首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumour necrosis factor‐related apoptosis inducing ligand (TRAIL) is a death‐inducing cytokine whose physiological function is not well understood. Here, we show that TRAIL has a role in programming human dendritic cell (DC) differentiation. TRAIL expression was strongly induced in DCs upon stimulation with lipopolysaccharide (LPS) or Polyinosine‐polycytidylic acid (poly(I:C)) stimulation. Blockade of TRAIL with neutralizing antibody partially inhibited LPS‐induced up‐regulation of co‐stimulatory molecules and the expression of inflammatory cytokines including interleukin‐12 (IL‐12) p70. In addition, neutralization of TRAIL in LPS‐treated DCs inhibited the DC‐driven differentiation of T cells into interferon‐γ (IFN‐γ) ‐producing effectors. The effects of TRAIL neutralization in poly(I:C)‐treated DCs were similar, except that IL‐12 production and the differentiation of effector T cells into IFN‐γ producers were not inhibited. Strikingly, TRAIL stimulation alone was sufficient to induce morphological changes resembling DC maturation, up‐regulation of co‐stimulatory molecules, and enhancement of DC‐driven allogeneic T‐cell proliferation. However, TRAIL alone did not induce inflammatory cytokine production. We further show that the effects of TRAIL on DC maturation were not the result of the induction of apoptosis, but may involve p38 activation. Hence, our data demonstrate that TRAIL co‐operates with other cytokines to facilitate DC functional maturation in response to Toll‐like receptor activation.  相似文献   

2.
Activation of dendritic cells (DCs) by viruses is critical for both innate and adaptive immune responses. In this report, we investigated the role of type I interferon (IFN) in the activation of DCs by respiratory syncytial virus (RSV). Using DCs from type I IFNR-/- mice, these studies indicate that maturation, including upregulation of co-stimulatory molecules and optimal cytokine production, by RSV infection was dependent on type I IFN receptor signaling. Subsequently, studies using DCs from wild type mice demonstrate that continued production of type I IFN during later stages of DC maturation could alter their activation profiles. IFN-alpha and IFN-beta were upregulated in DCs grown from bone marrow of wild type mice after infection with RSV. In order to determine their function in competent DCs, blocking antibodies were used to specifically inhibit IFN-alpha/beta . The data demonstrate that production of IFN-beta, but not IFN-alpha, in RSV-infected wild type DCs promotes chemokine production and toll-like receptor (TLR) expression, while limiting IL-12 production. The inhibition of IL-12p70 by IFN-beta correlated with suppressed IL-12p40 expression levels. Furthermore, the addition of recombinant IFN-beta potently inhibited IL-12p40 expression in mature DC subsets during RSV infection, while only the highest dose of IFN-alpha had any inhibitory effect. Together, our studies provide insight into the complex regulation of DC maturation and IL-12 production co-ordinated by type I interferons in RSV-infected dendritic cells, and demonstrate that type I IFN has specific roles depending upon the stage of DC maturation.  相似文献   

3.
Dendritic cells (DC) are professional antigen-presenting cells that play a central role in the control of immunity. Mature DC are characterized by high expression levels of MHC and co-stimulatory molecules, and by the secretion of IL-12, a key cytokine for the priming of cytotoxic T lymphocytes. Here, we have compared different maturation stimuli to reproducibly generate stable mature DC secreting high amounts of bioactive IL-12p70. We have compared soluble human trimeric CD40 ligand (sCD40L) combined with IFN-gamma, poly(I:C), a cocktail of cytokines (IL-1beta, IL-6 and tumor necrosis factor-alpha) with prostaglandin E(2) and lipopolysaccharide. A major concern, however, is whether DC, that have already produced high amounts of IL-12p70 during the maturation step, are still capable of secreting IL-12p70 after in vivo administration at the time of interaction with the targeted T cells. To mimic that situation, mature DC generated by those methods were compared for their ability to secrete IL-12p70 in the absence of IFN-gamma, using sCD40L. We observed a second consistent secretion of bioactive IL-12p70 upon subsequent sCD40L stimulation only when poly(I:C) was used as the maturating agent. Our data suggest that, for clinical use, poly(I:C) may be one of the most appropriate agents to generate stable mature DC. These mature DC might generate in vivo effective immune responses after injection, because they retain the ability to secrete bioactive IL-12 after CD40 ligation.  相似文献   

