer. Furthermore, the synergy found between smoking and radon may prove useful when it comes to drafting public health recommendations.  相似文献   

11.
Residential radon and lung cancer among never-smokers in Sweden.   总被引:6,自引:0,他引:6  
In this study, we attempted to reduce existing uncertainty about the relative risk of lung cancer from residential radon exposure among never-smokers. Comprehensive measurements of domestic radon were performed for 258 never-smoking lung cancer cases and 487 never-smoking controls from five Swedish case-control studies. With additional never-smokers from a previous case-control study of lung cancer and residential radon exposure in Sweden, a total of 436 never-smoking lung cancer cases diagnosed in Sweden between 1980 and 1995 and 1,649 never-smoking controls were included. The relative risks (with 95% confidence intervals in parentheses) of lung cancer in relation to categories of time-weighted average domestic radon concentration during three decades, delimited by cutpoints at 50, 80, and 140 Bq m(-3), were 1.08 (0.8--1.5), 1.18 (0.9--1.6), and 1.44 (1.0--2.1), respectively, with average radon concentrations below 50 Bq m(-3) used as reference category and with adjustment for other risk factors. The data suggested that among never-smokers residential radon exposure may be more harmful for those exposed to environmental tobacco smoke. Overall, an excess relative risk of 10% per 100 Bq m(-3) average radon concentration was estimated, which is similar to the summary effect estimate for all subjects in the main residential radon studies to date.  相似文献   

12.
Residential radon exposure and lung cancer in Swedish women.   总被引:7,自引:0,他引:7  
A case-control study was undertaken to investigate the role of residential radon exposure for lung cancer. The study included 210 women with lung cancer diagnosed from 1983-1986 in the county of Stockholm and 191 hospital and 209 population controls. Interviews provided information on lifetime residences and smoking. Radon concentrations measured in 1,573 residences of the study subjects showed a lognormal distribution with arithmetic and geometric means of 127.7 and 96.0 Bq m-3, respectively. Lung cancer risks tended to increase with estimated radon exposure, reaching a relative risk of 1.7 (95% confidence interval: 1.0-2.9) in women having an average radon level exceeding 150 Bq m-3 (4 pCi L-1). Stronger associations were suggested in younger persons and risk estimates appeared to be within the same range as those projected for miners. However, further studies are needed to clarify the level of risk associated with exposure to residential radon.  相似文献   

13.
OBJECTIVE: Uranium miners are chronically exposed to low levels of radon and its progeny. We investigated whether radon exposure is associated with increased incidence of leukemia, lymphoma, or multiple myeloma in this population. DESIGN: We conducted a retrospective case-cohort study in 23,043 uranium miners and identified a total of 177 incident cases of leukemia, lymphoma, and myeloma. Detailed information on occupational radon exposure was obtained for the cases and a randomly selected subcohort of 2,393 subjects. We used the proportional hazards model with power relative risk (RR) function to estimate and test the effects of cumulative radon exposures on incidence rates. RESULTS: Incidence of all leukemia combined and chronic lymphocytic leukemia (CLL) alone was positively associated with cumulative radon exposure. The RR comparing high radon exposure [110 working level months (WLM) ; 80th percentile] to low radon exposure (3 WLM ; 20th percentile) was 1.75 [95% confidence interval (CI) , 1.10-2.78 ; p = 0.014] for all leukemia combined and 1.98 (95% CI, 1.10-3.59 ; p = 0.016) for CLL. Myeloid leukemia and Hodgkin lymphoma were also associated with radon, but RRs were not statistically significant. There was no apparent association of radon with either non-Hodgkin lymphoma or multiple myeloma. Exposure to radon and its progeny was associated with an increased risk of developing leukemia in underground uranium miners. CLL, not previously believed to be radiogenic, was linked to radon exposure.  相似文献   

