共查询到20条相似文献,搜索用时 13 毫秒
1.
Regulation of ammonia production by mouse proximal tubules perfused in vitro. Effect of luminal perfusion. 总被引:1,自引:8,他引:1 下载免费PDF全文
To investigate factors regulating ammonia (NH3) production by isolated defined proximal tubule segments, we examined the rates of total NH3 (NH3 + NH+4) production by individual proximal tubule segments perfused in vitro under a variety of perfusion conditions. Segments consisting of late convoluted and early straight portions of superficial proximal tubules were incubated at 37 degrees C in Krebs-Ringer bicarbonate (KRB) buffer containing 0.5 mM L-glutamine and 1.0 mM sodium acetate, pH 7.4. The rate of total ammonia production was calculated from the rate of accumulation of total NH3 in the bath. The total ammonia production rate by unperfused proximal segments was 6.0 +/- 0.2 (+/- SE) pmol/mm per minute, which was significantly lower than segments perfused at a flow rate of 22.7 +/- 3.4 nl/min with KRB buffer (21.5 +/- 1.4 pmol/mm per minute; P less than 0.001) or with KRB buffer containing 0.5 mM L-glutamine (31.9 +/- 2.5; P less than 0.001). The rate of NH3 production was higher in segments perfused with glutamine than in segments perfused without glutamine (P less than 0.01). The perfusion-associated stimulation of NH3 production was characterized further. Analysis of collected luminal fluid samples revealed that the luminal fluid total NH3 leaving the distal end of the perfused proximal segment accounted for 91% of the increment in NH3 production observed with perfusion. Increasing the perfusion flow rate from 3.7 +/- 0.1 to 22.7 +/- 3.4 nl/min by raising the perfusion pressure resulted in an increased rate of total NH3 production in the presence or absence of perfusate glutamine (mean rise in rate of total NH3 production was 14.9 +/- 3.7 pmol/mm per minute in segments perfused with glutamine and 7.8 +/- 0.9 in those perfused without glutamine). In addition, increasing the perfusion flow rate at a constant perfusion pressure increased the rate of luminal output of NH3. Total NH3 production was not affected by reducing perfusate sodium concentration to 25 mM and adding 1.0 mM amiloride to the perfusate, a condition that was shown to inhibit proximal tubule fluid reabsorption. These observations demonstrate that the rate of total NH3 production by the mouse proximal tubule is accelerated by perfusion of the lumen of the segment, by the presence of glutamine in the perfusate, and by increased perfusion flow rates. The increased rate of NH3 production with perfusion seems not to depend upon normal rates of sodium reabsorption. The mechanism underlying the stimulation of NH3 production by luminal flow is unknown and requires further study. 相似文献
2.
Effect of bath and luminal potassium concentration on ammonia production and secretion by mouse proximal tubules perfused in vitro. 总被引:2,自引:2,他引:0 下载免费PDF全文
G T Nagami 《The Journal of clinical investigation》1990,86(1):32-39
To determine the effects of acute changes in K+ concentration in vitro on ammonia production and secretion by the proximal tubule, we studied mouse S2 segments perfused with and bathed in Krebs-Ringer bicarbonate buffers containing various K+ concentrations. All bath solutions contained L-glutamine as the ammoniagenic substrate. High bath and luminal K+ concentrations (8 mM), but not high luminal K+ concentration alone, inhibited total ammonia production rates by 26%, while low bath and luminal K+ concentrations (2 mM), but not low luminal K+ concentration alone, stimulated total ammonia production rates by 33%. The stimulation of ammonia production by low bath K+ concentration was not observed when L-glutamine was added to the luminal perfusion solution. On the other hand, high luminal K+ concentration stimulated, while low luminal K+ concentration inhibited, net luminal secretion of total ammonia in a way that was: (a) independent of total ammonia production rates, (b) independent of Na(+)-H+ exchange activity, and (c) not due to changes in transepithelial fluxes of total ammonia. These results suggest that luminal potassium concentration has a direct effect on cell-to-lumen transport of ammonia. 相似文献
3.
