首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This review provides an overview of selected aspects of peripheral nerve regeneration and potential avenues to explore therapeutically. The overall coordinated and orchestrated pattern of recovery from peripheral nerve injury has a beauty of execution and progress that rivals all other forms of neurobiology. It involves changes at the level of the perikaryon, coordination with important peripheral glial partners, the Schwann cells, a controlled inflammatory response, and growth that overcomes surprising intrinsic roadblocks. Both regenerative axon growth and collateral sprouting encompass fascinating aspects of this story. Better understanding of peripheral nerve regeneration may also lead to enhanced central nervous system recovery.  相似文献   

2.
Depletion of myelin and neurobehavioural deficits are indications that vanadium crosses the blood‐brain barrier and such neurotoxic effects of vanadium on the brain of Wistar rats have been elucidated. The effect however on the peripheral nerves, is yet to be reported. Thus, this work was designed to evaluate the axonal and myelin integrity of sciatic nerves in Wistar rats following exposure to vanadium. Ten male Wistar rats were exposed to 3 mg/kg body weight of sodium metavanadate for 7 days, subjected to rearing and forelimb grip behavioural tests, and sciatic nerves processed for histology (haematoxylin and eosin, cresyl violet, and luxol fast blue). Dystrophic axons with vesiculated myelin, thinned myelin sheath, and demyelinated axons were observed in the vanadium exposed rats, suggestive of axonopathy, classified as fourth‐degree nerve injury. Lower behavioural scores were recorded for vanadium‐dosed rats; thus, corroborating histological pictures observed of the sciatic nerves. Authors posit that vanadium crossed the “blood‐nerve” barrier and caused the observed axonal pathologies and myelin depletion in the sciatic nerves of these rodents with resultant motor deficits. The present paper discusses possible motor deficits and the likely public health importance in regions with crude oil pollution and gas flaring rich in vanadium products.  相似文献   

3.
Monoclonal antibody Rat 401 recognizes subsets of cells in the developing central and peripheral nervous systems. Previous studies have shown that in the central nervous system (CNS) Rat 401 immunoreactivity diminishes sharply with cellular differentiation. Here we have examined the time course, cellular localization, and biochemical nature of the Rat 401 antigen in the rat peripheral nerve. In contrast to the CNS, in the periphery Rat 401 immunoreactivity is maintained into adulthood. Rat 401 staining is restricted to Schwann cells in mature peripheral nerve. Myelin-related Schwann cells are intensely immunoreactive, whereas nonmyelin-related Schwann cells are weakly immunoreactive. Unlike many Schwann cell markers, Rat 401 staining is maintained in cultured Schwann cells that lack axon contact. Biochemical analyses show that the antigen recognized by Rat 401 in the peripheral nerve is identical to that in embryonic CNS. The results demonstrate that the capacity for maintained Rat 401 immunoreactivity is restricted to Schwann cells as these cells are stained in adult animals as well as in embryos. In contrast, the same antigens are lost from the CNS at an early stage of development.  相似文献   

4.
Effects of hyperbaric oxygen treatment (HBO) on nerve regeneration in acellular nerve and muscle grafts were investigated in rats. Nerve and muscle grafts were made acellular by freeze-thawing and the obtained grafts were used to bridge a 10-mm gap in the sciatic nerve on the left and right sides, respectively. Rats were treated with HBO (100% oxygen for 90 minutes at 2.5 atmospheres absolute pressure ATA) twice a day for 7 days. Axonal outgrowth, Schwann cell migration and invasion of macrophages were examined 10 days after the graft procedure by staining neurofilaments, S-100 proteins and the macrophage antibodies ED1 and ED2, respectively. Axonal outgrowth and Schwann cell migration in acellular nerve grafts were superior to that found in the acellular muscle grafts. However, there was no difference between HBO-treated and nontreated rats in acellular nerve grafts. Such a difference was found in acellular muscle grafts concerning both axonal outgrowth and Schwann cell migration from the proximal nerve end. No differences in the content of macrophages or neovascularization (alkaline phosphatase staining) in either of the grafts and treatments were seen. It is concluded that there is a differential effect of HBO-treatment in acellular nerve and muscle grafts and that HBO-treatment has no effect on the regeneration process in acellular nerve grafts, in contrast to fresh cellular nerve grafts where a beneficial effect has previously been reported.  相似文献   

