首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carvacrol (2-methyl-5-(1-methylethyl)-phenol), one of the main components occurring in many essential oils of the family Labiatae, has been widely used in food, spice and pharmaceutical industries. The carvacrol glucuronidation was characterized by human liver microsomes (HLMs), human intestinal microsomes (HIMs) and 12 recombinant UGT (rUGT) isoforms. One metabolite was identified as a mono-glucuronide by liquid chromatography/mass spectrometry with HLMs, HIMs, rUGT1A3, rUGT1A6, rUGT1A7, rUGT1A9 and rUGT2B7. The study with a chemical inhibition, rUGT, and kinetics study demonstrated that rUGT1A9 was the major isozyme responsible for glucuronidation in HLMs, and rUGT1A7 played a major role for glucuronidation in HIMs.  相似文献   

2.
  1. Carvacrol (2-methyl-5-(1-methylethyl)-phenol), one of the main components occurring in many essential oils of the family Labiatae, has been widely used in food, spice and pharmaceutical industries.

  2. The carvacrol glucuronidation was characterized by human liver microsomes (HLMs), human intestinal microsomes (HIMs) and 12 recombinant UGT (rUGT) isoforms.

  3. One metabolite was identified as a mono-glucuronide by liquid chromatography/mass spectrometry with HLMs, HIMs, rUGT1A3, rUGT1A6, rUGT1A7, rUGT1A9 and rUGT2B7.

  4. The study with a chemical inhibition, rUGT, and kinetics study demonstrated that rUGT1A9 was the major isozyme responsible for glucuronidation in HLMs, and rUGT1A7 played a major role for glucuronidation in HIMs.

  相似文献   

3.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltransferase (UGT) isozymes responsible for gemfibrozil glucuronidation remain to be determined. Here, we identified the main UGT isozymes involved in gemfibrozil glucuronidation. Evaluation of 12 recombinant human UGT isozymes shows gemfibrozil glucuronidation activity in UGT1A1, UGT1A3, UGT1A9, UGT2B4, UGT2B7, and UGT2B17, with UGT2B7 showing the highest activity. The kinetics of gemfibrozil glucuronidation in pooled human liver microsomes (HLMs) follows Michaelis-Menten kinetics with high and low affinity components. The high affinity K(m) value was 2.5 microM, which is similar to the K(m) value of gemfibrozil glucuronidation in recombinant UGT2B7 (2.2 microM). In 16 HLMs, a significant correlation was observed between gemfibrozil glucuronidation and both morphine 3-OH glucuronidation (r = 0.966, p < 0.0001) and flurbiprofen glucuronidation (r = 0.937, p < 0.0001), two reactions mainly catalyzed by UGT2B7, whereas no significant correlation was observed between gemfibrozil glucuronidation and either estradiol 3beta-glucuronidation and propofol glucuronidation, two reactions catalyzed by UGT1A1 and UGT1A9, respectively. Flurbiprofen and mefenamic acid inhibited gemfibrozil glucuronidation in HLMs with similar IC(50) values to those reported in recombinant UGT2B7. These results suggest that UGT2B7 is the main isozyme responsible for gemfibrozil glucuronidation in humans.  相似文献   

