首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
OBJECTIVES: The phosphorylation states and the inferred activation of specific members of the mitogen-activated protein kinase (MAPK) pathways (p42/44, p38, and SAPK/JNK) were quantitated in the livers of rats by Western blot analysis during the progression of sepsis. In addition, the authors examined the effects of insulin and mifepristone (RU-486) administration on these signal transduction pathways during sepsis. METHODS: Sepsis was brought about by the cecal ligation and puncture (CLP) method. The control group underwent sham operation. One experimental group was injected with insulin (0.5 U/kg, IV); prior to the CLP or sham procedure, the second group was injected with RU-486, a glucocorticoid antagonist (mifepristone, 20 mg/kg, IP), and the third group was injected with saline (control). RESULTS: The activities of SAPK/JNK were unaltered throughout the course of sepsis, while those of p42/44 MAPK increased four-fold after 24 hours of sepsis. The activation of p38 MAPK was also increased after 0.5 and 1.5 hours of sepsis, but returned to normal during late sepsis (24 hours). Rats that had received RU-486 before CLP showed no change in p42/44 MAPK compared with the untreated group, but the drug appeared to suppress the activation after 24 hours post-CLP. SAPK/JNK activation, on the other hand, was slightly enhanced by RU-486 pretreatment after 1.5 and 24 hours of CLP compared with the untreated CLP and the treated sham-operated rats. Insulin, given preoperatively, had no effect on the activation of SAPK/JNK, although p42/44 MAPK pathways were activated by the hormone at 0.5 hours and 1.5 hours post-CLP only, but not in the sham-operated controls or at 24 hours post-CLP. The p38 MAPK activation seen after 0.5 and 1.5 hours of CLP was suppressed by RU-486. Insulin pretreatment appears to suppress the phosphorylation of p38 in both the CLP and sham-operated groups. CONCLUSIONS: The data suggest that sepsis induces two phases of MAPK activation, an early phase in which p38 is active, followed by a second, more pronounced phase of p42/44 MAPK activation that occurs only late in sepsis. Hormonal administration results suggest that RU-486 suppresses the activation of p38 seen in early sepsis, and the activation of p42/44 MAPK seen in late sepsis.  相似文献   

2.
Sepsis precipitates a systemic inflammatory stimulus that causes systemic release of cytokines and sequestration of polymorphonuclear neutrophils, resulting in degranulation of matrix metalloproteinases (MMPs), which causes extracellular matrix basement membrane degradation. One of the important anti-inflammatory properties of tetracyclines is their ability to inhibit MMPs. In this study, we focused on the regulation of MMPs in sepsis and their reduction by treatment with nonantimicrobial chemically modified tetracyclines (CMTs), which retain their anti-inflammatory activity. Sepsis was induced by cecal ligation and puncture (CLP) method. At 24 h and 1 h before CLP, some rats received CMT-3 (25 mg/kg), another group of rats received hydroxamate (H; an inhibitor of MMP; 25 mg/kg), and untreated rats received saline by gavage. At 0 h, 0.5 h, 1.5 h, and 24 h after CLP, blood and liver samples were collected. Plasma and liver MMP-9 by zymography and Western immunoblotting, plasma nitric oxide by measuring nitrate level, plasma glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) by enzymatic method, and liver gelatinase by radiolabeled gelatin lysis assay and 24 h mortality were determined. Plasma MMP-9 (92 kDa), nitrate, and GOT and GPT levels were elevated compared with the time 0 level and reached peak at 1.5 h CLP and remained high for 24 h. Both CMT-3 and H treatment reduced GOT,GPT, 92-kDa gelatinase, and nitrate levels throughout the 24 h. CMT-3 and H are equally effective in sepsis treatment. The 24-h mortality for CLP rats was 30%, whereas pretreatment with CMT-3 and H resulted in 0% mortality. Hepatic MMP-9 and gelatinase activity increased significantly after CLP, and pretreatment with CMT-3 and H inhibited these expressions. These results indicate the beneficial effect of CMT-3 in preventing the increase in GOT, GPT, NO, MMP-9, gelatinase activity, and the ensuing septic shock.  相似文献   