4.
J Y Chatton F Roch-Ramel 《The Journal of pharmacology and experimental therapeutics》1991,256(3):1112-1118
The role of nonionic diffusion in the transport of salicylic acid across rabbit proximal S2 and S3 segments was investigated using the in vitro isolated perfused tubule technique. The [14C] salicylic acid apparent reabsorptive permeability (P'I-b, 10(-5) cm/s) was measured at 19 degrees C with luminal solutions kept at different pH and bath maintained at pH 7.4. In S2 tubules, P'I-b was 25.0 +/- 3.5 when luminal pH was 6.0; P'I-b decreased to 8.1 +/- 1.4 and to 4.4 +/- 1.2 at a luminal pH of 6.5 and 7.0, respectively. In S3 tubules, P'I-b was 17.6 +/- 2.4, 5.3 +/- 1.1 and 3.4 +/- 1.1 at a luminal pH of 6.0, 6.5 and 7.0, respectively. There was a close correlation between P'I-b and the calculated proportion of nonionized salicylic acid present at each pH, indicating that only the nonionized molecule could diffuse in our conditions. We calculated the apparent permeability of nonionic salicylic acid and found 0.248 +/- 0.032 cm/s for S2 and 0.176 +/- 0.022 cm/s for S3 tubules. These calculated permeabilities were independent of pH. 相似文献
5.
6.
Cell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration. 总被引:23,自引:19,他引:4 下载免费PDF全文
To examine the relative roles of apical and basolateral membrane transport mechanisms in the regulation of cell pH in the proximal convoluted tubule, cell pH was measured in the in vivo microperfused rat tubule using fluorescence. Decreasing luminal pH by 0.7 pH units caused cell pH to decrease by 0.08 pH units, whereas a similar decrease in peritubular pH caused cell pH to decrease by 0.32 pH units. Inhibition of basolateral membrane bicarbonate transport with peritubular 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS) enhanced the response to luminal fluid acidification. Removal of luminal sodium caused a small transient acidification which was followed by a late alkalinization. Peritubular SITS increased the magnitude of the transient acidification, and eliminated the late alkalinization. The acidification was partially inhibited by luminal amiloride. The results demonstrate sodium-coupled processes on both the apical (Na/H antiport) and basolateral (Na/HCO3 symport) membranes. Basolateral membrane transporters are more important determinants of cell pH. 相似文献
7.
Administration of atrial natriuretic factor inhibits sodium-coupled transport in proximal tubules. 总被引:3,自引:1,他引:2 下载免费PDF全文
T G Hammond A N Yusufi F G Knox T P Dousa 《The Journal of clinical investigation》1985,75(6):1983-1989
The newly discovered peptides extracted from cardiac atria, atrial natriuretic factors (ANFs), when administered parenterally cause renal hemodynamic changes and natriuresis. The nephron sites and cellular mechanism accounting for profound increase in Na+ excretion in response to ANFs are not yet clarified. In the present study we investigated whether synthetic ANF peptide alters the reabsorption of Na+ and reabsorption of solutes cotransported with Na+ in the proximal tubules of rats. Synthetic ANF peptide consisting of 26 amino acids, 4 micrograms/kg body wt/h, or vehicle in controls, was infused to surgically thyroparathyroidectomized anesthetized rats. After determination of the fractional excretion (FE) of electrolytes (Na+, K+, Pi, Ca2+, Mg2+, HCO3), the kidneys