5.
It is well known that peripheral nerve injury should be treated immediately in the clinic, but in some instances, repair can be delayed. This study investigated the effects of immediate versus delayed (3 days after injury) neurorrhaphy on repair of transected sciatic nerve in New Zealand rabbits using stereological, histomorphological and biomechanical methods. At 8 weeks after immediate and delayed neurorrhaphy, axon number and area in the sciatic nerve, myelin sheath and epineurium thickness, Schwann cell morphology, and the mechanical property of nerve fibers did not differ obviously. These results indicate that delayed neurorrhaphy do not produce any deleterious effect on sciatic nerve repair.  相似文献   

6.
Microvasculature associated with the sciatic nerve was examined using high‐resolution micro‐CT scanning in one group of rats and surgical exploration in another. The results indicate that blood supply to the sciatic nerve is an “open‐ended” system in which the vessels run longitudinally within the epineurium and connect with external vasculature primarily at junction points. Although the range of vasculature found extended down to 4–5 μ, only a few isolated vessels of this size were found, with no capillary “mesh” as such, possibly because of the close proximity of the intrinsic vessel to nerve fibers within the epineurium. While the study did not include direct measurements of flow or nerve function, the “open‐ended” pattern of vasculature found has important implications regarding the relationship between the two. Specifically, the nerve is less vulnerable to a severe or complete disruption in blood supply than it would be under a close‐ended system such as that of the heart or brain, where a severe disruption can occur with the obstruction of only a single vessel. Indeed, the pattern of vasculature found, subject to further study of vasculature at the capillary level, suggests that flow within the intrinsic vessels may be in either direction, depending on circumstances, somewhat like flow within the circle of Willis in the cerebral circulation.  相似文献   

7.
When a peripheral nerve is severed and left untreated, the most likely result is the formation of an endbulb neuroma; this tangled mass of disorganized nerve fibers blocks functional recovery following nerve injury. Although there are several different approaches for promoting nerve repair, which have been greatly refined over recent years, the clinical results of peripheral nerve repair remain very disappointing. In this paper we compare the results of a collagen nerve guide conduit to the more standard clinical procedure of nerve autografting to promote repair of transected peripheral nerves in rats and nonhuman primates. In rats, we tested recovery from sciatic nerve transection and repair by 1) direct microsurgical suture, 2) 4 mm autograft, or 3) entubulation repair with collagen-based nerve guide conduits. Evoked muscle action potentials (MAP) were recorded from the gastrocnemius muscle at 4 and 12 weeks following sciatic nerve transection. At 4 weeks the repair group of direct suture demonstrated a significantly greater MAP, compared to the other surgical repair groups. However, at 12 weeks all four surgical repair groups displayed similar levels of recovery of the motor response. In six adult male Macaca fascicularis monkeys the median nerve was transected 2 cm above the wrist and repaired by either a 4 mm nerve autograft or a collagen-based nerve guide conduit leaving a 4 mm gap between nerve ends. Serial studies of motor and sensory fibers were performed by recording the evoked MAP from the abductor pollicis brevis muscle (APB) and the sensory action potential (SAP) evoked by stimulation of digital nerves (digit II), respectively, up to 760 days following surgery. Evoked muscle responses returned to normal baseline levels in all cases. Statistical analysis of the motor responses, as judged by the slope of the recovery curves, indicated a significantly more rapid rate of recovery for the nerve guide repair group. The final level of recovery of the MAP amplitudes was not significantly different between the groups. In contrast, the SAP amplitude only recovered to the low normal range and there were no statistically significant differences between the two groups in terms of sensory recovery rates. The rodent and primate studies suggest that in terms of recovery of physiological responses from target muscle and sensory nerves, entubulation repair of peripheral nerves with a collagen-based nerve guide conduit over a short nerve gap (4 mm) is as effective as a standard nerve autograft.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Myelination was studied quantitatively in the sixth cranial nerves of rats by counting and measuring all myelinated fibers during the first three postnatal weeks. In transverse semithin and thin sections cut serially at a well-defined anatomical site in the midsphenoid region, only a few axons (mean 12) were myelinated at birth. On days 2, 4, and 8, counts of myelinated fibers were respectively 5 times (mean 57), 20 times (mean 230), and 24 times (mean 273) the number seen at birth. During the second postnatal week, the number of myelinated fibers remained constant, whereas growth of axons and their myelin sheaths continued. By 15 days these fibers were large and relatively uniform in size; they had compact, circular myelin sheaths. During the third postnatal week, myelination of previously unmyelinated, smaller axons began. The number of myelinated fibers increased again and the size distribution of myelinated fibers became bimodal. Axon diameters, fiber diameters, and myelin sheath dimensions for all fibers were calculated from measurements made on electron micrographs. The transverse length of the myelin membrane increased exponentially with time. The growth increased rapidly during the formation of the first 20 spiral layers and remained relatively constant during the subsequent enlargement of the compact sheath. The association of axon diameter and myelin sheath thickness was poor at young ages, but it improved progressively with maturation of the sheath. The results show that myelination begins around axons that have a wide range of diameters. Also, the first axons to be myelinated become the large myelinated fibers of the sixth nerve. The small myelinated fibers originate from axons that do not become myelinated until the third postnatal week. Myelination, though differing in onset by 2 weeks, appeared to be similar in both populations as judged by similarity of sheath morphology and growth rates. It is of interest that at the level studied, the sixth nerve also contains a fascicle of unmyelinated cranial sympathetic fibers.  相似文献   