3.
Sepsis induces weight loss and the loss of skeletal muscle proteins, in part through an inhibition of protein synthesis secondary to an inhibition of the key steps controlling mRNA translation in skeletal muscle. We have previously shown that sepsis decreases the phosphorylation of eIF4E. The present study examines the phosphorylation of Erk 1/2 MAPK and p38 MAPK in skeletal muscle of rats with a chronic (5-day) intra-abdominal septic abscess. Mnk1 catalyzes the phosphorylation of eIF4E, and Mnk1 is activated by phosphorylation via Erk1/2 MAPK and p38 MAPK. Sepsis resulted in a significant decrease in the steady-state phosphorylation of Erk 1/2 and p38 MAPKs compared with sterile inflammation. To examine the mediators responsible for decreased phosphorylation of Erk 1/2 and p38 MAPKs, rats were treated with TNF binding protein (TNFbp) or infused for 24 h with TNF. Treatment of septic rats with TNFbp resulted in an increase in the phosphorylation of both Erk 1/2 and p38 MAPKs in skeletal muscle. This was associated with enhanced phosphorylation of eIF4E. In contrast, constant intravenous infusion of TNF-alpha for 24 h resulted in a complete inhibition of p38 MAPK phosphorylation while Erk 1/2 MAPK phosphorylation was increased. The net effect was a modest increase in eIF4E phosphorylation. The results suggest altered regulation of Erk 1/2 and p38 MAPK signal translation pathways by endogenously produced TNF, or some compound dependent on TNF may modulate, in part, the phosphorylation state of eIF4E in skeletal muscle during sepsis.  相似文献   

4.
OBJECTIVES: We have previously demonstrated that hepatic matrixmetalloproteinase (MMP)-9 and gelatinase activity increased significantly after sepsis, and pretreatment with chemically modified tetracycline (CMT-3) inhibited these expressions and improved survivability. It has been established that MMP-9 release from hepatic nonparenchymal cells activates transforming growth factor (TGF)-beta1, which in turn catalyzes the conversion of procaspase-8 into active caspase-8. Caspase-8 activates caspase-3, which in turn degrades fibronectin and focal adhesion kinase and leads to disruption of hepatic architecture and integrity. We have been interested in investigating the role of posttreatment with CMT-3 on hepatic MMP-9, TGF-beta1, and caspase-3 activity following sepsis. DESIGN: Laboratory experiment. SETTING: University laboratory. SUBJECTS: Male Sprague-Dawley rats. INTERVENTIONS: In this study, sepsis was induced in rats by cecal ligation and puncture (CLP), and 2 hrs later, half of the rats received CMT-3 (25 mg/kg), whereas the other half received vehicle by gavage. Twenty-four and 48 hrs after sepsis induction, blood and liver samples were collected. MEASUREMENTS AND MAIN RESULTS: Plasma glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels were determined by enzymatic method, and the activation states of hepatic MMP-9, MMP-2, tissue inhibitor of metalloproteinase (TIMP)-1, TGF-beta1, and caspase-3 were determined by Western immunoblotting. Plasma GOT, GPT, and hepatic MMP-9 activity increased 2.5-fold, and TFG-beta1 and caspase-3 activity increased 1.5- to 2-fold at 24 hrs and 48 hrs post-CLP; CMT-3 treatment blocked these increases. Furthermore, CMT-3 treatment also led to increased TIMP-1 level, an in vivo inhibitor of MMP-9. MMP-2 level was unaffected by CLP. The 24-hr and 48-hr mortality rates for CLP rats were 29% and 50%, whereas posttreatment with CMT-3 resulted in 0% mortality. CONCLUSIONS: Our results are consistent with an MMP-9-induced caspase-3 activation in response to CLP. CMT-3 posttreatment increased TIMP-1 level and thereby inhibited MMP-9, which in turn decreased TGF-beta1 and caspase-3 signaling pathways and improved survivability in septic rats.  相似文献   