4.
Macelignan is a natural phenolic compound that possesses many types of health benefits such as antiinflammation. This study aimed to characterize the metabolism of macelignan via the glucuronidation pathway and to identify the main UGT enzymes involved in macelignan glucuronidation. The rates of glucuronidation were determined by incubating macelignan with UDPGA‐supplemented microsomes. Kinetic parameters were derived by fitting an appropriate model to the data. Reaction phenotyping, the relative activity factor (RAF) approach and activity correlation analysis were employed to identify the main UGT enzymes contributing to the hepatic metabolism of macelignan. Glucuronidation of macelignan in pooled human liver microsomes (pHLM) was rather efficient with a high CLint (the intrinsic clearance) value of 13.90 ml/min/mg. All UGT enzymes, except UGT1A4, 1A6 and 2B10, showed metabolic activities toward macelignan. UGT1A1 and 2B7 were the enzymes with the highest activities; the CLint values were 4.92 and 2.13 ml/min/mg, respectively. Further, macelignan glucuronidation was significantly correlated with 3‐O‐glucuronidation of β‐estradiol (r = 0.69; p < 0.01) and glucuronidation of zidovudine (r = 0.60; p < 0.05) in a bank of individual HLMs (n = 14). Based on the RAF approach, UGT1A1 and 2B7, respectively, contributed 55.40% and 32.20% of macelignan glucuronidation in pHLM. In conclusion, macelignan was efficiently metabolized via the glucuronidation pathway. It was also shown that UGT1A1 and 2B7 were probably the main contributors to the hepatic glucuronidation of macelignan. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
UDP-glucuronosyltransferase 2B7 (UGT2B7) is involved in the glucuronidation of a wide array of clinically important drugs and endogenous compounds in humans. The aim of this study was to identify an isoform-selective probe substrate that could be used to investigate genetic and environmental influences on glucuronidation mediated by UGT2B7. Three potential probe substrates [3'-azido-3'-deoxythymidine (AZT), morphine, and codeine], were evaluated using recombinant UGTs and human liver microsomes (HLMs; n = 54). Of 11 different UGTs screened, UGT2B7 was the principal isoform mediating AZT glucuronidation, morphine-3-glucuronidation, and morphine-6-glucuronidation. Codeine was glucuronidated equally well by UGT2B4 and UGT2B7. Enzyme kinetic analysis of these activities typically showed higher apparent Km values for HLMs (pooled and individual) compared with UGT2B7. This difference was least (less than 2-fold higher Km) for AZT glucuronidation and greatest (3- to 6-fold higher Km) for codeine glucuronidation. Microsomal UGT2B7 protein content correlated well with AZT glucuronidation (rs = 0.77), to a lesser extent with morphine-3-glucuronidation (rs = 0.50) and morphine-6-glucuronidation (rs = 0.51), but very weakly with codeine glucuronidation (rs = 0.33). Livers were also genotyped for the UGT2B7*2 (H268Y) polymorphism. No effect of genotype on microsomal glucuronidation or UGT2B7 protein content was observed. In conclusion, although both AZT and morphine can serve as in vitro probe substrates for UGT2B7, AZT appears to be more selective than morphine. Codeine is not a useful UGT2B7 probe substrate because of significant glucuronidation by UGT2B4. The UGT2B7*2 polymorphism is not a determinant of glucuronidation of AZT, morphine, or codeine in HLMs.  相似文献   

6.
(R,S)-Oxazepam is a 1,4-benzodiazepine anxiolytic drug that is metabolized primarily by hepatic glucuronidation. In previous studies, S-oxazepam (but not R-oxazepam) was shown to be polymorphically glucuronidated in humans. The aim of the present study was to identify UDP-glucuronosyltransferase (UGT) isoforms mediating R- and S-oxazepam glucuronidation in human liver, with the long term objective of elucidating the molecular genetic basis for this drug metabolism polymorphism. All available recombinant UGT isoforms were screened for R- and S-oxazepam glucuronidation activities. Enzyme kinetic parameters were then determined in representative human liver microsomes (HLMs) and in UGTs that showed significant activity. Of 12 different UGTs evaluated, only UGT2B15 showed significant S-oxazepam glucuronidation. Furthermore, the apparent K(m) for UGT2B15 (29-35 microM) was similar to values determined for HLMs (43-60 microM). In contrast, R-oxazepam was glucuronidated by UGT1A9 and UGT2B7. Although apparent K(m) values for HLMs (256-303 microM) were most similar to UGT2B7 (333 microM) rather than UGT1A9 (12 microM), intrinsic clearance values for UGT1A9 were 10 times higher than for UGT2B7. A common genetic variation results in aspartate (UGT2B15*1) or tyrosine (UGT2B15*2) at position 85 of the UGT2B15 protein. Microsomes from human embryonic kidney (HEK)-293 cells overexpressing UGT2B15*1 showed 5 times higher S-oxazepam glucuronidation activity than did UGT2B15*2 microsomes. Similar results were obtained for other substrates, including eugenol, naringenin, 4-methylumbelliferone, and androstane-3alpha-diol. In conclusion, S-oxazepam is stereoselectively glucuronidated by UGT2B15, whereas R-oxazepam is glucuronidated by multiple UGT isoforms. Allelic variation associated with the UGT2B15 gene may explain polymorphic S-oxazepam glucuronidation in humans.  相似文献   