4.
Toll-like receptor (TLR)-4 signaling pathway plays an essential role in host defense against gram-negative bacteria while TLR-3-mediated signaling is critically involved in anti-viral immunity. To gain insight into the defects responsible for impaired Th1 responses in human newborns, we investigated the responses of human cord blood cells to lipopolysaccharide, LPS, and to polyinosinic-polycytidylic acid, Poly (I:C), ligands of TLR-4 and TLR-3, respectively. Measurement of cytokine levels revealed a profound defect in IL-12 (p70) synthesis and an increased release of IL-10 in cord blood exposed to LPS or Poly (I:C), as compared to adult blood. Moreover, Poly (I:C)-induced IFN-alpha production was found to be significantly impaired in cord blood. Phenotypic maturation of myeloid DC in response to LPS or Poly (I:C) was next compared in cord and adult blood. We observed that neonatal myeloid DC displayed decreased upregulation of CD40, CD80 whereas CD86 and HLA-DR upregulation did not differ significantly between adults and neonates. Taken together, these findings might be relevant to the increased vulnerability of human newborns to intracellular pathogens and to their inability to develop efficient Th1-type responses.  相似文献   

5.
Despite the increasing use of dendritic cell (DC) vaccination in clinical trials, optimal conditions for the generation of functionally mature DCs remain to be established. The current standard DC maturation protocol for clinical trials has been used as an inflammatory cytokine cocktail [tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6 and prostaglandin E(2)], but this cocktail induced insufficient maturation of DCs derived from elutriated monocytes when cultured in X-VIVO 15. The aim of this study was to define effective combinations of stimulators for generating functionally mature DCs from elutriated monocytes under current good manufacturing practice conditions. We compared the functional capacity of DCs in response to all possible pairwise combinations of four different classes of stimuli: TNF-alpha, peptidoglycan, polyinosinic : polycytidylic acid [poly(I:C)] and soluble CD40 ligand (CD40L). Maturation status of DCs stimulated with combination of four stimuli was similar to that of the cytokine cocktail as assessed by the cell surface phenotype. However, only the combination of poly(I:C) + CD40L induced complete functional activation of the whole DC population, assessing IL-12p70 production, allostimulatory activity, migratory response to CCL19 and T helper 1-polarizing capacity. Thus, the protocol based on the combination of poly(I:C) and CD40L is more effective for the induction of clinical-grade DCs from elutriated monocytes than the standard cytokine cocktail.  相似文献   

6.
7.
The purpose of this study was to evaluate the effect of rapamycin delivery by poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles on the maturation of dendritic cells (DCs). DCs were generated from mouse bone marrow and exposed to particulate and soluble rapamycin without any additional treatment, or with pre- or posttreatment with lipopolysaccharide (LPS). Annexin V-FITC/PI staining was performed on DC cultures to assess the viability of DCs during study. Surface phenotype of DCs was characterized for the expression of maturation markers, that is, MHC class II, CD86, and CD40 by flow cytometry. Cell culture supernatants were analyzed for the production of TGF-beta, IL-12, and IL-10 cytokines using sandwich ELISA method. DCs from Balb/C mice were cocultured with T cells from C57BL/6 mice and allogenic mixed lymphocyte reaction was assessed by [3H]-Thymidine incorporation. Unlike free rapamycin that has shown little if any effect on the expression of maturation markers in immature DCs, PLGA encapsulated rapamycin decreased the expression of all maturation markers under the study, that is, MHC class II, CD86, and CD40, significantly. LPS pre- or posttreated DCs demonstrated decreased expression of MHC class II, CD86, and CD40 in the presence of soluble or encapsulated rapamycin. The cytokine secretion profiles revealed high levels of TGF-beta and very low levels of IL-10 and IL-12 production. Rapamycin in soluble or encapsulated form significantly inhibited mixed lymphocyte reaction in DCs. The inhibitory effect of rapamycin on the maturation of DCs with respect to DC phenotype, cytokine production, and functional effects on the proliferation of T cells was significantly increased by PLGA delivery.  相似文献   