5.
Glutamine (GLN) has been shown to attenuate cytokine release from LPS-stimulated human peripheral blood mononuclear cells; however, the in vivo antiinflammatory effect of GLN in polymicrobial sepsis and ARDS is unknown. This study evaluates the effect of GLN on inflammatory cytokine release and the pathways that may mediate antiinflammatory effects of GLN in the lung. Either 0.75 g/kg of GLN or saline placebo (SP) was administered to male rats 1 h after cecal ligation and puncture (CLP). NF-kappaB activation, IKBalpha degradation, phosphorylation of p38 MAPK, ERK, and MKP-1 expression were evaluated in lung tissue 6 h post-CLP. Lung tissue iNOS and eNOS, TNF-alpha, IL-6, and IL-18 cytokines were assayed. Last, lung histopathology for occurrence of ARDS and survival were examined. GLN given 1 h postsepsis led to inhibition of lung tissue NF-kappaB activation (P < 0.001 vs. SP), attenuated degradation of IKBalpha, and inhibited phosphorylation of p38 MAPK, and ERK, pathways critical for cytokine release. GLN treatment increased MKP-1 peptide expression and significantly attenuated TNF-alpha and IL-6 6 h after CLP. IL-18 was attenuated by GLN at multiple time points post-CLP. Further, GLN abrogated increases in lung iNOS expression and enhanced lung eNOS postsepsis. Finally, GLN prevented the histopathologic appearance of ARDS after sepsis and significantly improved survival. These data reveal that GLN exerts an antiinflammatory effect in sepsis that may be mediated via attenuation of multiple pathways of inflammation such as NF-kappaB, p38 MAPK, ERK, and MKP-1. GLN also showed an inhibition of increases in iNOS expression. The antiinflammatory effect of GLN was associated with attenuation of ARDS and mortality.  相似文献   

6.
Shen L  Mo H  Cai L  Kong T  Zheng W  Ye J  Qi J  Xiao Z 《Shock (Augusta, Ga.)》2009,31(5):500-506
Lack of specific and efficient therapy leads to the high mortality rate of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Losartan is a potent pharmaceutical drug for ALI/ARDS. However, the protective effects and mechanisms of losartan remain incompletely known. This study evaluates the effects of losartan on ALI/ARDS and further investigates the possible mechanisms of these protective effects. Mice received i.p. injections of the AT1 inhibitor losartan (15 mg/kg), or control vehicle, half hour after cecal ligation and puncture (CLP). Plasma TNF-alpha, IL-1beta, and IL-6 cytokines were assayed 6 h after CLP. Blood gas, wet/dry lung weight ratio, lung tissue histology for occurrence of ALI/ARDS, and survival were examined. Lastly, nuclear factor kappaB (NF-kappaB) activations, IkappaB-alpha degradations, phosphorylations of p38 MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase expressions were evaluated in lung tissue. Losartan treatment significantly attenuated TNF-alpha, IL-6, and IL-1beta 6 h after CLP. Furthermore, losartan prevented blood gas and histopathologic appearance of ALI/ARDS after sepsis and significantly improved survival. Finally, losartan given after sepsis led to inhibition of lung tissue NF-kappaB activation (P < 0.01 vs. CLP group), attenuated degradation of IkappaB-alpha, and inhibited phosphorylation of p38MAPK, extracellular signal-regulated kinase 1/2, and c-Jun N-terminal kinase, pathways critical for cytokine release. These data reveal that losartan exerts a protective effect on ALI/ARDS, and this protective effect may be dependent, at least in part, on NF-kappaB and MAPK mechanisms.  相似文献   