7.
Wu B  Zhang S  Hu M 《Molecular pharmaceutics》2011,8(6):2379-2389
Identifying uridine 5'-diphospho-(UDP)-glucuronosyltransferase (UGT)-selective probes (substrates that are primarily glucuronidated by a single isoform) is complicated by the enzymes' large overlapping substrate specificity. Here, regioselective glucuronidation of two flavonoids, 3,3',4'-trihydroxyflavone (3,3',4'-THF) and 3,6,4'-trihydroxyflavone (3,6,4'-THF), is used to probe the activity of hepatic UGT1A1. The glucuronidation kinetics of 3,3',4'-THF and 3,6,4'-THF was determined using 12 recombinant human UGT isoforms and pooled human liver microsomes (pHLM). The individual contribution of main UGT isoforms to the metabolism of the two flavonoids in pHLM was estimated using the relative activity factor approach. UGT1A1 activity correlation analyses using flavonoids-4'-O-glucuronidation vs β-estradiol-3-glucuronidation (a well-recognized marker for UGT1A1) or vs SN-38 glucuronidation were performed using a bank of HLMs (n = 12) including three UGT1A1-genotyped HLMs (i.e., UGT1A1*1*1, UGT1A1*1*28, and UGT1A1*28*28). The results showed that UGT1A1 and 1A9, followed by 1A7, were the main isoforms for glucuronidating the two flavonoids, where UGT1A1 accounted for 92 ± 7% and 91 ± 10% of 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF, respectively, and UGT1A9 accounted for most of the 3-O-glucuronidation. Highly significant correlations (R(2) > 0.944, p < 0.0001) between the rates of flavonoids 4'-O-glucuronidation and that of estradiol-3-glucuronidation or SN-38 glucuronidation were observed across 12 HLMs. In conclusion, UGT1A1-mediated 4'-O-glucuronidation of 3,3',4'-THF and 3,6,4'-THF was highly correlated with the glucuronidation of estradiol (3-OH) and SN-38. This study demonstrated for the first time that regioselective glucuronidation of flavonoids can be applied to probe hepatic UGT1A1 activity in vitro.  相似文献   

8.
Flurbiprofen is a nonsteroidal anti-inflammatory drug used as a racemic mixture. Although glucuronidation is one of its elimination pathways, the role of UDP-glucuronosyltransferase (UGT) in this process remains to be investigated. Thus, the kinetics of the stereoselective glucuronidation of racemic (R,S)-flurbiprofen by recombinant UGT isozymes and human liver microsomes (HLMs) were investigated, and the major human UGT isozymes involved were identified. UGT1A1, 1A3, 1A9, 2B4, and 2B7 showed glucuronidation activity for both (R)- and (S)-glucuronide, with UGT2B7 possessing the highest activity. UGT2B7 formed the (R)-glucuronide at a rate 2.8-fold higher than that for (S)-glucuronide, whereas the other UGTs had similar formation rates. The glucuronidation of racemic flurbiprofen by HLMs also resulted in the formation of (R)-glucuronide as the dominant form, which occurred to a degree similar to that by recombinant UGT2B7 (2.1 versus 2.8). The formation of (R)-glucuronide correlated significantly with morphine 3-OH glucuronidation (r = 0.96, p < 0.0001), morphine 6-OH glucuronidation (r = 0.91, p < 0.0001), and 3'-azido-3'-deoxythymidine glucuronidation (r = 0.85, p < 0.0001), a reaction catalyzed mainly by UGT2B7, in individual HLMs. In addition, the formation of both glucuronides correlated significantly (r = 0.99, p < 0.0001). Mefenamic acid inhibited the formation of both (R)- and (S)-glucuronide in HLMs with similar IC(50) values (2.0 and 1.7 muM, respectively), which are close to those in recombinant UGT2B7. In conclusion, these findings suggest that the formation of (R)- and (S)-glucuronide from racemic flurbiprofen is catalyzed by the same UGT isozyme, namely UGT2B7.  相似文献   