8.
We report the effects of hemicellulase-treated Agaricus blazei (ABH) on the maturation of bone-marrow-derived dendritic cells (BMDCs). ABH activated immature BMDCs, inducing up-regulation of surface molecules, such as CD40, CD80 and major histocompatibility complex class I antigens, as well as inducing allogeneic T-cell proliferation and T helper type 1 cell development. However, unlike lipopolysaccharide (LPS), ABH did not stimulate the BMDCs to produce proinflammatory cytokines, such as interleukin-12 (IL-12) p40, tumour necrosis factor-alpha, or IL-1beta. In addition, ABH suppressed LPS-induced DC responses. Pretreatment of DCs with ABH markedly reduced the levels of LPS-induced cytokine secretion, while only slightly decreasing up-regulation of the surface molecules involved in maturation. ABH also had a significant impact on peptidoglycan-induced or CpG oligodeoxynucleotide-induced IL-12p40 production in DCs. The inhibition of LPS-induced responses was not associated with a cytotoxic effect of ABH nor with an anti-inflammatory effect of IL-10. However, ABH decreased NF-kappaB-induced reporter gene expression in LPS-stimulated J774.1 cells. Interestingly, DCs preincubated with ABH and then stimulated with LPS augmented T helper type 1 responses in culture with allogeneic T cells as compared to LPS-stimulated but non-ABH-pretreated DCs. These observations suggest that ABH regulates DC-mediated responses.  相似文献   

9.
Interactions between dendritic cells (DCs) and microbial pathogens are fundamental to the generation of innate and adaptive immune responses. Upon stimulation with bacteria or bacterial components such as lipopolysaccharide (LPS), immature DCs undergo a maturation process that involves expression of costimulatory molecules, HLA molecules, and cytokines and chemokines, thus providing critical signals for lymphocyte development and differentiation. In this study, we investigated the response of in vitro-generated human DCs to a serogroup B strain of Neisseria meningitidis compared to an isogenic mutant lpxA strain totally deficient in LPS and purified LPS from the same strain. We show that the parent strain, lpxA mutant, and meningococcal LPS all induce DC maturation as measured by increased surface expression of costimulatory molecules and HLA class I and II molecules. Both the parent and lpxA strains induced production of tumor necrosis factor alpha (TNF-alpha), interleukin-1alpha (IL-1alpha), and IL-6 in DCs, although the parent was the more potent stimulus. In contrast, high-level IL-12 production was only seen with the parent strain. Compared to intact bacteria, purified LPS was a very poor inducer of IL-1alpha, IL-6, and TNF-alpha production and induced no detectable IL-12. Addition of exogenous LPS to the lpxA strain only partially restored cytokine production and did not restore IL-12 production. These data show that non-LPS components of N. meningitidis induce DC maturation, but that LPS in the context of the intact bacterium is required for high-level cytokine production, especially that of IL-12. These findings may be useful in assessing components of N. meningitidis as potential vaccine candidates.  相似文献   

10.
11.
A synthetic Nod2 agonist, muramyldipeptide (MDP), and two Nod1 agonists, FK565 and FK156, mimic the bacterial peptidoglycan moiety and are powerful adjuvants that induce cell-mediated immunity, especially delayed-type hypersensitivity. In this study, we used human dendritic cell (DC) cultures to examine possible T helper type 1 (Th1) responses induced by MDP and FK565/156 in combination with various synthetic Toll-like receptor (TLR) agonists, including synthetic lipid A (TLR4 agonist), the synthetic triacyl lipopeptide Pam3CSSNA (TLR2 agonist), poly(I:C) (TLR3 agonist), and CpG DNA (TLR9 agonist). Immature DCs derived from human monocytes expressed mRNAs for Nod1, Nod2, TLR2, TLR3, TLR4, and TLR9. The stimulation of DCs with MDP and FK565 in combination with lipid A, poly(I:C), and CpG DNA, but not with Pam3CSSNA, synergistically induced interleukin-12 (IL-12) p70 and gamma interferon (IFN-gamma), but not IL-18, in culture supernatants and induced IL-15 on the cell surface. In correlation with the cytokine induction, an upregulation of the mRNA expression of these cytokine genes was observed. Notably, IL-12 p35 mRNA expression increased >1,000-fold upon stimulation with lipid A plus either MDP or FK565 compared with stimulation with each stimulant alone. In contrast, for the expression of CD83 and costimulatory molecules such as CD40, CD80, and CD86, no synergistic effects were observed upon stimulation with Nod plus TLR agonists. The culture supernatants of DCs stimulated with lipid A plus either MDP or FK565 activated human T cells to produce high levels of IFN-gamma, and the activity was attributable to DC-derived IL-12. These findings suggest that Nod1 and Nod2 agonists in combination with TLR3, TLR4, and TLR9 agonists synergistically induce IL-12 and IFN-gamma production in DCs to induce Th1-lineage immune responses.  相似文献   