were removed and luminal brush border membrane vesicles (BBMVs) were prepared from renal cortex. Solute transport was measured in BBMVs by rapid filtration techniques. Infusion of ANF peptide increased FENa, FEPi, and FEHCO3; but FECa, FEK, and FEMg were not changed. The increase in FENa was significantly correlated, on the one hand, with increase of FEPi (r = 0.9, n = 7; P less than 0.01) and with increase of FEHCO3 (r = 0.89, n = 7; P less than 0.01). On the other hand, FENa did not correlate with FEK, FECa, or with FEMg. The Na+ gradient-dependent uptake of Pi by BBMVs prepared from renal cortex of rats receiving ANF infusion was significantly (P less than 0.05) decreased (-25%), whereas the Na+ gradient-dependent uptake of L-[3H]proline and of D-[3H]glucose or the diffusional uptake of 22Na+ were not changed. ANF-elicited change in FEPi showed a close inverse correlation with decrease of Na+-dependent Pi uptake by BBMVs isolated from infused rats (r = 0.99, n = 7; P less than 0.001). Direct addition of ANF to BBMVs in vitro did not change the Na+ gradient-dependent Pi uptake. In rats infused with ANF, the rate of amiloride-sensitive Na+-H+ exchange across the brush border membrane (BBM) was significantly (P less than 0.05) decreased (-40%), whereas the diffusional 22Na+ uptake (0.5 min) and the equilibrium (120 min) uptake of 22Na+ were not changed. The inhibition of Na+-H+ exchange after ANF was likely due to alteration of the BBM antiporter itself, in that the H+ conductance of BBMVs was not increased. We conclude that synthetic ANF (a) decreases tubular Na+ reabsorption linked to reabsorption of HCO3 in proximal tubules, and (b) inhibits proximal tubular reabsorption of Pi coupled to Na+ reabsorption, independent of secretion and/or action of parathyroid hormone or calcitonin. These ANF effects are associated with inhibition of Na+-Pi synport and of Na+-H+ antiport in luminal BBMs. Our findings document that inhibition of Na+-coupled transport processes in proximal tubules is an integral part of the renal response to ANF. 相似文献
8.
Axial heterogeneity of bicarbonate, chloride, and water transport in the rat proximal convoluted tubule. Effects of change in luminal flow rate and of alkalemia. 下载免费PDF全文
These studies examined regulation of superficial proximal convoluted tubule (PCT) transport as a function of length. When single nephron glomerular filtration rate (SNGFR) increased from 28.7 +/- 0.7 nl/min in hydropenia to 41.5 +/- 0.4 nl/min in euvolemia, bicarbonate, chloride, and water reabsorption in the early (1st mm) PCT increased proportionally: from 354 +/- 21 peq/mm X min, 206 +/- 55 peq/mm X min, and 5.9 +/- 0.4 nl/mm X min to 520 +/- 12 peq/mm X min, 585 +/- 21 peq/mm X min, and 10.1 +/- 0.4 nl/mm X min, respectively. These high transport rates did not increase further, however, when SNGFR went to 51.2 +/- 0.7 or 50.7 +/- 0.6 nl/min after atrial natriuretic factor or glucagon administration. Anion and water transport rates in the late PCT were lower and exhibited less flow dependence. During chronic metabolic alkalosis, acidification was inhibited in the late but not early PCT. In conclusion, the early PCT is distinguished from the late PCT by having high-capacity, flow-responsive but saturable, anion- and water-reabsorptive processes relatively unaffected by alkalemia. 相似文献
9.
10.