9.
The outgrowth of neurites from cultured neurons can be induced by the extracellular matrix glycoproteins, fibronectin and laminin, and by polyornithine-binding neurite-promoting factors (NPFs) derived from culture media conditioned by Schwann, or other cultured cells. We have examined the occurrence of fibronectin, laminin and NPFs during peripheral nerve regeneration in vivo. A previously established model of peripheral nerve regeneration was used in which a transected rat sciatic nerve regenerates through a silicone chamber bridging a 10 mm interstump gap. The distribution of fibronectin and laminin during regeneration was assessed by indirect immunofluorescence. Seven days after nerve transection the regenerating structure within the chamber consisted primarily of a fibrous matrix which stained with anti-fibronectin but not anti-laminin. At 14 days, cellular outgrowths from the proximal and distal stumps (along which neurites grow) had entered the fibronectin-containing matrix, consistent with a role of fibronectin in promoting cell migration. Within these outgrowths non-vascular as well as vascular cell stained with anti-fibronectin and anti-laminin. Wihtin the degenerated distal nerve segment, cells characteristics of Bungner bands (rows of Schwann cells along which regenerating neurites extend) stained with anti-fibronectin and laminin. The fluid surrounding the regenerating nerve was found to contain NPF activity for cultured ciliary ganglia neurons which markedly increased during the period of neurite growth into the chamber. In previous studies using this particular neurite-promoting assay, laminin but to a much lesser extent fibronectin also promoted neurite outgrowth. Affinity-purified anti-laminin antibody failed to block chamber fluid NPF activity while completely blocking the neurite-promoting activity of laminin. These two results suggested that chamber fluid NPF activity did not consist of individual molecules of either fibronectin or laminin. The spatial and temporal distribution of insoluble fibronectin and laminin and the temporal correlation between chamber fluid NPF accumulation and neurite outgrowth support the possibility that these agents influence regenerative events including axonal elongation in vivo.  相似文献   

10.
Acellular nerve allografts (ANA) possess bioactivity and neurite promoting factors in nerve tissue engineering. Previously we reported that low dose ultrashort wave (USW) radiation could enhance the rate and quality of peripheral nerve regeneration with ANA repairing sciatic nerve defects. Meanwhile, ANA implanted with bone marrow stromal cells (BMSCs) exhibited a similar result. Thus, it is interesting to know whether it might yield a synergistic effect when USW radiation is combined with BMSCs‐laden ANA. Here we investigated the effectiveness of ANA seeded with BMSCs, combined with USW therapy on repairing peripheral nerve injuries. Adult male Wistar rats were randomly divided into four groups: Dulbecco's modified Eagle's medium (DMEM) control group, BMSCs‐laden group, ultrashort wave (USW) group and BMSC + USW group. The regenerated nerves were assayed morphologically and functionally, and growth‐promoting factors in the regenerated tissues following USW administration or BMSCs integration were also detected. The results indicated that the combination therapy caused much better beneficial effects evidenced by increased myelinated nerve fiber number, myelin sheath thickness, axon diameter, sciatic function index, nerve conduction velocity, and restoration rate of tibialis anterior wet weight. Moreover, the mRNA levels of brain‐derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the spinal cord and muscles were elevated significantly. In conclusion, we found a synergistic effect of USW radiation and BMSCs treatment on peripheral nerve regeneration, which may help establish novel strategies for repairing peripheral nerve defects. Synapse 67:637–647, 2013 . © 2013 Wiley Periodicals, Inc.  相似文献   