12.
Primary immune response to pathogens involves the maturation of antigen-presenting dendritic cells (DC). Bacterial lipopolysacharride (LPS) is a potent inducer of DC maturation, whereas the transforming growth factor beta (TGFbeta) attenuates much of this process. Here, we analyzed the global gene expression pattern in LPS-treated bone marrow derived DC during inhibition of their maturation process by TGFbeta. Exposure of DC to LPS induces a pronounced cell response, manifested in altered expression of a large number of genes. Interestingly, TGFbeta did not affect most of the LPS responding genes. Nevertheless, analysis identified a subset of genes that did respond to TGFbeta, among them the two inflammatory cytokines interleukin (IL)-12 and IL-18. Expression of IL-12, the major proinflammatory cytokine secreted by mature DC, was downregulated by TGFbeta, whereas the expression level of the proinflammatory cytokine IL-18, known to potentiate the IL-12 effect, was upregulated. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) increased in response to TGFbeta, concomitantly with reduced expression of chemokine receptor 7 (CCR7). This finding supports the possibility that TGFbeta-dependent inhibition of CCR7 expression in DC is mediated by PPARgamma.  相似文献   

13.
Toll-like receptor 9 (TLR9) is expressed intracellularly by dendritic cells (DCs) and specifically recognizes unmethylated CpG motif. Recognition of TLR9 to CpG DNA can induce DC maturation followed by the subsequent immune responses. Here, RNA interference (RNAi) was used to identify the effect of CpG DNA signaling on DC function. The results showed that transfection of DCs with siRNA specific for TLR9 gene significantly down-regulated TLR9 expression. Immature DCs transfected with TLR9 siRNA did not differentiate into mature DCs with exposure to CpG. TLR9 siRNA-treated DCs expressed low levels of MHC II and CD40 without reducing endocytosis. Furthermore, TLR9 siRNA-transfected DCs exhibited a decreased allostimulatory capacity in a lymphocyte proliferation assay and attenuated Thl responses by decreasing IL-12p70 production. Our findings indicate that siRNA in silencing TLR9 gene in DCs may offer a potential tool to study the TLR9-CpG pathway.  相似文献   

14.
Impaired dendritic cell differentiation and maturation in the absence of C3   总被引:2,自引:2,他引:0  
Human monocytes can be differentiated into immature dendritic cells (DCs) in the presence of serum and cytokines. One of the main functions of immature DCs is to capture and process antigens. Following maturation, they differentiate into antigen presenting cells. The role of complement in the differentiation process from monocytes towards immature DCs remains elusive. Here we demonstrate that complement 3 (C3) has a regulatory impact on the expression of specific DC surface molecules and DC-derived cytokine production during DC differentiation. We isolated human adherent peripheral blood mononuclear cells, which were cultured in the presence of GM-CSF plus IL-4 in medium supplemented with normal human serum or C3 deficient serum. The lack of C3 during DC differentiation negatively impacted the expression of C-type lectin receptor DC-SIGN, the antigen presenting molecules HLA-DR and CD1a, and the costimulatory molecules CD80 and CD86. Further, the spontaneous production of IL-6 and IL-12 was reduced in the absence of C3. Moreover, the maturation of immature DCs in response to LPS challenge was impaired in the absence of C3 as evidenced by reduced MHC-II, co-stimulatory molecule expression as well as modulated IL-12 and TNF-alpha production. Collectively, our results provide evidence for a novel role of C3 as a critical cofactor in human DC differentiation and maturation.  相似文献   