Isovolumetric regulation of isolated S2 proximal tubules in anisotonic media. 总被引:2,自引:1,他引:2 下载免费PDF全文
Sudden alteration in medium osmolality causes an osmometric change in proximal tubule cell size followed by restoration of cell volume toward normal in hypotonic but not in hypertonic medium. We determined the capability of isolated nonperfused proximal tubules to prevent a change in cell volume in anisotonic media. The external osmolality was gradually changed over a range from 110 to 480 mosM. At 1.5 mosM/min, cell volume remained constant between 167 +/- 9 and 361 +/- 7 mosM, a phenomenon termed isovolumetric regulation (IVR). Cells lost intracellular solutes in hypotonic and gained intracellular solutes in hypertonic media. Raffinose or choline chloride substitution showed that osmolality, rather than NaCl, signalled cell volume maintenance in hyperosmotic media. Cooling (7-10 degrees C) blocked IVR. IVR was maintained when osmolality was lowered at a rate of 27, but not at 42 mosM/min. IVR was not observed when the rate of osmolality increase exceeded 3 mosM/min. We conclude that proximal tubule cells sensitively regulate intracellular volume in an osmolality range of pathophysiologic interest by mechanisms dependent on the rate of net water movement across basolateral membranes and the absolute intracellular content of critical solutes. 相似文献
11.
Effect of angiotensin II on ammonia production and secretion by mouse proximal tubules perfused in vitro. 下载免费PDF全文
G T Nagami 《The Journal of clinical investigation》1992,89(3):925-931
The effects of angiotensin II on total ammonia (tNH3) production and net secretion were investigated using in vitro microperfused mouse S2 proximal tubule segments incubated in Krebs-Ringer bicarbonate buffer containing 0.5 mM L-glutamine. Basolateral exposure of mouse S2 segments to 10(-11), 10(-10), and 10(-9) M angiotensin II stimulated tNH3 production rates by 23, 52, and 49%, respectively. Addition of 10(-6) M angiotensin II inhibited the tNH3 production rate by 34%. 10(-10) M angiotensin II inhibited net luminal secretion of tNH3 in the presence of enhanced luminal acidification and in the absence of altered luminal tNH3 efflux rates. Measurements of intracellular pH (pHi) and intracellular calcium concentration [( Ca2+]i) suggested that the effects of angiotensin II on tNH3 production were not mediated by changes in pHi but by the stimulatory effect of angiotensin II correlated with increased [Ca2+]i. Inhibition of the calcium-calmodulin-dependent pathway with W-7 blocked the stimulatory effect of 10(-10) M angiotensin II on tNH3 production and luminal acidification. These results indicate that angiotensin II has concentration-dependent effects on tNH3 production; that its action to stimulate tNH3 production may be mediated by rises in [Ca2+]i and the calcium-calmodulin pathway; and that angiotensin II, at concentrations that stimulate tNH3 production, inhibits net luminal ammonia secretion by a mechanism that is not mediated by diminished luminal acidification or by changes in luminal ammonia efflux rates. 相似文献
12.
Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules 总被引:19,自引:17,他引:2 下载免费PDF全文
Numerous previous studies have proposed a role for angiotensin II (AII) in the renal regulation of salt balance. At least one nephron site, the proximal convoluted segment, has been implicated in this role. We used in vitro microperfusion of rabbit proximal convoluted tubules to further examine this question. To insure use of appropriate in vivo concentrations as well as potency of the hormone in vitro, we measured plasma AII levels by radioimmunoassay in normal, sodium-depleted, and adrenalectomized rabbits, and measured AII activity by bioassay after incubation in various microperfusion baths. Plasma levels ranged from approximately 2 X 10(-11) to 5 X 10(-11) M. AII activity was stable in Ringer's solution plus albumin, but not in rabbit serum or Ringer's solution plus fetal calf serum. In Ringer's solution plus albumin, physiologic concentrations of AII stimulated volume reabsorption (Jv). 10(-11) M AII increased Jv by 16% (P less than 0.01). 10(-10) M AII produced a lesser increase, 7.5% (P less than 0.05). At a frequently studied, but probably pharmacologic dose, 10(-7) M AII inhibited Jv by 24% (P less than 0.001). AII at 10(-11) M did not stimulate Jv in the presence of 10(-7) M saralasin. Though previous studies have suggested agonistic effects of saralasin alone in epithelia, we found no significant effect of 10(-7) M saralasin on Jv. None of the AII doses measurably changed transepithelial voltage. We conclude that AII in physiologic doses directly stimulates Jv in proximal convoluted tubules and this effect is probably receptor mediated and, within the limits of detection, electroneutral. 相似文献
13.
Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules. 总被引:11,自引:10,他引:1 下载免费PDF全文
The purpose of the present studies was to characterize the nature of salt and water transport out of the superficial (SF) and juxtamedullary (JM) straight segments of rabbit proximal tubules as examined by in vitro microperfusion techniques. When the perfusate consisted of a solution simulating ultrafiltrate of plasma, there were no differences between SF and JM straight tubules in either net reabsorption of fluid (SF=0.47 nl/mm per min; JM=0.56 nl/mm per min) or in transtubular potential difference (PD) (SF=-2.1 mV; JM=-1.8 mV). Removal of glucose and alanine from the perfusate had no effect on the magnitude of the PD in either straight segment. Ouabain decreased both the net reabsorptive rates and the PD. Isosmolal replacement of NaCL by Na-cyclamate (a presumed impermeant anion) in the perfusate and the bath caused an increase in luminal negativity in both segments wheras similar substitution of NaCL by choline-CL (nontransported cation) changed the PD TO NEAR ZERO. These studies, therefore, suggest that sodium is transported out of the proximal straight tubules by an active noncoupled process that generates a PD (electrogenic process). When the perfusate consisted of a solution with a high chloride concentration (resulting from greater HCO3 than CI reabsorption in the proximal convoluted tubule), different PDs in SF and JM tubules were generated: SF=+1.6 plus or minus 0.2 mV; JM=-1.3 plus or minus 0.3 mV. This difference in PD was attributed to relative differences in Na and CI permeabilities in these two segments. Electrophysiological and isotopic estimates of the chloride to sodium permeability revealed that the SF tubule is about twice as permeant to chloride than to sodium whereas the JM tubules are approximately twice as permeant to sodium than to chloride. It is concluded that the mechanism of active sodium transport in the straight segment of proximal tubule differs from that of the convoluted segment and that both the SF and JM straight segments differ from each other with respect os sodium and chloride permeability. 相似文献
14.
Regulation of cell pH by ambient bicarbonate, carbon dioxide tension, and pH in the rabbit proximal convoluted tubule. 总被引:8,自引:5,他引:3 下载免费PDF全文
R Krapf C A Berry R J Alpern F C Rector Jr 《The Journal of clinical investigation》1988,81(2):381-389
To study the regulation of cell pH by ambient pH, carbon dioxide tension (PCO2), and bicarbonate (HCO3), cell pH was measured in the isolated, in vitro microperfused rabbit proximal convoluted tubule using the fluorescent dye (2',7')-bis-(carboxyethyl)-(5,6)-carboxyfluorescein. For the same changes in external pH, changes in [HCO3] and PCO2 affected cell pH similarly ([HCO3]: pHi/pHe = 0.67, PCO2: pHi/pHe = 0.64, NS). Isohydric changes in extracellular [HCO3] and PCO2 did not change cell pH significantly. Changes in peritubular [HCO3] elicited larger changes in cell pH than changes in luminal [HCO3], which were enhanced by peritubular 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS). The cell pH defense against acute increases and decreases in PCO2 was inhibited by sodium, but not by chloride removal. Peritubular SITS inhibited the cell pH defense against increases and decreases of PCO2, whereas luminal amiloride inhibited cell pH defense against increases in PCO2. Conclusions: (a) Steady-state cell pH changes in response to changes in extracellular [HCO3] and PCO2 are quantitatively similar for a given change in extracellular pH; (b) the rate of the basolateral Na/(HCO3)3 cotransporter is a more important determinant of cell pH than the rate of the apical membrane mechanism(s); (c) cell pH defense against acute changes in PCO2 depends on the basolateral Na/(HCO3)3 cotransporter (acid and alkaline loads) and the luminal Na/H antiporter (acid loads). 相似文献
15.