11.
3-O-beta-D-xylopyranosyl-6-O-beta-D-glucopyranosyl-cycloastragenol (astragaloside Ⅳ), the main active component of the traditional Chinese medicine astragalus membranaceus, has been shown to be neuroprotective. This study investigated whether astragaloside Ⅳ could promote the repair of injured sciatic nerve. Denervated sciatic nerve of mice was subjected to anastomosis. The mice were intraperitoneally injected with 10, 5, 2.5 mg/kg astragaloside Ⅳ per day for 8 consecutive days. Western blot assay and real-time PCR results demonstrated that growth-associated protein-43 expression was upregulated in mouse spinal cord segments L4-6 after intervention with 10, 5, 2.5 mg/kg astragaloside Ⅳ per day in a dose-dependent manner. Luxol fast blue staining and electrophysiological detection suggested that astragaloside Ⅳ elevated the number and diameter of myelinated nerve fibers, and simultaneously increased motor nerve conduction velocity and action potential amplitude in the sciatic nerve of mice. These results indicated that astragaloside Ⅳ contributed to sciatic nerve regeneration and functional recovery in mice. The mechanism underlying this effect may be associated with the upregulation of growth-associated protein-43 expression.  相似文献   

12.
Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane provides a good microenvironment for peripheral nerve regeneration; however, the precise mechanism remains unclear, p75 neurotrophin receptor (p75NTR) plays an important role in the regulation of peripheral nerve regeneration. We hypothesized that a nerve growth factor-containing fibrin glue membrane can promote neural regeneration by up-regulating p75NTR expression. In this study, we used a silicon nerve conduit to bridge a 15 mm-long sciatic nerve defect and injected a mixture of nerve growth factor and fibrin glue at the anastomotic site of the nerve conduit and the sciatic nerve. Through RT-PCR and western blot analysis, nerve growth factor-containing fibrin glue membrane significantly increased p75NTR mRNA and protein expression in the Schwann cells at the anastomotic site, in particular at 8 weeks after injection of the nerve growth factor/fibrin glue mixture. These results indicate that nerve growth factor-containing fibrin glue membrane can promote peripheral nerve regeneration by up-regulating p75NTR expression in Schwann cells.  相似文献   

13.
Rat sciatic nerves can be transected and their proximal and distal stumps sutured into the openings of cylindrical silicone chambers. Anatomical regeneration has been demonstrated across 10 mm long chambers containing both stumps, although little or no axonal outgrowth occurs in chambers omitting the distal stump or exceeding the 10 mm length. We have previously shown that chambers containing both proximal and distal stumps accumulate within days of implantation a clear fluid containing neuronotrophic factors (NTFs) directed to neurons from neonatal mouse dorsal root ganglia. We report here that these chamber fluids also have considerable neuronotrophic activity for chick embryo neurons from embryologic day 4 (E4) lumbar spinal cord, E12 sympathetic ganglia, E12 (but not E8) dorsal root ganglia and E8 ciliary ganglia. Thus, the neuronal types supported by trophic factors of these fluids include all those which contribute axons to the sciatic nerve, namely sensory, spinal motor, and sympathetic. In fluid collected 1 week after implantation, NTF levels directed to different neurons varied independently from one another in chambers with different nerve insertions, suggesting that these activities reside in separate factors. Fluid collected from chamber arrangements allowing little proximal fiber regrowth did not always contain correspondingly lower titers of NTFs. However, generally higher titers of all NTFs were found in chambers containing either or both nerve stumps that in nerve-free chambers. Fluids collected from nerve-containing chambers were subjected to heat, dialysis or trypsin treatments. The behavior of their neuronotrophic activities suggests their association with proteins.  相似文献   