14.
Glass-based radon-exposure assessment and lung cancer risk   总被引:1,自引:0,他引:1  
Lung cancer risk estimation in relation to residential radon exposure remains uncertain, partly as a result of imprecision in air-based retrospective radon-exposure assessment in epidemiological studies. A recently developed methodology provides estimates for past radon concentrations and involves measurement of the surface activity of a glass object that has been in a subject's dwellings through the period for exposure assessment. Such glass measurements were performed for 110 lung cancer subjects, diagnosed 1985 to 1995, and for 231 control subjects, recruited in a case-control study of residential radon and lung cancer among never-smokers in Sweden. The relative risks (with 95% confidence intervals) of lung cancer in relation to categories of surface-based average domestic radon concentration during three decades, delimited by cutpoints at 50, 80, and 140 Bq m(-3), were 1.60 (0.8 to 3.4), 1.96 (0.9 to 4.2), and 2.20 (0.9 to 5.6), respectively, with average radon concentrations below 50 Bq m(-3) used as reference category, and with adjustment for other risk factors. These relative risks, and the excess relative risk (ERR) of 75% (-4% to 430%) per 100 Bq m(-3) obtained when using a continuous variable for surface-based average radon concentration estimates, were about twice the size of the corresponding relative risks obtained among these subjects when using air-based average radon concentration estimates. This suggests that surface-based estimates may provide a more relevant exposure proxy than air-based estimates for relating past radon exposure to lung cancer risk.  相似文献   

15.
Background: Burning incense generates large amounts of air pollutants, many of which are confirmed or suspected human lung carcinogens.Objectives: We conducted a population-based case-referent study to examine the effect of incense smoke exposure on lung cancer risk among Chinese males and explored the joint effect of cigarette smoking and exposure to residential radon.Methods: We recruited 1,208 male lung cancer incident cases and 1,069 community referents from 2004 to 2006 and estimated their lifetime exposures to incense smoke and other residential indoor air pollutants based on self-reported information collected during interviews. We performed unconditional multivariable logistic regression analysis to estimate the odds ratio (OR) for lung cancer associated with exposure to incense smoke after adjusting for possible confounders. We conducted stratified analyses by smoking status and exposures to incense burning and residential radon and explored the potential additive-scale interactions.Results: We observed an association between incense exposure and lung cancer that was limited primarily to smokers. Cigarette smoking and high cumulative incense exposure at home appeared to have a synergistic effect on lung cancer (compared with never-smokers who never used incense, the OR for lung cancer for smokers who used incense ≥ 60 day-years = 5.00; 95% confidence interval: 3.34, 7.51). Power was limited, but we also found preliminary evidence suggesting that radon exposure may increase risk among smokers using incense.Conclusion: Our study suggests that exposure to incense smoke in the home may increase the risk of lung cancer among smokers and that exposure to radon may further increase risk.  相似文献   

16.
The mortality experience of 1392 lead-zinc-silver miners (Gorno, Northern Italy) employed in the period 1/1/1950-31/12/1980 and followed-up to 31/12/1986 was examined. Two separate estimates of the radon exposure level are available: 0.60 and 0.36 working levels respectively. The silica exposure level was not assessed. Vital status was ascertained for 95.6% of the cohort members and their mortality was compared with expected deaths based on national rates. Significant excess mortality from esophageal cancer, stomach cancer, lung cancer, respiratory tuberculosis, respiratory diseases and deaths from external causes was found among underground miners. Surface workers show significantly increased mortality from liver and bile ducts cancer, hepatic cirrhosis, respiratory tuberculosis and respiratory diseases. Based on the 16.4 excess lung cancer cases among underground miners and their cumulative radon exposure, an attributable risk estimate ranging from 9.78 and 16.31 cases per million person-years and WLM (Working Level Month) was calculated.  相似文献   

17.
Residential radon and risk of lung cancer in Eastern Germany   总被引:2,自引:0,他引:2  
BACKGROUND: There is suggestive evidence that residential radon increases lung cancer risk. To elucidate this association further, we conducted a case-control study in Thuringia and Saxony in Eastern Germany during 1990-1997. METHODS: Histologically confirmed lung cancer patients from hospitals and a random sample of population controls matched on age, sex and geographical area were personally interviewed with respect to residential history, smoking, and other risk factors. One-year radon measurements were performed in houses occupied during the 5-35 years prior to the interview. The final analysis included a total of 1,192 cases and 1,640 controls. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. RESULTS: Measurements covered on average 72% of the exposure time window, with mean radon concentrations of 76 Bq/m3 among the cases and 74 Bq/m3 among the controls. The smoking- and asbestos-adjusted ORs for categories of radon (50-80, 80-140 and >140 Bq/m*3, compared with 0-50 Bq/m3) were 0.95 (CI = 0.77 to 1.18), 1.13 (CI = 0.86 to1.50) and 1.30 (CI = 0.88 to 1.93). The excess relative risk per 100 Bq/m? was 0.08 (CI = -0.03 to 0.20) for all subjects and 0.09 (CI = -0.06 to 0.27) for subjects with complete measurements for all 30 years. CONCLUSIONS: Our data indicate a small increase in lung cancer risk as a result of residential radon that is consistent with the findings of previous indoor radon and miner studies.  相似文献   