9.
Acetylsalicylic acid (aspirin) is a common nonsteroidal anti-inflammatory drug used for treatment of pain and arthritis. In the body, acetylsalicylic acid is rapidly deacetylated to form salicylic acid. Both compounds have been proposed as anti-inflammatory agents. Major metabolites of salicylic acid are its acyl and phenolic glucuronide conjugates. Formation of these conjugates, catalyzed by UDP-glucuronosyltransferases (UGTs), decreases the amount of pharmacologically active salicylic acid present. We aimed to identify the UGTs catalyzing the glucuronidation of salicylic acid using both heterologously expressed enzymes and pooled human liver microsomes (HLMs) and to develop a liquid chromatography-tandem mass spectrometry method to quantify glucuronidation activity of UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 Supersomes. All UGTs tested, except 1A4, 2B15, and 2B17, catalyzed salicylic acid phenolic and acyl glucuronidation. Ratios of salicylic acid phenolic to acyl glucuronide formation varied more than 12-fold from 0.5 for UGT1A6 to 6.1 for UGT1A1. These results suggest that all UGTs except 1A4, 2B15, and 2B17 might be involved in the glucuronidation of salicylic acid in vivo. From comparisons of apparent Km values determined in pooled HLMs and in expressed UGTs, UGT2B7 was suggested as a likely catalyst of salicylic acid acyl glucuronidation, whereas multiple UGTs were suggested as catalysts of phenolic glucuronidation. The results of this UGT screening may help target future evaluation of the effects of UGT polymorphisms on response to aspirin in clinical and population-based studies.  相似文献   

10.
Context: Kurarinone, the most abundant prenylated flavonoid in Sophora flavescens Aiton (Leguminosae), is a promising antitumor therapeutic. However, it shows significant hepatotoxicity. Furthermore, how kurarinone is metabolized in humans remains unclear.

Objective: The objective of this study is to investigate kurarinone metabolism in human liver microsomes (HLMs) and the role of metabolism in kurarinone-induced cytotoxicity.

Materials and methods: The UDP-glucuronosyltransferase isoforms (UGTs) involved in kurarinone glucuronidation were identified using chemical inhibitors (100–1000?µM phenylbutazone; 10–100?µM β-estradiol; 10–100?µM 1-naphthol; 10–500?µM propofol; and 100–1000?µM fluconazole) and recombinant human UGTs. Kurarinone (2–500?µM) was incubated with HLMs and UGTs (0.5?mg/mL) for 15?min to determine enzyme kinetic parameters. The IC50 value of kurarinone (10–200?µM) was evaluated in a HLMs/3T3 cell co-culture system.

Results: Kurarinone is extensively converted to two glucuronides (M3 and M4) in HLMs. M3 formation was catalyzed by multiple UGT1As, with UGT1A3 showing the highest intrinsic clearance (120.60?mL/min/mg). M4 formation was catalyzed by UGT1A1, UGT2B4, and UGT2B7. UGT1A1 showed the highest intrinsic clearance (60.61?mL/min/mg). The kinetic profiles of the five main UGTs and HLMs fit substrate inhibition kinetics, with Km values ranging from 5.20 to 46.52?µM, Vmax values ranging from 0.20 to 3.06?µmol/min/mg, and Ksi values ranging from 25.58 to 230.30?µM. The kurarinone IC50 value was 93?μM in the control group, 102?μM in HLMs with NADPH, and 160?μM in HLMs with UDPGA.

Discussion and conclusion: Kurarinone glucuronidation is a detoxification pathway. This information may help to elucidate the risk factors regulating kurarinone toxicity.  相似文献   

11.
Abstract

1.?Leonurine is a potent component of herbal medicine Herba leonuri. The detail information on leonurine metabolism in human has not been revealed so far.

2.?Two primary metabolites, leonurine O-glucuronide and demethylated leonurine, were observed and identified in pooled human liver microsomes (HLMs) and O-glucuronide is the predominant one.

3.?Among 12 recombinant human UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A8, UGT1A9, and UGT1A10 showed catalyzing activity toward leonurine glucuronidation. The intrinsic clearance (CLint) of UGT1A1 was approximately 15-to 20-fold higher than that of UGT1A8, UGT1A9, and UGT1A10, respectively. Both chemical inhibition study and correlation study demonstrated that leonurine glucuronidation activities in HLMs had significant relationship with UGT1A1 activities.