14.
A.D. Ansselin, T. Fink and D.F. Davey (1997) Neuropathology and Applied Neurobiology 23 , 387–398
Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells
This study tested the usefulness of Schwann cells in the repair of a severed nerve with a biosynthetic bridge or guide. Reinforced collagen nerve guides were used to bridge an 18 mm gap in the sciatic nerve of 21 young adult rats. The animals were divided into three groups and the guides were filled with: (i) more than 0.5 × 106 cultured syngeneic adult Schwann cells (group L, n = 12); (ii) less than 0.5 × 106 Schwann cells (Group S, n = 6); and (iii) phosphate buffered saline (control, n = 3). Schwann cells were pre-labelled with Hoechst dye. Regeneration was assessed functionally and histologically at 1, 2, 3 and 6+ months after surgery. Group L animals showed numerous regenerated axons surrounded by implanted Schwann cells within the first month. The total number of myelinated fibres (12.5 × 103) remained above normal unoperated values (7 × 103) in long-term animals. Regenerated axons were found in Group S in the third month, but no Hoechst labelled cells were found. The number of myelinated fibres (3.9 × 103) remained below normal values in long-term animals. Control guides failed to support axonal regeneration. Functional recovery was evident at week 20 (Group L) and week 30 (Group S) after surgery, with no difference in function between the two groups by the end of the study. Supplementing guides with Schwann cells enhances regeneration of peripheral axons over a distance normally prohibitive. This effect is greatest in the early stages of regeneration (1–3 months) and is dependent on the number of cells implanted.  相似文献   

15.
Sciatic nerves from allogeneic Sprague-Dawley rats were pretreated with chondroitinase ABC and were used to bridge damaged sciatic nerves in Wistar rats. Chondroitin sulfate proteoglycans were removed from the chemically extracted acellular nerves. At 3 months after grafting, the footplate pinch test result was positive in the Wistar rats. Autotomy scores decreased, and increased muscular contraction tension appeared when triceps surae muscles were stimulated. In addition, the recovery rate of wet triceps surae muscle weight increased, and the distal segment of the chondroitinase ABC-treated graft exhibited Schwann cells next to the nerve fibers. These results suggested that chondroitinase ABC pretreatment enhanced repair of long nerve defects via acellular nerve grafting.  相似文献   

16.
背景:实验证明周围神经损伤时,轴突的变性与神经元凋亡都与Ca2+的超载有着极其密切的关系。 目的:利用大鼠坐骨神经损伤模型观察L型钙离子通道阻滞剂维拉帕米联合神经生长因子促进周围神经再生的协同作用。 设计、时间及地点:随机对照动物实验,于2007-04/2008-11在辽宁医学院手外科实验室完成。 材料:同系健康雄性SD大鼠32只,体质量220~260 g;维拉帕米为辽宁卫星制药厂产品,国药准字H21022847;神经生长因子为sigma公司产品。 方法:同系SD大鼠32只随机分为4组,每组8只,分别在右侧梨状肌下缘5 mm切断坐骨神经后立即原位缝合造成坐骨神经损伤模型。①维拉帕米+神经生长因子组:腹腔注射维拉帕米4 mg/(kg•d),术侧腓肠肌肉注射神经生长因子0.6 μg/d。②维拉帕米组:腹腔注射维拉帕米4 mg/(kg•d),术侧腓肠肌注射等量生理盐水。③神经生长因子组:术侧腓肠肌注神经生长因子0.6 μg/d,并腹腔注射等量生理盐水。④空白对照组:分别腹腔,肌注等量生理盐水。以左侧坐骨神经为正常对照。 主要观察指标:术后12周对各组再生神经进行大体观察,神经电生理测定,组织学观察及有髓神经纤维计数。 结果:术后12周,维拉帕米+神经生长因子组足部溃疡的出现与愈合以及展抓反射出现的时间均早于其他各组。神经传导速度恢复率和有髓神经纤维计数恢复率分析表明:维拉帕米+神经生长因子组>维拉帕米组>神经生长因子组>空白对照组。光镜和电镜下可见:维拉帕米+神经生长因子组再生的神经纤维最多,轴突较为粗大。有髓神经纤维多,髓鞘完整,优于其他3组。神经纤维直径恢复率分析表明:维拉帕米+神经生长因子组>神经生长因子组>维拉帕米组>空白对照组。 结论:维拉帕米与神经生长因子对促进周围神经形态结构和功能的恢复均具有明显的协同作用。  相似文献   