7.
Increased intestinal/epithelial permeability in sepsis and endotoxemia has been noted to be induced by proinflammatory cytokines such as interferon-gamma, TNF-alpha, and IL-1beta. The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in regulating the inflammatory response induced by these cytokines. We tested the hypothesis that epithelial permeability changes are regulated through the p38 MAPK signaling pathway. Caco-2 cells were cultured for 21 days and then stimulated with a cytokine mixture (CytoMix: TNF-alpha, interferon-gamma, and IL-1beta). Epithelial barrier function was evaluated by measuring permeability in an Ussing chamber. CytoMix-induced changes of MAPKs (p38, c-Jun amino-terminal kinase, and extracellular-regulated kinase), NO production, and inflammatory responses (IL-6 and IL-8 levels) were also assessed. The signaling pathways were further studied by pretreating cells with SB203580, a specific p38 MAPK inhibitor. CytoMix increased permeability at 24 and 48 h but not at 4 h. This was associated with increased IL-6 and IL-8 production, as well as increases in phosphorylation of all three MAPKs. Treatment with SB203580 completely blocked p38 activity with transient inhibition of p38 phosphorylation. SB203580 also prevented the CytoMix-induced permeability increase and reduced NO, IL-6, and IL-8 levels. The results suggest that p38 MAPK plays an important role in regulating epithelial barrier function during inflammation.  相似文献   

8.
Lead (Pb) increases lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-alpha), nitric oxide (NO), lipid peroxidation (LPO), and liver damage. In this study, we investigated the role of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (MAPK) and the causal relationships between TNF-alpha, NO, and LPO in Pb-increased LPS-induced liver damage in rats. Treatment with PKC and p42/44 MAPK inhibitors significantly reduced Pb + LPS-induced NO, TNF-alpha, LPO, and liver damage, which was revealed by elevated serum levels of aspartate aminotransferase and alanine aminotransferase. Pb + LPS coexposure significantly increased phosphorylation of p42/44 MAPK and TNF-alpha expression in peripheral blood cells; however, exposure to Pb + LPS did not induce TNF-alpha, NO, or LPO production and p42/44 MAPK activation in the liver. Pentoxifylline, a TNF-alpha inhibitor, also reduced liver damage but did not alter NO or LPO in Pb + LPS-treated rats. Thus, Pb increased LPS-induced liver damage through PKC and p42/44 MAPK modulation of TNF-alpha and oxidative stress, but modulation of TNF-alpha did not affect NO or LPO in rats.  相似文献   

9.
10.
This study elucidates the mechanism through which heat shock treatment influences the outcome of sepsis. Post-heat shock sepsis was induced in rats by CLP 24 h after whole-body hyperthermia. Liver cytosolic and nuclear fractions were collected and analyzed in early and late sepsis rats (sacrificed 9 and 18 h after CLP, respectively). During sepsis, levels of I-kappaB and nuclear factor-kappaB (NF-kappaB) declined in the cytosol of liver, whereas NF-kappaB increased in nucleus. NF-kappaB activity was significantly enhanced during sepsis, and the products of NF-kappaB target genes, such as TNF-alpha and inducible nitric oxide synthase (iNOS), were overexpressed. Heat shock treatment, inducing heat shock protein synthesis, prevented down-regulation of cytosolic I-kappaB and decreased translocation of NF-kappaB into the nucleus. Therefore, the sepsis-induced acceleration of NF-kappaB activation was inhibited. Expression of TNF-alpha and iNOS mRNA was also down-regulated. Coimmunoprecipitation with anti-NF-kappaB (p65) and anti-IkappaB antibodies verified an assembling phenomenon of heat shock protein (HSP) 72 with NF-kappaB and I-kappaB. We suggest that the mechanism preventing septic activation of NF-kappaB is that oversynthesized HSP72 forms a complex with NF-kappaB/I-kappaB, thus inhibiting nuclear translocation of NF-kappaB. HSP72 appears to play a crucial protective role in modulating the gene expression controlled by NF-kappaB in sepsis.  相似文献   