4.?Leonurine glucuronide was the major metabolite in human liver microsomes. UGT1A1 was principal enzyme that responsible for leonurine glucuronidation in human liver and intestine microsomes.  相似文献   

12.

AIMS

We aimed to investigate the effects of tyrosine kinase inhibitors (TKIs) on paracetamol (acetaminophen) glucuronidation.

METHODS

The inhibition of nine small molecule TKIs on paracetamol glucuronidation was investigated in human liver microsomes (HLMs) and recombinant human UDP-glucuronosyltransferases (UGTs).

RESULTS

Sorafenib, dasatinib and imatinib exhibited mixed inhibition against paracetamol glucuronidation in pooled HLMs, and potent inhibition in UGT1A9 and UGT2B15. Dasatinib and imatinib also inhibited UGT1A1-mediated paracetamol glucuronidation. Axitinib, erlotinib, gefitinib, lapatinib, nilotinib and vandetanib exhibited weak inhibition of paracetamol glucuronidation activity in HLMs.

CONCLUSIONS

The inhibition of paracetamol glucuronidation by TKIs might be of particular concern when they are co-administered.  相似文献   

13.
The stereo- and regioselective glucuronidation of 10 Delta(4)-3-keto monohydroxylated androgens and pregnanes was investigated to identify UDP-glucuronosyltransferase (UGT) enzyme-selective substrates. Kinetic studies were performed using human liver microsomes (HLMs) and a panel of 12 recombinant human UGTs as the enzyme sources. Five of the steroids, which were hydroxylated in the 6beta-, 7alpha-, 11beta- or 17alpha-positions, were not glucuronidated by HLMs. Of the remaining compounds, comparative kinetic and inhibition studies indicated that 6alpha- and 21-hydroxyprogesterone (OHP) were glucuronidated selectively by human liver microsomal UGT2B7. 6alpha-OHP glucuronidation by HLMs and UGT2B7 followed Michaelis-Menten kinetics, whereas 21-OHP glucuronidation by these enzyme sources exhibited positive cooperativity. UGT2B7 was also identified as the enzyme responsible for the high-affinity component of human liver microsomal 11alpha-OHP glucuronidation. In contrast, UGT2B15 and UGT2B17 were the major forms involved in human liver microsomal testosterone 17beta-glucuronidation and the high-affinity component of 16alpha-OHP glucuronidation. Activity of UGT1A subfamily enzymes toward the hepatically glucuronidated substrates was generally low, although UGT1A4 and UGT1A9 contribute to the low-affinity components of microsomal 16alpha- and 11alpha-OHP glucuronidation, respectively. Interestingly, UGT1A10, which is expressed only in the gastrointestinal tract, exhibited activity toward most of the glucuronidated substrates. The results indicate that 6alpha- and 21-OHP may be used as selective "probes" for human liver microsomal UGT2B7 activity and, taken together, provide insights into the regio- and stereoselectivity of hydroxysteroid glucuronidation by human UGTs.  相似文献   

14.
Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7.  相似文献   

15.
  1. Alpinetin is a natural flavonoid showing a variety of pharmacological effects such as anti-inflammatory, anti-tumor and hypolipidemic activities. Here, we aim to determine the roles of UDP-glucuronosyltransferases (UGTs) and breast cancer resistance protein (BCRP) in disposition of alpinetin.

  2. Glucuronidation potential of alpinetin was evaluated using pooled human liver microsomes (pHLM), pooled human intestine microsomes (pHIM) and expressed UGT enzymes supplemented with the cofactor UDPGA. Activity correlation analyses with a bank of individual HLMs were performed to identify the main contributing UGT isozymes in hepatic glucuronidation of alpinetin. The effect of BCRP on alpinetin disposition was assessed using HeLa cells overexpressing UGT1A1 (HeLa1A1) cells.