Effect of luminal and peritubular HCO3(-) concentrations and PCO2 on HCO3(-) reabsorption in rabbit proximal convoluted tubules perfused in vitro. 下载免费PDF全文
The effect of luminal and peritubular HCO3(-) concentrations and PCO2 on HCO3(-) reabsorption was examined in rabbit proximal convoluted tubules perfused in vitro. Increasing luminal HCO3(-) concentration from 25 to 40 mM without changing either peritubular HCO3(-) concentration or PCO2, stimulated HCO3(-) reabsorption by 41%. When luminal HCO3(-) concentration was constant at 40 mM and peritubular HCO3(-) concentration was increased from 25 to 40 mM without changing peritubular PCO2, a 45% reduction in HCO3(-) reabsorption was observed. This inhibitory effect of increasing peritubular HCO3(-) concentration was reversed when peritubular pH was normalized by increasing PCO2. Passive permeability for HCO3(-) was also measured and found to be 1.09 +/- 0.17 X 10(-7) cm2 s-1. Using this value, the passive flux of HCO3(-) could be calculated. Only a small portion (less than 23%) of the observed changes in net HCO3(-) reabsorption can be explained by the passive HCO3(-) flux. We conclude that luminal and peritubular HCO3(-) concentrations after HCO3(-) reabsorption by changing the active H+ secretion rate. Analysis of these data suggest that both luminal and peritubular pH are major determinants of HCO3(-) reabsorption. 相似文献
16.
Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. 总被引:3,自引:11,他引:3 下载免费PDF全文
P A Preisig H E Ives E J Cragoe Jr R J Alpern F C Rector Jr 《The Journal of clinical investigation》1987,80(4):970-978
Amiloride and the more potent amiloride analog, 5-(N-t-butyl) amiloride (t-butylamiloride), were used to examine the role of the Na+/H+ antiporter in bicarbonate absorption in the in vivo microperfused rat proximal convoluted tubule. Bicarbonate absorption was inhibited 29, 46, and 47% by 0.9 mM or 4.3 mM amiloride, or 1 mM t-butylamiloride, respectively. Sensitivity of the Na+/H+ antiporter to these compounds in vivo was examined using fluorescent measurements of intracellular pH with (2', 7')-bis(carboxyethyl)-(5,6)-carboxyfluorescein (BCECF). Amiloride and t-butylamiloride were shown to be as potent against the antiporter in vivo as in brush border membrane vesicles. A model of proximal tubule bicarbonate absorption was used to correct for changes in the luminal profiles for pH and inhibitor concentration, and for changes in luminal flow rate in the various series. We conclude that the majority of apical membrane proton secretion involved in transepithelial bicarbonate absorption is mediated by the Na+-dependent, amiloride-sensitive Na+H+ antiporter. However, a second mechanism of proton secretion contributes significantly to bicarbonate absorption. This mechanism is Na+-independent and amiloride-insensitive. 相似文献
17.
Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration. 下载免费PDF全文
The effects of changes in peritubular pH, carbon dioxide tension (PCO2), and HCO3- concentration on net HCO3- transport was examined in in vitro perfused cortical collecting tubules (CCTs) from unpretreated New Zealand white rabbits. Lowering peritubular HCO3- concentration and pH by reciprocal replacement of HCO3- with Cl-, significantly stimulated net HCO3- absorption. Lowering peritubular HCO3- concentration and pH, by substitution of HCO3- with gluconate, while keeping Cl- concentration constant, also stimulated net HCO3- absorption. Raising peritubular HCO3- concentration and pH, by reciprocal replacement of Cl- with HCO3-, inhibited net HCO3- absorption (or stimulated net HCO3- secretion). When the tubule was cooled, raising peritubular HCO3- concentration had no effect on net HCO3- transport, suggesting these results are not due to the passive flux of HCO3- down its concentration gradient. The effect of changes in ambient PCO2 on net HCO3- transport were also studied. Increasing the ambient PCO2 from 40 mmHg to either 80 or 120 mmHg, allowing pH to fall, had no effect on net HCO3- transport. Similarly, lowering ambient PCO2 to 14 mmHg had no effect on net HCO3- transport. Simultaneously increasing peritubular HCO3- concentration and PCO2, without accompanying changes in peritubular pH, i.e., isohydric changes, stimulated net HCO3- secretion to the same degree as nonisohydric increases in peritubular HCO3- concentration. Likewise, isohydric lowering of peritubular HCO3- concentration and PCO2 stimulated net HCO3- absorption. We conclude that: acute changes in peritubular HCO3- concentration regulate acidification in the CCT and these effects are mediated by a transcellular process; acute changes in ambient PCO2 within the physiologic range have no effect on HCO3- transport in the in vitro perfused CCT; and acute in vitro regulation of CCT acidification is independent of peritubular pH. 相似文献
18.
Effect of in vitro metabolic acidosis on luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport in rabbit kidney proximal tubules. 下载免费PDF全文
M Soleimani G L Bizal T D McKinney Y J Hattabaugh 《The Journal of clinical investigation》1992,90(1):211-218
The aim of this study was to evaluate the role of the kidney in mediating the signals involved in adaptive changes in luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport systems in metabolic acidosis. Proximal tubular suspensions were prepared from rabbit kidney cortex and incubated in acidic (A) or control (C) media (pH 6.9 vs 7.4, 5% CO2) for 2 h. Brush border membrane (BBM) and basolateral membrane (BLM) vesicles were isolated from the tubular suspensions and studied for the activity of Na+/H+ exchange and Na+:HCO3- cotransport. Influx of 1 mM 22Na at 10 s (pH6 7.5, pH(i) 6.0) into BBM vesicles was 68% higher in group A compared to group C. The increment in Na+ influx in the group A was amiloride sensitive, suggesting that Na+/H+ exchange was responsible for the observed differences. Kinetic analysis of Na+ influx showed a Km of 8.1 mM in C vs 9.2 in A and Vmax of 31 nmol/mg protein per min in group C vs 57 in A. Influx of 1 mM 22Na at 10 s (pH0 7.5, pH(i) 6.0, 20% CO2, 80% N2) into BLM vesicles was 83% higher in the group A compared to C. The HCO3-dependent increment in 22Na uptake in group A was 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid sensitive, suggesting that Na+:HCO3- cotransport accounted for the observed differences. Kinetic analysis of Na+ influx showed a Km of 11.4 mM in C vs 13.6 in A and Vmax of 35 nmol/mg protein per min in C vs 64 in A. The presence of cyclohexamide during incubation in A medium had no effect on the increments in 22Na uptake in group A. We conclude that the adaptive increase in luminal Na+/H+ exchange and basolateral Na+:HCO3- cotransport systems in metabolic acidosis is acute and mediated via direct signal(s) at the level of renal tubule. 相似文献
19.
Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. 总被引:1,自引:16,他引:1 下载免费PDF全文
V L Schuster 《The Journal of clinical investigation》1985,75(6):2056-2064
We studied the effects of cyclic AMP (cAMP) on HCO-3 transport by rabbit cortical collecting tubules perfused in vitro. Net HCO-3 secretion was observed in tubules from NaHCO3- loaded rabbits. 8-Bromo-cAMP-stimulated net HCO-3 secretion, whereas secretion fell with time in control tubules. Both isoproterenol and vasopressin (ADH) are known to stimulate adenylate cyclase in this epithelium; however, only isoproterenol stimulated net HCO-3 secretion. The mechanism of cAMP-stimulated HCO-3 secretion was examined. If both HCO-3 and H+ secretion were to occur simultaneously in tubules exhibiting net HCO-3 secretion, cAMP might increase the net HCO-3 secretory rate by inhibiting H+ secretion, by stimulating HCO-3 secretion, or both. These possibilities were examined using basolateral addition of the disulfonic stilbene (4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). In acidifying tubules from NH4Cl-loaded rabbits, DIDS eliminated HCO-3 reabsorption, a result consistent with known effects of DIDS as an inhibitor of H+ secretion. In contrast, cAMP left acidification (H+ secretion) intact. DIDS applied to HCO-3 secretory tubules failed to increase the HCO-3 secretory rate, indicating minimal H+ secretion in HCO-3 secreting tubules. Thus, inhibition of H+ secretion by cAMP could not account for the cAMP-induced stimulation of net HCO-3 secretion. cAMP-stimulated HCO-3 secretion was reversibly eliminated by 0 Cl perfusate, whereas luminal DIDS had no effect. Bath amiloride (1 mM) failed to eliminate cAMP-stimulated HCO-3 secretion when bath [Na+] was 145 mM or 5 mM. cAMP depolarized the transepithelial voltage. The collected fluid [HCO-3] after cAMP could be accounted for by electrical driving forces, suggesting that cAMP stimulates passive HCO-3 secretion. However, cAMP did not alter HCO-3 permeability measured under conditions expected to inhibit transcellular HCO-3 movement (0 Cl- solutions and bath DIDS). This measured HCO-3 permeability was not high enough to account, by passive diffusion, for the HCO-3 fluxes observed in Cl-containing solutions. We conclude the following: cAMP increased net HCO3- secretion by stimulating HCO3- secretion and not by inhibiting H+ secretion; this HCO3- secretion may have occurred by Cl-HCO3- exchange; Na+-H+ exchange appeared not to play a role in basolateral H+ extrusion under these conditions; and the stimulation of HCO3- secretion by isoproterenol, but not ADH, suggests the existence of separate cell cAMP pools or cellular heterogeneity in this cAMP response. 相似文献
20.
Role of cytosolic calcium-independent plasmalogen-selective phospholipase A2 in hypoxic injury to rabbit proximal tubules. 下载免费PDF全文
D Portilla S V Shah P A Lehman M H Creer 《The Journal of clinical investigation》1994,93(4):1609-1615
Although the activation of calcium-independent phospholipase A2 (PLA2) enzymes has been described in the heart, the pathogenetic role of this enzyme(s) in hypoxic cell injury has not been previously examined in any tissue. Therefore, we characterized the time course of activation of calcium-independent PLA2 using both plasmalogen and diacylglycerophospholipid substrates during hypoxia in rabbit proximal tubules and examined whether inhibition of calcium-independent PLA2 activity is associated with a cytoprotective effect. Subjecting rabbit proximal tubules to hypoxia for 5 min resulted in at least a threefold increase in cytosolic calcium-independent PLA2, which was selective for plasmalogen substrates (control 444 +/- 69 vs hypoxia 1,675 +/- 194 pmol.mg protein-1.min-1, n = 5). In contrast, no changes in PLA2 activity were observed in the presence of 4 mM EGTA in the membrane fraction using plasmenylcholine substrates. 20 min of hypoxia resulted in an increase in arachidonate from 3 +/- 1 to 28 +/- 4 ng/mg protein and lactate dehydrogenase release from 7.5 +/- 2% to 38 +/- 5%, n = 4. Pretreatment of proximal tubules with 10 microM Compound I, a specific inhibitor of calcium-independent PLA2, resulted in reduction in the magnitude of both hypoxia-induced arachidonic acid release (11 +/- 3 ng/mg protein) and lactate dehydrogenase release (18 +/- 4%). Our data indicate that a significant fraction of PLA2 activity in the proximal tubule is calcium-independent and selective for plasmalogen substrates. Furthermore, the activation of this enzyme plays an important role in the pathogenesis of membrane injury during hypoxia in the proximal tubule. 相似文献