11.
Studies indicate that polymicrobial sepsis in humans and animals is characterized by a biphasic response, which is dominated early by proinflammation, but over time develops into a state of generalized anti-inflammation (depressed Th1 cell response and decreased macrophage (M0) capacity to release proinflammatory cytokines). However, with respect to the macrophage, it remains unknown what mechanism(s) controls this change. In this regard it is well documented that the p38 mitogen activated protein kinase pathway (MAPK) plays a central role in the regulation of Mphi functions. However, the contribution of p38 MAPK activation to the loss of these Mphi functions in polymicrobial septic animals remains unknown. To determine this we induced polymicrobial sepsis in C3H/HeN male mice using cecal ligation and puncture (CLP). Twenty-four hours post-CLP, during the late, immune-suppressed stage of sepsis, splenic and peritoneal Mphi were harvested, stimulated with lipopolysaccharide (LPS), and the activation of p38 MAPK assessed. In Mphi from CLP mice, p38 MAPK activity was markedly increased. To determine the extent that these changes in p38 MAPK had an impact on Mphi immune function, cells were pretreated with 10 microM of the p38 MAPK inhibitor, SB203580, or with DMSO vehicle, and subsequently stimulated with LPS. IL-10, IL-6, IL-12, and nitric oxide release was determined. Our results indicate that with LPS stimulation alone, there was a marked increase in the release of the anti-inflammatory mediator, IL-10 after CLP. Alternatively, proinflammatory IL-12 and IL-6 release was suppressed. Treatment with SB203580 suppressed the increase in IL-10 release seen after CLP, while partially restoring IL-12 secretion. IL-6 release was partially restored only in splenic macrophages treated with SB203580. To the extent that these in vitro findings could be translated to an in vivo setting, we assessed the in vivo effects of p38 MAPK inhibition on survival. Mice were given 100 mg of SB203580/kg body weight or saline vehicle (intraperitoneal) either immediately post-CLP or 12 h post-CLP. Delayed administration of SB203580 significantly improved survival, while also preventing the increased NO and IL-10 release and improving IL-12 release by macrophages. These results suggest that p38 MAPK pathway plays a critical role in the induction of an immune-suppressive macrophage phenotype, and that inhibition of p38 MAPK markedly improves survival following polymicrobial sepsis.  相似文献   

12.
13.
We sought to determine if hypertonic saline (HTS) impacted alveolar macrophage (AM) activation and intracellular inflammatory gene signaling in a model of systemic inflammation. Rats received an intravenous administration of 4 mL/kg of 7.5% HTS or L-lactate lactated Ringer's (L-LR). They were simultaneously treated with an intraperitoneal injection of zymosan, which induces noninfectious systemic inflammation. AM were harvested by bronchoalveolar lavage 24 h after treatment. AM activation was analyzed by measurement of baseline and lipopolysaccharide (LPS)-induced TNF-alpha production. Intracellular signaling was analyzed for activation of the mitogen-activated protein kinases (MAPKs): ERK1/2, JNK, and p38. AM from HTS-treated rats produced less TNF-alpha than from L-LR-treated rats (927 +/- 335 pg/mL [SEM] vs. 3628 +/- 783 pg/mL [SEM], P = 0.001) and were also less responsive to LPS (4444 +/- 86 pg/mL [SEM] vs. 6666 +/- 91 pg/mL [SEM], P = 0.058). However, there was no difference in MAPK activation. In vivo HTS prevents excessive AM activation during systemic inflammation. This suppression is mediated through alternate pathways and does not induce the classic MAPK signaling cascade.  相似文献   

14.
The nonsteroidal anti-inflammatory drug (NSAID) sulindac prevents experimental colon cancer and can regress precancerous polyps in humans. Sulindac sulfide inhibits cyclooxygenase (COX)-mediated prostaglandin synthesis and retards the growth of cultured colon cell lines primarily by inducing apoptosis. Given the known role of mitogen-activated protein kinase (MAPK) in signal transduction and the regulation of cell survival and death, we determined the effect of sulindac sulfide on MAPK activation, COX-2 expression, and apoptosis induction in HCA-7 human colon cancer cells. Sulindac sulfide treatment was associated with activation of ERKp44/42 and p38 MAPK in a dosage- and time-dependent manner, and also activated upstream MEK. Similar results were seen in HCT-15 cells and also with the selective COX-2 inhibitor NS398. ERKp44/42 and p38 activation were accompanied by an induction of COX-2 protein expression. Selective inhibitors of sulindac sulfide-induced ERKp44/42 (PD98059) and p38 MAPK (SB203580) activation also suppressed the induction of COX-2 by this NSAID. Furthermore, both MAPK inhibitors significantly augmented sulindac sulfide-induced apoptosis, as did suppression of constitutive COX-2 using antisense oligonucleotides. In conclusion, MEK/ERK and p38 MAPK activation mediate COX-2 induction by sulindac sulfide. Selective inhibitors of these MAPKs potentiate apoptosis induction by this NSAID, suggesting a novel strategy for the prevention or treatment of colorectal cancer.  相似文献   