15.
Leishmania parasites and dendritic cell interactions (DCs) play an essential role in initiating and directing T cell responses and influence disease evolution. These interactions may vary depending on Leishmania species and strains. To evaluate the correlation between Leishmania major (Lm) virulence and in-vitro human DC response, we compared the ability of high (HV) and low virulent (LV) Lm clones to invade, modulate cytokine production and interfere with differentiation of DCs. Clones derived from HV and LV (HVΔlmpdi and LVΔlmpdi), and deleted for the gene coding for a Lm protein disulphide isomerase (LmPDI), probably involved in parasite natural pathogenicity, were also used. Unlike LV, which fails to invade DCs in half the donors, HV promastigotes were associated with a significant increase of the infected cells percentage and parasite burden. A significant decrease of both parameters was observed in HVΔlmpdi-infected DCs, compared to wild-type cells. Whatever Lm virulence, DC differentiation was accompanied by a significant decrease in CD1a expression. Lm clones decreased interleukin (IL)-12p70 production similarly during lipopolysaccharide (LPS)-induced maturation of DCs. LPS stimulation was associated with a weak increase in tumour necrosis factor (TNF)-α and IL-10 productions in HV-, HVΔlmpdi- and LVΔlmpdi-infected DCs. These results indicate that there is a significant variability in the capacity of Lm clones to infect human DCs which depends upon their virulence, probably involving LmPDI protein. However, independently of their virulence, Lm clones were able to down-regulate CD1a expression during DC differentiation and IL-12p70 production during DC maturation, which may favour their survival.  相似文献   

16.
Dendritic cells (DCs) are critical antigen presentation cells whose influence on murine immune responses to polysaccharide antigens has only recently been elucidated. Little is known about human DC-polysaccharide interactions. We set out to study the interaction between human monocyte-derived DCs and pneumococcal capsular polysaccharides (PPS) in vitro. Immature DCs were generated from peripheral blood monocytes and incubated with fluorescein isothiocyanate-labeled PPS type 9N or 14 for assessment of uptake. DCs were exposed to PPS type 1, 6B, 9N, 14, 19F, or 23F in the absence or presence of Escherichia coli lipopolysaccharide (LPS) for assessment of phenotypic DC maturation and cytokine production. PPS were taken up by immature DCs and proceeded to HLA-DR+ and lysosome-associated membrane protein-1+ late endosomal compartments. Uptake was reduced in the presence of cytochalasin D and wortmannin, suggesting that both cytoskeletal rearrangements and phosphatidylinositol 3-kinase activation may be required for internalization. None of the PPS tested induced DC phenotype changes, maturation, or interleukin-12 (IL-12)/IL-10 production. However, PPS were capable of modulating the response of the DCs to a second signal such as LPS. Exposure of DCs to PPS in the presence of LPS resulted in an altered cytokine balance with significantly increased IL-10 production and reduced IL-12 production compared to LPS alone. This effect was not seen using the control antigen tetanus toxoid. DC-pneumococcus interaction may affect subsequent immune responses to pneumococci, as an altered cytokine balance may have a profound effect on DC-driven T-cell priming.  相似文献   

17.
Xin L  Li K  Soong L 《Molecular immunology》2008,45(12):3371-3382
We have previously reported a link between a deficient Th1 response to Leishmania amazonensis (La) parasites and profound impairments in the cytokine/chemokine network at early stages of the infection. To define the molecular basis of these deficiencies, we focused on early and intracellular events in La-infected dendritic cells (DCs) in this study. La amastigote-infected DCs were less mature and less potent antigen-presenting cells (APC) than their promastigote-infected counterparts, as judged by the lower expression of CD40 and CD83, suppressed cytokine expression (IL-12p40 and IL-10), reduced effectiveness for priming CD4+ T cells from na?ve or infected mice. Infection with La promastigotes, but not amastigotes, triggered transient expression of IL-12p40 by DC. Both forms of parasites markedly suppressed IL-12p40, IL-12p70, and IL-6 production and increased IL-10 production when DCs were treated with LPS, IFN-gamma/LPS or IFN-alpha/LPS as positive stimuli. Of note, pre-infection of DCs with live amastigotes resulted in multiple alterations in innate signaling pathways, including degradation of STAT2, decreased phosphorylation of STAT1, 2, 3 and ERK1/2, and markedly reduced expression of interferon regulatory factor-1 (IRF-1) and IRF-8, some of which were partially reversed by pretreatment of parasites with proteasome or protease inhibitors. The impaired IL-12 production in infected DCs was not attributed to increased IL-10 production. Together, our data suggest that La parasites, especially in their intracellular forms, have evolved unique strategies to actively down-regulate early innate signaling events, resulting in impaired DC function and Th1 activation.  相似文献   