  3. Alpinetin underwent extensive glucuronidation in pHLM and pHIM, generating one glucuronide metabolite. Of 12 test UGT enzymes, UGT1A3 was the most active one toward alpinetin with an intrinsic clearance (CLint?=?Vmax/Km) value of 66.5?μl/min/nmol, followed by UGT1A1 (CLint?=?48.6?μl/min/nmol), UGT1A9 (CLint?=?21.0?μl/min/nmol), UGT2B15 (CLint?=?16.7?μl/min/nmol) and UGT1A10 (CLint?=?1.60?μl/min/nmol). Glucuronidation of alpinetin was significantly correlated with glucuronidation of estradiol (an activity marker of UGT1A1), chenodeoxycholic acid (an activity marker of UGT1A3), propofol (an activity marker of UGT1A9) and 5-hydroxyrofecoxib (an activity marker of UGT2B15), confirming the important roles of UGT1A1, UGT1A3, UGT1A9 and UGT2B15 in alpinetin glucuronidation. Inhibition of BCRP by its specific inhibitor Ko143 significantly reduced excretion of alpinetin glucuronide, leading to a significant decrease in cellular glucuronidation of alpinetin.

  4. Our data suggest UGTs and BCRP as two important determinants of alpinetin pharmacokinetics.

  相似文献   

16.
Purpose To assess the uridine diphosphate (UDP)-glucuronosyltransferase (UGT) isozymes involved in the glucuronidation of niflumic acid in human liver. Methods The glucuronidation activity of niflumic acid was determined in liver microsomes and recombinant UGT isozymes by incubation of niflumic acid with UDP-glucuronic acid (UDPGA). Results Incubation of niflumic acid with liver microsomes and UDPGA produced one peak, which was identified as a glucuronide from mass spectrometric analysis. A study involving a panel of recombinant human UGT isozymes showed that glucuronidation activity was highest in UGT1A1 among the isozymes investigated. The glucuronidation in human liver microsomes (HLMs) followed Michaelis-Menten kinetics with a Km value of 16 μM, which is similar to that found with recombinant UGT1A1. The glucuronidation activity of niflumic acid in microsomes from eight human livers significantly correlated with UGT1A1-catalyzed estradiol 3β-glucuronidation activity (r=0.78, p<0.05). β-Estradiol inhibited niflumic acid glucuronidation with an IC50 of 25 μM in HLMs, comparable to that for UGT1A1. Conclusions These findings indicate that UGT1A1 is the main isozyme involved in the glucuronidation of niflumic acid in the human liver.  相似文献   

17.
  1. Lamotrigine (LTG), a diaminotriazine anti-epileptic, is principally metabolized at the 2-position of the triazine ring to form a quaternary ammonium glucuronide (LTGG) by uridine glucuronosyl transferease (UGT) 1A3 and UGT1A4. It has been hypothesized that glucuronidation of anti-epileptic drugs is spared with age, despite a known decrease in liver mass, based on older studies with benzodiazepines such as lorazepam. To examine this, the formation rates of LTGG formation were measured by liquid chromatography-mass spectrometry (LC-MS) in a bank of human liver microsomes (HLMs) obtained from younger and elderly donors at therapeutic concentrations.

  2. The formation rate of LTGG was not significantly different in HLMs obtained from younger and elderly subjects. A four- to five-fold variation for the formation of LTGG was observed within each microsomal bank obtained from elderly and younger donors, and the range of LTGG formation was observed to be 0.15–0.78?nmoles min?1 mg?1 of protein across the entire set of HLMs (n?=?36, elderly and younger HLMs).

  3. UGT1A4 and UGT1A3 catalysed the formation of LTGG with an intrinsic clearances of 0.28 and 0.02?μl min?1 mg?1 protein, respectively. UGT2B7 and UGT2B4 showed no measurable activity. No correlation was observed across the HLM bank for glucuronidation of LTG and valproic acid (a substrate for multiple UGT isoforms including UGT1A4).