15.
Several studies have reported a role for the nucleus accumbens (NAcc) in learning and memory. Specifically, NAcc seems to function as a neural bridge for the translation of corticolimbic information to the motor system mediating locomotor learning, but the signaling mechanisms involved in this striatal learning await further investigation. The present experiments investigated the role of the mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) cascades within the NAcc of Long-Evans rats in a food-search spatial learning task (FSSLT). First, we used immunoblotting to examine changes in MAPK p42/p44 phosphorylation within the NAcc in the acquisition phase of the FSSLT. Second, we examined the effect on the acquisition and retention phases in the FSSLT of pretraining intra-accumbal microinjections of the MAPK [U0126; 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophynyltio)butadiene, 1 microg/side] or PKC [GF109203X; bisindolylmaleimide or 1-(3-dimethylaminopropyl)-indol-3-yl]-3-(indol-3-yl) maleimide, 0.5 ng/side] inhibitors (four training sessions; one session/day). Third, the potential coupling of PKC and MAPK signaling pathways in the NAcc in spatial learning was studied using microinjections of GF109203X, radioactive activity assays, and immunoblotting. Results showed that 1) MAPK p42/p44 phosphorylation is augmented within the NAcc after spatial learning, 2) MAPK and PKC inhibition caused differential deficits in the acquisition and formation of spatial memories, and 3) inhibition of PKC activity by GF109203X caused a reduction in MAPKs phosphorylation in the NAcc in an early stage of the acquisition phase. Overall, these findings suggest that NAcc-PKC and -MAPK play important roles in spatial learning and that MAPKs phosphorylation seems to be mediated through the activation of the PKC signaling pathway.  相似文献   

16.
目的探讨白细胞介素-1β(IL-1β)在脓毒症鼠心肌损伤中的作用及p38MAPK的调控机制。方法采用盲肠结扎并穿刺(CLP)来制作脓毒症模型,并在不同时相点观察大鼠血清CPK-MB、IL-1β浓度及其mRNA在心肌的表达、心肌p38MAPK的活性。结果CLP术后血清IL-1β浓度进行性升高,CPK—MB显著提高。正常心肌组织微量表达IL-1β mRNA,脓毒症时可见大量表达,且p38MAPK明显激活。血清IL-1β的水平及其mRNA在心肌中的表达与CPK-MB呈显著正相关。应用p38MAPK抑制剂SB203580后,p38MAPK激活受抑,血清IL-1β浓度显著降低,IL-1β在心肌中的表达减少,心肌损害明显减轻。结论IL-1β的大量释放及其在心肌中显著表达是脓毒症鼠心肌损伤的原因之一,而通过调控p38MAPK信号通路可对心肌起保护作用。  相似文献   