18.
BACKGROUND: Unmethylated CpG sequences in bacterial DNA act as adjuvants selectively inducing Th1 predominant immune responses during genetic vaccination or when used in conjunction with protein Ag. The precise mechanism of this adjuvant effect is unknown. Because dendritic cells (DC) are thought to be crucially involved in T cell priming and Th1/Th2 education during vaccination via skin, we characterized the effects of bacterial DNA and CpG-containing oligodeoxynucleotides (CpG ODN) on cutaneous DC. METHODS AND RESULTS: Stimulation with CpG ODN 1826 (6 micrograms/ml) induced activation of immature Langerhans cell (LC)-like DC as determined by an increased expression of MHC class II and costimulatory molecules, loss of E-cadherin-mediated adhesion and increased ability to stimulate allogeneic T cells. Composition-matched control ODN 1911 lacking CpG sequences at equal concentrations was without effect. In comparison to LPS and ODN 1911, CpG ODN 1826 selectively stimulated DC to release large amounts of IL-12 (p40) and little IL-6 or TNF-alpha within 18 h and detectable levels of IL-12 p70 within 72 h. Stimulation with Escherichia coli DNA, but not calf thymus DNA, similarly induced DC maturation and IL-12 p40 production. Injection of CpG ODN into murine dermis induced enhanced expression of MHC class II and CD86 by LC in the overlying epidermis and intracytoplasmic IL-12 p40 accumulation in a subpopulation of activated LC. CONCLUSION: Bacterial DNA and CpG ODN stimulate DC in vitro and in vivo and may preferentially elicit Th1-predominant immune responses because they can activate and mobilize DC, inducing them to produce IL-12.  相似文献   

19.
α-Fetoprotein (AFP) is a tumour-associated antigen in hepatocellular carcinoma (HCC). The biological properties of AFP have been identified in its regulatory effects on immune responses of T cells and B cells. However, AFP effects on natural killer (NK) cells are still unclear. In this study, we examined the immunoregulation of AFP on NK activity. The cytolytic activity against K562 cells and Huh7 cells of NK cells co-cultured with AFP-treated dendritic cells (DCs) (AFP-DCs) was lower than that with albumin-treated DCs (Alb-DCs). Direct addition of AFP to NK cells did not alter the cytolytic activity of NK cells. Adding AFP inhibited the interleukin (IL)-12 production of DCs after stimulation with lipopolysaccharide (LPS) [Toll-like receptor (TLR)-4 ligand], or Poly(I:C) (TLR-3 ligand), but not IL-18 production. The mRNAs of IL-12p35 and IL-12p40 were significantly inhibited in AFP-DCs compared with Alb-DCs, but those of TLR-4 or TLR-3 were not. Transwell experiments revealed that soluble factors derived from DCs played roles in inhibition of the ability of activating NK cells by AFP-DCs. Adding the neutralizing antibody of IL-12 to NK cells co-cultured with Alb-DCs resulted in a decrease of cytolytic activity to the levels of NK cells co-cultured with AFP-DCs. Adding IL-12 to NK cells co-cultured with AFP-DCs resulted in an increase of cytolytic activity to the levels of NK cells co-cultured with Alb-DCs. These demonstrated that the impairment of IL-12 production from AFP-DCs resulted in inhibition of the ability of the activation of NK cells by DCs, and thus suggests a role of AFP in HCC development.  相似文献   

20.
目的: 研究体外LPS刺激及CD40的配基化对可溶性CD40(sCD40)基因修饰树突状细胞TLR4-MD2表达及IL-12分泌的影响,为有效利用树突状细胞诱导特异性移植免疫耐受提供实验依据。方法: 脂质体法将质粒pEGFP-N1/sCD40及空质粒pEGFP-N1转染DC2.4细胞株;应用LPS及抗CD40单抗刺激6 h,流式细胞仪检测DC表面TLR4-MD2的表达,RT-PCR法检测DC 的TLR4 mRNA 表达水平,并用ELISA法检测细胞因子IL-12p70的分泌。结果: LPS刺激下调DC表面TLR4-MD2的表达,同时给予CD40配基化可引起TLR4-MD2的表达显著增高;CD40配基化对DC TLR4mRNA 水平表达无影响,但可部分地增高LPS引起的TLR4mRNA 表达降低;此外,CD40的配基化可显著诱导LPS刺激后IL-12分泌增加。sCD40基因修饰DC可拮抗以上作用。结论: 体外LPS及抗CD40单抗刺激下,sCD40基因修饰树突状细胞可显著下调其表面TLR4-MD2的表达,IL-12p70分泌减少,可能与阻断胞浆内的TLR4-MD2的转运过程有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号