17.
We have previously shown that a tendon autograft from the rat tail can support regeneration across a gap in the continuity of the rat sciatic nerve. In this study, we characterized the spatiotemporal progress of regeneration in such a graft bridging a 10-mm defect in the sciatic nerve of the rat. Regeneration was assessed 7, 10, 14, or 18 days postoperatively, by immunocytochemistry for axons, Schwann cells, and macrophages and histochemistry for blood vessels. Axonal regrowth into the grafts showed an initial delay period of 6.8 days, whereafter axons grew at a rate of 1.0 mm/day. Schwann cells grew into the grafts from both the proximal and distal nerve segments, proximally just ahead of the axonal front. Macrophages were initially preferentially located at the periphery of the grafts, but gradually increased inside the grafts. Blood vessels entered the grafts from both the proximal and distal aspects of the severed nerve. The onset of vascularization appeared to coincide with axonal regeneration into the grafts.  相似文献   

18.
Optic axons regenerate into normal but not acellular peripheral nerve (PN) grafts. The first axons penetrate the PN graft before 5 days and grow inside the basal lamina tubes amongst the Schwann cells. By 30 days, 4% of the surviving retinal ganglion cells (RGC) regenerate axons for at least 10 mm into the PN graft. Laminin rich basal lamina tubes persist in the acellular PN transplants but only a few axons penetrate the most proximal parts of the tubes by 5 days and none grow farther into the graft by 30 days. RGC counts demonstrate that 34% of the normal RGC population survive 30 days after anastomosing a normal PN to the transected optic nerve. After anastomosing acellular PN grafts, 25% of RGCs survive compared with 10% after optic nerve section. These findings demonstrate that laminin does not promote regeneration of axons and that Schwann cells play the primary role of offering trophic support and even a substrate for growth. RGC survival is also enhanced by PN grafts even when Schwann cells are absent. This latter result suggests that RGC survival is promoted by a trophic substance released from axons and/or Schwann cells in the PN grafts which survives the thawing/freezing procedure (used to kill the Schwann cells) and is active in the grafts in the immediate post operative period.  相似文献   

19.
The degree of nerve regeneration after peripheral nerve injury can be altered by the microenvironment at the site of injury. Stem cells and vascularity are postulated to be a part of a complex pathway that enhances peripheral nerve regeneration; however, their interaction remains unexplored. This review aims to summarize current knowledge on this interaction, including various mechanisms through which trophic factors are promoted by stem cells and angiogenesis. Angiogenesis after nerve injury is stimulated by hypoxia, mediated by vascular endothelial growth factor, resulting in the growth of preexisting vessels into new areas. Modulation of distinct signaling pathways in stem cells can promote angiogenesis by the secretion of various angiogenic factors. Simultaneously, the importance of stem cells in peripheral nerve regeneration relies on their ability to promote myelin formation and their capacity to be influenced by the microenvironment to differentiate into Schwann-like cells. Stem cells can be acquired through various sources that correlate to their differentiation potential, including embryonic stem cells, neural stem cells, and mesenchymal stem cells. Each source of stem cells serves its particular differentiation potential and properties associated with the promotion of revascularization and nerve regeneration. Exosomes are a subtype of extracellular vesicles released from cell types and play an important role in cell-to-cell communication. Exosomes hold promise for future transplantation applications, as these vesicles contain fewer membrane-bound proteins, resulting in lower immunogenicity. This review presents pre-clinical and clinical studies that focus on selecting the ideal type of stem cell and optimizing stem cell delivery methods for potential translation to clinical practice. Future studies integrating stem cell-based therapies with the promotion of angiogenesis may elucidate the synergistic pathways and ultimately enhance nerve regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号