  相似文献   

18.
In humans, orally administered 4-(5-pyridin-4-yl-1H-[1,2,4]triazol-3-yl) pyridine-2-carbonitrile (FYX-051) is excreted mainly as triazole N(1)- and N(2)-glucuronides in urine. It is important to determine the enzyme(s) that catalyze the metabolism of a new drug to estimate individual differences and/or drug-drug interactions. Therefore, the characterization and mechanism of these glucuronidations were investigated using human liver microsomes (HLMs), human intestinal microsomes (HIMs), and recombinant human UDP-glucuronosyltransferase (UGT) isoforms to determine the UGT isoform(s) responsible for FYX-051 N(1)- and N(2)-glucuronidation. FYX-051 was metabolized to its N(1)- and N(2)-glucuronide forms by HLMs, and their K(m) values were 64.1 and 72.7 microM, respectively; however, FYX-051 was scarcely metabolized to its glucuronides by HIMs. Furthermore, among the recombinant human UGT isoforms, UGT1A1, UGT1A7, and UGT1A9 catalyzed the N(1)- and N(2)-glucuronidation of FYX-051. To estimate their contribution to FYX-051 glucuronidation, inhibition analysis with pooled HLMs was performed. Mefenamic acid, a UGT1A9 inhibitor, decreased FYX-051 N(1)- and N(2)-glucuronosyltransferase activities, whereas bilirubin, a UGT1A1 inhibitor, did not affect these activities. Furthermore, in the experiment using microsomes from eight human livers, the N(1)- and N(2)-glucuronidation activity of FYX-051 was found to significantly correlate with the glucuronidation activity of propofol, a specific substrate of UGT1A9 (N(1): r(2) = 0.868, p < 0.01; N(2): r(2) = 0.775, p < 0.01). These results strongly suggested that the N(1)- and N(2)-glucuronidation of FYX-051 is catalyzed mainly by UGT1A9 in human livers.  相似文献   

19.
1.?Icaritin is a natural flavonoid with anti-osteoporosis activity. This study aimed to characterize icaritin glucuronidation by pooled human liver microsomes (HLM) and pooled human intestine microsomes (HIM), and to determine the contribution of individual UDP-glucuronosyltrans-ferase (UGT) enzyme to icaritin glucuronidation.

2.?Glucuronidation rates were determined by incubating icaritin with uridine diphosphate glucuronic acid (UDPGA)-supplemented microsomes. Kinetic parameters were derived by appropriate model fitting. Relative activity factors and activity correlation analysis were performed to identify main UGT isoforms.

3.?UGT1A3, 1A7, 1A8, 1A9 and 2B7 were mainly responsible for catalyzing the formation of two glucuronides (G1 and G2). Icaritin 3-O-glucuronidation (G1) was significantly correlated with Chenodeoxycholic acid (CDCA) glucuronidation (r?=?0.787, p?=?0.002), propofol glucuronidation (r?=?0.661, p?=?0.019) and Zidovudine (AZT) glucuronidation (r?=?0.805, p?=?0.002). Similarly, icaritin 7-O-glucuronidation (G2) was also correlated with CDCA glucuronidation (r?=?0.640, p?=?0.025), propofol glucuronidation (r?=?0.592, p?=?0.043) and AZT glucuronidation (r?=?0.661, p?=?0.019). In addition, UGT1A3, 1A9 and 2B7 contributed 37.5, 33.8 and 21.3% for G1 in pooled HLM, respectively. Also, UGT1A3, 1A9 and 2B7 contributed 34.3, 20.0 and 8.6% for G2 in pooled HLM, respectively.

4.?Icaritin was subjected to significant glucuronidation, wherein UGT1A3, 1A7, 1A8, 1A9 and 2B7 were main contributing enzymes.  相似文献   

20.
Valproic acid glucuronidation kinetics were carried our with three human UGT isoforms: UGT1A6, UGT1A9, and UGT2B7 as well as human liver and kidney microsomes. The glucuronidation of valproic acid was typified by high K(m) values with microsomes and expressed UGTs (2.3-5.2mM). The ability of valproic acid to interact with the glucuronidation of drugs, steroids and xenobiotics in vitro was investigated using the three UGT isoforms known to glucuronidate valproic acid. In addition to this the effect of valproic acid was investigated using two other UGT isoforms: UGT1A1 and UGT2B15 which do not glucuronidate valproic acid. Valproic acid inhibited UGT1A9 catalyzed propofol glucuronidation in an uncompetitive manner and UGT2B7 catalyzed AZT glucuronidation competitively (K(i)=1.6+/-0.06mM). Valproate significantly inhibited UGT2B15 catalyzed steroid and xenobiotic glucuronidation although valproate was not a substrate for this UGT isoform. No significant inhibition of UGT1A1 or UGT1A6 by valproic acid was observed. These data indicate that valproic acid inhibition of glucuronidation reactions is not always due to simple competitive inhibition of substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号