18.
Lung cancer is the leading cause of cancer death in the United States for both men and women. Although most lung cancer deaths are attributable to tobacco usage, even secondary causes of lung cancer are important because of the magnitude of lung cancer incidence and its poor survival rate. This review summarizes the basic features and major findings from the published U.S. large-scale residential radon case-control studies performed in New Jersey, Iowa, and Missouri (two studies). The methodology from an unpublished study covering Connecticut, Utah, and Southern Idaho is also presented. Overall, the higher categorical risk estimates for these published studies produced a positive association between prolonged radon exposure and lung cancer. Two studies (Missouri-II and Iowa) that incorporated enhanced dose estimates produced the most compelling evidence suggesting an association between prolonged residential radon exposure and lung cancer. The prevailing evidence suggests that the statistically significant findings may be related to improved retrospective radon exposure estimates. The general findings from the U.S. studies, along with extrapolations from radon-exposed underground miners, support the conclusion that after cigarette smoking, prolonged residential radon exposure is the second leading cause of lung cancer in the general population.  相似文献   

19.
This paper presents a Bayesian model that allows for the joint prediction of county-average radon levels and estimation of the associated leukaemia risk. The methods are motivated by radon data from an epidemiologic study of residential radon in Iowa that include 2726 outdoor and indoor measurements. Prediction of county-average radon is based on a geostatistical model for the radon data which assumes an underlying continuous spatial process. In the radon model, we account for uncertainties due to incomplete spatial coverage, spatial variability, characteristic differences between homes, and detector measurement error. The predicted radon averages are, in turn, included as a covariate in Poisson models for incident cases of acute lymphocytic (ALL), acute myelogenous (AML), chronic lymphocytic (CLL), and chronic myelogenous (CML) leukaemias reported to the Iowa cancer registry from 1973 to 2002. Since radon and leukaemia risk are modelled simultaneously in our approach, the resulting risk estimates accurately reflect uncertainties in the predicted radon exposure covariate. Posterior mean (95 per cent Bayesian credible interval) estimates of the relative risk associated with a 1 pCi/L increase in radon for ALL, AML, CLL, and CML are 0.91 (0.78-1.03), 1.01 (0.92-1.12), 1.06 (0.96-1.16), and 1.12 (0.98-1.27), respectively.  相似文献   

20.
The authors conducted a population-based, case-control study in Kaohsiung, southern Taiwan, Republic of China, to investigate the association between residential petrochemical exposure and leukemia risk among subjects 29 years of age and younger. Between November 1997 and June 2003, 171 cases and 410 controls matched for age and sex were recruited. Since assessment of petrochemical impacts depends on accurate exposure estimates, the authors developed a procedure using geographic information system tools to assign subjects' exposure. The resulting individual-level exposure estimates (the exposure opportunity score) are an integrated exposure measure that accounts for subjects' mobility, length of stay at each residence, distance to petrochemical plant(s), monthly prevailing wind direction, and multiple petrochemical pollution sources. Different conditional logistic regression models were fitted for subjects aged 0-19 and 20-29 years to evaluate separately childhood versus adulthood leukemia. No overall association was observed for the younger age group. However, residential petrochemical exposure was a significant risk factor for leukemia for the older age group. For one unit of increase in the log-transformed exposure opportunity score, the adjusted odds ratio was 1.54 (95 percent confidence interval: 1.14, 2.09). This study illustrates the utility of geographic information system tools for providing refined exposure estimates for residential exposure to petrochemical pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号