17.
18.
The family of basic secretagogues of connective tissue mast cells act as receptor mimetic agents, which trigger exocytosis by directly activating G proteins. We now demonstrate that pertussis toxin (Ptx)-sensitive Gi proteins, activated by compound 48/80 (c48/80), a potent member of this family, also activate the p42/p44 MAP kinases (MAPKs). This activation was potentiated by the protein tyrosine phosphatase inhibitor vanadate, whereas the tyrphostin AG-18, a competitive inhibitor of protein tyrosine kinases (PTKs); the protein kinase C inhibitors K252a and GF109203X; the phosphatidylinositol-3-kinase (PI-3K) inhibitors wortmannin and LY294002; and EGTA have abolished this activation. These results suggest that c48/80 activated the p42/p44 MAPKs via a mechanism that involves PTKs, protein kinase C, phosphatidylinositol-3-kinase and Ca2+ as mediators. Protein tyrosine phosphorylation and activation of the p42/p44 MAPKs were closely correlated with stimulation of arachidonic acid (AA) release by c48/80 but not with histamine secretion. However, whereas PD98059, the inhibitor of the MAPK kinase has abrogated MAPK activation, this inhibitor failed to effect release of AA. We therefore conclude that by activating Ptx-sensitive Gi protein(s), the basic secretagogues of mast cells stimulate multiple signaling pathways, which diverge to regulate the production and release of the different inflammatory mediators. Whereas the signaling pathway responsible for triggering histamine release is PTK independent, the pathway responsible for the stimulation of AA release bifurcates downstream to PTKs but upstream to the activation of MAPKs.  相似文献   

19.
Several cell-damaging effects of ethanol are due to its major metabolite acetaldehyde but its mechanisms are not known. We have studied the effect of acetaldehyde on p42/44 mitogen-activated protein kinase (MAPK) and p46/p54 c-Jun N-terminal kinase (JNK 1/2) in rat hepatocytes. Acetaldehyde caused peak activation of p42/44 MAPK at 10 min followed by JNK activation at 1 h. These responses were acetaldehyde dose-dependent (0.2-5 mM). There was a consistently higher activation of p46 JNK than p54 JNK. Ethanol also activated both p42/44 MAPK and p46/p54 JNK. The activation of JNK by ethanol, however, was not significantly affected by treatment of hepatocytes with 4-methylpyrazole, an alcohol dehydrogenase inhibitor. Cells treated with 200 mM ethanol for 1 h accumulated 0.35 +/- 0.02 mM acetaldehyde, but the magnitude of JNK activation was greater than that expected with 0.35 mM acetaldehyde. Thus, ethanol-activated JNK may be both acetaldehyde-dependent and -independent. The activation of JNK by ethanol or acetaldehyde was insensitive to the treatment of hepatocytes with genistein (tyrosine kinase inhibitor) and 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide (GF109203X) (protein kinase C inhibitor). Remarkably, in contrast to the above-mentioned effects on normal hepatocytes, acetaldehyde was unable to increase JNK activity in hepatocytes isolated from rats chronically fed ethanol for 6 weeks and indicated a loss of this acetaldehyde response. Thus, temporal activation of the p42/44 MAPK and p46/p54 JNK, the greater activation of p46 JNK than p54 JNK, and loss of JNK activation after chronic ethanol exposure indicate that these kinases are differentially affected by ethanol metabolite acetaldehyde.  相似文献   

20.
The present study was designed to investigate the role of NF-kappaB in influencing the outcome of sepsis modulated by previous heat shock treatment. Sepsis was induced in rats by cecum ligation and puncture (CLP) method, which manifests two distinct clinical phases: an initial hyperdynamic phase (9 h after CLP, early sepsis) followed by a hypodynamic phase (18 h after CLP, late sepsis). Rats of heated group were treated by whole body hyperthermia 24 h prior to the CLP operation. Lymphocytes were collected during the early and late sepsis phases. The expressions of Hsp72, p65 and I-kappa B were evaluated by Western blot and immunochemical analysis. NF-kappaB activity was detected by EMSA. The results showed that NF-kappaB activation was initiated during early sepsis and apparently suppressed during late stage of sepsis. Previously treated by heat shock, late-sepsis rats emerged with high preservation of p65 expression and NF-kappaB activity, while Hsp72 was over-expressed. In conclusion, down-regulation of NF-kappaB activity during late sepsis could be attenuated by pretreatment of heat shock through the preservation of p65 expression. The results may provide a mechanistic explanation for the improved outcome to polymicrobial sepsis of rats that are preconditioned with heat shock, as well as a novel highlight for therapeutic intervention of severe infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号